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PREFACE 

 

The purpose of this e-book is to provide concepts and theories of signals and 

systems for the topics of Laplace Transform, Z-transform and Fourier Analysis for 

continuous and discrete signals that required in almost all fields of electrical 

engineering and in many other engineering and scientific disciplines as well. 

This e-book is intended to be used as an additional learning material developed in 

electronic form to facilitate access to users. It is also in line to apply the latest 

technology in line with the changing times. 

The concepts in this e-book are topical in each chapter and followed by sample 

questions and solutions for all the questions given. At the end of each chapter will be 

given a set of tutorial questions to test the user's level of understanding. 

Chapter 1 exploring transformation techniques for LTI system analysis. The Laplace 

transformation and its application to continuous time LTI system. In addition, this 

chapter also touches on the Z-transform and its application to discrete time LTI 

system. Chapter 2 discusses Fourier Analysis, Fourier Transform and Frequency 

Response of signals and systems, example questions and solutions for continuous 

time signals and discrete time signals. 

It is hoped that students will be able to complete the tutorial questions given at the 

end of each chapter by referring to the examples of solution questions that have 

been given. 
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Laplace Transform

TOPIC 1



TOPIC 1 LAPLACE TRANSFORM

The Laplace transform is a generalisation of the Fourier transforms for

continuous signals that includes sinusoids with exponentially

increasing amplitudes in the set of basis signals. The Laplace transform

converts a differential equation (real variable t: time) into easier to

manipulate and solve algebraic equations (function of complex

variable s: frequency).

Figure 3.1 
Laplace Transform in Real
World Problem

INTRODUCTION

4
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The Laplace Transform is a frequency domain to time domain

mapping.

Figure 3.2 
The Relationship Between the 
Time and Frequency Domains

A function's Laplace Transform, y(t), is defined as:

Figure 3.3 
Bilateral Laplace Transform

DEFINITION
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Example 3.1

Find the actual exponential signal's Laplace transform, 
𝒙 𝒕 = 𝒆−𝒂𝒕𝒖 𝒕

Solution Utilizing the Laplace change definition, we get

𝑋 𝑠 = න
−∞

∞

𝑒−𝑎𝑡𝑢 𝑡 𝑒−𝑠𝑡𝑑𝑡 = න
0

∞

𝑒−𝑎𝑡𝑒−𝑠𝑡𝑑𝑡

=න
0

∞

𝑒− 𝑠+𝑎 𝑡𝑑𝑡

= −
1

𝑠 + 𝑎
ห𝑒− 𝑠+𝑎 𝑡

0

∞

=
1

𝑠 + 𝑎
𝑅𝑒 𝑠 > −𝑎

Figure 3.4 
Unilateral Laplace Transform

Thus, we obtain 



TOPIC 1 LAPLACE TRANSFORM

7

Example 3.2

Calculate the Laplace transform 𝑥 𝑡 = −𝑒−𝑎𝑡𝑢 −𝑡

Solution Utilizing the Laplace change definition, we get

𝑋 𝑠 = න
−∞

∞

𝑥 𝑡 𝑒−𝑠𝑡𝑑𝑡 = න
−∞

∞

−𝑒−𝑎𝑡𝑢 −𝑡 𝑒−𝑠𝑡𝑑𝑡

= −඲

−∞

0

𝑒−𝑎𝑡𝑒−𝑠𝑡𝑑𝑡 = −න
−∞

0

𝑒− 𝑠+𝑎 𝑡𝑑𝑡

= − −
1

𝑠 + 𝑎
𝑒− 𝑠+𝑎 𝑡

−∞

0

=
1

𝑠 + 𝑎

LAPLACE TRANSFORM PAIRS FOR 
COMMON SIGNALS

Table 3-1 lists the Laplace transforms of several typical signals.

We can refer to such a table and read out the desired

transform instead of having to re-evaluate the transform of a

given signal.

We obtain: 
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Noted. Adapted from Signal and System, by Hwei, 2010, p. 101. The 
McGraw-Hill Companies, Inc. owns the copyright to this work.

Table 3-1 Laplace Transform Pairs
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THE REGION OF CONVERGENCE
( ROC )

The range of values of the complex variables s for which the Laplace

transform converges is referred to as region of convergence (ROC).

Convergence Region The ROC is significant because it determines the

area in which the Laplace Transform can be found. In the complex

plane, the ROC is usually represented as a separating line/curve. The

contour between the regions of convergence and divergence in a

continuous summation, such as the Laplace transform or the Fourier

transform, is a straight line. The lines are parallel to the imaginary axis

for the Laplace transform for which is not zero.

Figure 3.5

The ROC for the Laplace transform
is indicated by the shaded regions.
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POLES AND ZEROS OF X(S)

X(s) is usually a rational function in s; that is,

𝑿 𝒔 =
𝑵 𝒔

𝑫 𝒔

where D is the denominator polynomial and N is the numerator

polynomial.

zeros

poles

The pole-zero plot of X(s) is a graphic display of X(s) through its poles and 

zeros in the s-plane (s). Conventionally, each pole is represented by a "x," 

while each zero is represented by a "o." This is seen in Figure 3-3 for X(s) 

provided.

X(s) has one zero at s = -2 and two poles at s = -1 ands = -3 with scale

factor 2.

Figure 3.6 

An illustration of in the s-plane
X(s) = (2s + 4)/(s 2 + 4s + 3).
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Example 3.3

Determine the Laplace transform X(s) and plot the pole-zero with

the ROC for 𝑥 𝑡 = 𝑒−2𝑡𝑢 𝑡 + 𝑒−3𝑡𝑢 𝑡

Solution From table 3-1

𝑒−2𝑡𝑢 𝑡 ↦
1

𝑠 + 2
𝑅𝑒 𝑠 > −2

e−3tu t →
1

s + 3
Re s > −3

𝑥 𝑠 =
1

𝑠 + 2
+

1

𝑠 + 3
=

𝑠 + 3 + 𝑠 + 2

𝑠 + 2 𝑠 + 3

=
2𝑠 + 5

𝑠 + 2𝑥𝑠 + 3
=

2 𝑠 +
5
2

𝑠 + 2 𝑠 + 3
, Re 𝑠 > −2

X(s) has two poles at s = - 2 and s = - 3 and one zero at

s = -
5

2
that the ROC is Re(s) > - 2, as plotted in

Figure 3.6(a)
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Figure 3.6 (a)

Example 3.4

Discover the worth the Laplace transform X(s) and plot the pole-zero

with the ROC for 𝑥 𝑡 = 𝑒−3𝑡𝑢 𝑡 + 𝑒2𝑡𝑢 −𝑡

Solution From table 3-1

e−3tu t →
1

s + 3
Re s > −3

𝑒2𝑡𝑢 −𝑡 ↦ −
1

𝑠 − 2
𝑅𝑒 𝑠 < −2

𝑋 𝑠 =
1

𝑠 + 3
−

1

𝑠 − 2
=

𝑠 − 2 − 𝑠 − 3

𝑠 + 3 𝑠 − 2

= −
5

𝑠 + 3 𝑠 − 2
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X(s) has two poles at s = 2 ands = - 3 and no zeros,

that the ROC is - 3 < Re(s) < 2, as plotted in Figure

3.6 (b)

Figure 3.6 (b)
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PROPERTIES OF THE ROC

1) There can't be any poles in ROC.

A pole is defined as a point where H(s) is infinite. H(s) must be finite in

order to converge. As a result, there can't be a pole in ROC. The values for

s where D(s) = 0 are called poles.If x(t) is absolutely integral and it is of

finite duration, then ROC is entire s-plane

3) If x(t) is a right sided sequence, then ROC: Re{s} > σo

4) If x(t) is a left sided sequence, then ROC: Re{s} < σo

5) If x(t) is a two-sided sequence, then The ROC is the result of combining

two regions.
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LTI SYSTEM CHARACTERIZATION

CAUSALITY:

For a causal continuous-time LTI system, we have

h(t) = 0 t < 0

As h(t) is a right-sided signal, H(s) must have a right-sided ROC.

Re(s) > σ max

In other words, the ROC is the s-plane region to the right of all of

the system poles. In the same way, if the system is anticausal,

h(t) = 0 t > 0

and h(t) is left-sided. Thus, the ROC of H(s) must be of the form

Re(s) < σ min

In other words, the ROC is the s-plane region to the left of all of

the system poles.
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STABILITY:

We stated that the stability of a continuous-time LTI system is

BIBO (bounded-input/bounded-output) if and only if

න
−∞

∞

ℎ 𝑡 𝑑𝑡 < ∞

CAUSAL AND

STABLE SYSTEM:

Because the ROC is of the form Re(s) > max and the jw axis is

included in the ROC, all the poles of H(s) must be in the left half of

the s-plane; that is, they must all have negative real values if the

system is both causal and stable.

Figure 3.7 summarises the characterizations of LTI systems.
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Figure 3.7     
Laplace Causal and Stability
Condition

PROPERTIES OF THE LAPLACE 
TRANSFORM

A. Linearity:

The set notation A  B means that set A contains set B, while A  B

denotes the intersection of sets A and B, that is, the set containing

all value from both A and B. The ROC of the resulting Laplace

transform is at least as large as the region in common between R1

and R2, according to this equation. Figure 3.8 shows how this

performs.
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Figure 3.8    
ROC of a1X1(s) + a2X2(s)

B. Time Shifting:

C. Shifting in the

s-Domain:
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Figure 3.9     
Shifting in the s-domain has an
effect on the ROC.(a) ROC of X(s); 
(b) ROC of X (s - s0).

D. Time Scaling:

Scaling the time variable t by the factor a results in an inverse

scaling of the variable s by 1/a, as well as an amplitude scaling of X

(s/a) by 1/|a|. Figure 3.10 shows the ROC effect of the

corresponding effect.
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Figure 3.10
Shifting in the s-domain has an
effect on the ROC (a) ROC of X(s);
(b) ROC of X(s/a).

E. Time Reversal:

In the s-plane, time reversal of x(t) results in a reversal of both the

a- and jw-axes. Setting a = -1 easily obtains the equation above.
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F. Differentiation in 
the Time Domain:

G. Differentiation in
the s-Domain:

H. Integration in the 
Time Domain:
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If integration is the inverse operation of differentiation, the

Laplace transform operation corresponding to time-

domain integration is multiplied by 1/s, as can be seen in

the equation above. The form of R' follows from the possible

introduction of an additional pole at s = 0 by the multiplication by

1/ s.

I. Convolution:

The features of the Laplace transform described in this section are 

summarised in Table 3-2.
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Table 3-2 The Laplace Transform attributes

Example 3.5

In Laplace, rewrite the following signals:

a. 𝑥 𝑡 = 𝑢 𝑡 − 5

b. 𝑥 𝑡 = 𝑒5𝑡𝑢 −𝑡 + 3

Solution a. 𝑥 𝑡 = 𝑢 𝑡 − 5

𝑋 𝑠 = න
−∞

∞

𝑥 𝑡 𝑒−𝑠𝑡𝑑𝑡

= ඲

−∞

∞

𝑒−𝑠𝑡𝑢 𝑡 − 5 𝑑𝑡 = න
5

∞

𝑒−𝑠𝑡𝑑𝑡

= −
1

𝑠
𝑒−𝑠𝑡 5

∞ = −
1

𝑠
−𝑒−5𝑠

=
𝑒−5𝑠

𝑠
𝑅𝑒 > 0We obtain,
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b. 𝑥 𝑡 = 𝑒5𝑡𝑢 −𝑡 + 3

𝑋 𝑠 = න
−∞

∞

𝑥 𝑡 𝑒−𝑠𝑡𝑑𝑡

𝑋 𝑠 = න
−∞

∞

𝑒5𝑡𝑢 −𝑡 + 3 𝑒−𝑠𝑡𝑑𝑡

= න
−∞

3

𝑒− 𝑠−5 𝑡𝑒𝑡 = −
1

𝑠 − 5
𝑒− 𝑠−5 𝑡

−∞

3

= −
1

𝑠−5
𝑒−3 𝑠−5 𝑅𝑒 𝑠 < 5

INVERSE LAPLACE TRANSFORM

Inversion of the Laplace transform to find the signal x(t) from its

Laplace transform X(s) is called the inverse Laplace transform,

symbolically denoted as

𝑥 𝑡 = 𝐿−1 𝑥 𝑠

We obtain,



TOPIC 1 LAPLACE TRANSFORM

25

Example 3.6

Identified the inverse Laplace transform of the following X(s).

a) X 𝑠 =
1

𝑠+1
, Re 𝑠 > −1

b) X 𝑠 =
1

𝑠+1
, Re 𝑠 < −1

c) X 𝑠 =
1

𝑠+1
, Re 𝑠 > 0

d) X 𝑠 =
𝑠+1

𝑠+1 2+4
, Re 𝑠 > −1

Solution From Table 3-1, we find:

a) 𝑥 𝑡 = 𝑒−𝑡𝑢 𝑡

b) 𝑥 𝑡 = −𝑒−𝑡𝑢 −𝑡

c) 𝑥 𝑡 = 𝑐𝑜𝑠 2𝑡 𝑢 𝑡

d) 𝑥 𝑡 = 𝑒−𝑡 𝑐𝑜𝑠 2𝑡 𝑢 𝑡

Example 3.7

Solve the inverse Laplace transform of the following X(s):
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Solution a) X s =
2s+4

s2+4s+3
=

2 s+2

s+1 s+3
Re 𝑠 > −1

Using partial fraction,

=
A

s+1
+

B

s+3
= 𝐴 𝑠 + 3 + 𝐵 𝑠 + 1

𝑅𝑒𝑝𝑙𝑎𝑐𝑒 𝑠 = −1 Replace s= -3

𝐴 𝑠 + 3 = 2 𝑠 + 2 𝐵 𝑠 + 1 = 2 𝑠 + 2

𝐴 −1 + 3 = 2 −1 + 2
2𝐴 = 2
𝐴 = 1

𝐵 −3 + 1 = 2 −3 + 2
−2𝐵 = −2
𝐵 = 1

X 𝑠 =
1

𝑠+1
+

1

𝑠+3

Re 𝑠 > −1, x t from Table 3 − 1, we obtain

𝑥 𝑡 = 𝑒−𝑡𝑢 𝑡 + 𝑒−3𝑡𝑢 𝑡

b) Re 𝑠 < −3

𝑥 𝑡 = −𝑒−𝑡𝑢 −𝑡 − 𝑒−3𝑡𝑢 −𝑡

c) −3 < Re 𝑠 < −1

𝑥 𝑡 = −𝑒−𝑡𝑢 −𝑡 + 𝑒−3𝑡𝑢 𝑡
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Example 3.8

Solve the inverse Laplace Transform of:

𝑋 𝑠 =
𝑠2+6𝑠+7

𝑠2+3𝑠+2
, Re(s) > -1

Solution Using long division:

𝑋 𝑠 = 1 +
3𝑠 + 5

𝑠2 + 3𝑠 + 2

3𝑠 + 5

𝑠2 + 3𝑠 + 2
=

3𝑠 + 5

𝑠 + 1 𝑠 + 2

Using partial fraction,

𝐴

𝑠 + 1
+

𝐵

𝑠 + 2
= 𝐴 𝑠 + 2 + 𝐵 𝑠 + 1

Replace s= -1, Replace s = -2

3𝑠 + 5 = 𝐴 𝑠 + 2 3𝑆 + 5 = 𝐵 𝑠 + 1

3 −1 + 5 = 𝐴 −1 + 2
2 = 𝐴

3 −2 + 5 = 13 −2 + 1
−1 = −𝐵
𝐵 = 1

𝑋 𝑠 = 1 +
2

𝑠 + 1
+

1

𝑠 + 2

From Table 3-1, we obtain:

𝑥 𝑡 = 𝛿 𝑡 + 2𝑒−𝑡𝑢 𝑡 + 𝑒−2𝑡𝑢 𝑡
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Example 3.9

Calculate the inverse Laplace transform of:

𝐿−1
𝑠

𝑠2+2𝑠+5

Solution We solve the squared to produce a shifted sine or cosine

form because the denominator expression cannot be

factored into linear terms.

𝐿−1
𝑠

𝑠2 + 2𝑠 + 5
=

𝑠

𝑠2 + 2𝑠 + 𝟏 − 𝟏 + 5

=
𝑠

𝑠2+2𝑠+1 −1+5

=
𝑠

𝑠+1 2+4

Replace s= s+1,

=
𝑠+𝟏 −𝟏

𝑠+1 2+4

=
𝑠+1

𝑠+1 2+4
−

1

𝑠+1 2+4

=
𝑠+1

𝑠+1 2+22
−

𝟏

𝟐
×

𝟐

𝑠+1 2+22

From Table 3-1, we obtain:

= 𝑒−𝑡 𝑐𝑜𝑠 2 𝑡 𝑢 𝑡 −
1

2
𝑒−𝑡 𝑠𝑖𝑛 2𝑡 𝑢 𝑡
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SYSTEM FUNCTION

A continuous-time LTI system's output y(t) is equal to the

convolution of the input x(t) with the impulse response h(t); that is,

𝑦 𝑡 = 𝑥 𝑡 ∗ ℎ 𝑡

We get the following result by using the convolution property.

𝑌 𝑠 = 𝑋 𝑠 + 𝐻 𝑠

where Y(s), X(s), and H(s) are the Laplace transforms of y(t), x(t),

and h(t), respectively.

The system function (or the transfer function) of the system is the

Laplace transform H(s) of h(t).

𝐻 𝑠 =
𝑌(𝑠)

𝑋 𝑠

The ratio between the Laplace transforms of the output y(t) and

the input x can also be defined as the system function H(s) (t).

Because the impulse response h(t) entirely characterizes the

system, the system function H(s) completely classifies the system.

The connection H(s) = Y(s)X(s) is depicted in Figure 3.11.



TOPIC 1 LAPLACE TRANSFORM

30

Figure 3.11    
System function and impulse response.

Example 3.9

A continuous-time LTI system's output y(t) is discovered to be

2𝑒−3𝑡𝑢 𝑡 where x(t) is equal to u (t).

a) Find the input response h(t) of the system.

b) Find the output y(t) when the input x(t) is 𝑒−𝑡𝑢 𝑡 .

Solution
a) 𝑦 𝑡 = 2𝑒−3𝑡𝑢 𝑡

Using Table 3-1;

𝑌 𝑠 = 2
1

𝑠+3
𝑅𝑒 𝑠 > −3

𝑥 𝑡 = 𝑢 𝑡

Using Table 3-1,

X 𝑠 =
1

𝑠
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𝐻 𝑠 =
𝑌 𝑠

𝑋 𝑠
=

2
𝑠 + 3
1
𝑠

𝐻(𝑠) =
2

𝑠 + 3
× 𝑠 =

2𝑠

𝑠 + 3

Using long division;

𝐻 𝑠 = 2 −
6

𝑠 + 3

From Table 3-1, we obtain;

ℎ 𝑡 = 2𝛿 𝑡 − 6𝑒−3𝑡𝑢 𝑡

b) 𝑥 𝑡 = 𝑒−𝑡𝑢 𝑡

Using Table 3-1;

𝑥 𝑠 =
1

𝑠 + 1
𝑅𝑒 𝑠 > −1

𝐻 𝑠 =
𝑌 𝑠

𝑋 𝑠
𝑌 𝑠 = 𝐻 𝑠 𝑥 𝑋 𝑠

Y 𝑠 =
2𝑠

𝑠+3
×

1

𝑠+1

=
2𝑠 + 3

𝑠 + 3 𝑠 + 1

𝑈𝑠𝑖𝑛𝑔 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛;

2𝑠 = 𝐴 𝑠 + 1 + 𝐵 𝑠 + 3

Replace s= -1 Replace s = -3

2 −1 = 𝐵 2
𝐵 = −1

2 −3 = 𝐴 −2
𝐴 = 3
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𝑌 𝑠 =
3

𝑠 + 3
−

1

𝑠 + 1

From Table 3-1, we find:

𝑦 𝑡 = 3𝑒−3𝑡𝑢 𝑡 − 𝑒−𝑡𝑢 𝑡

Example 3.10

Consider a continuous time LTI with a relation between input x(t) 
and output y(t).

𝑦′′ 𝑡 + 𝑦′ 𝑡 − 2 𝑦 = 𝑥 𝑡

a) Solve the transfer function of the system, H(s).
b) Identified the impulse response h(t) for each of the 

following three cases:
i.  The system is causal
ii. The system is stable
iii. The system is neither causal or nor stable

Solution
𝑦′′ 𝑡 + 𝑦′ 𝑡 − 2 𝑦 = 𝑥 𝑡

Taking the Laplace transform of the question 3.10, we have

𝑠2𝑌 𝑠 + 𝑠𝑌 𝑠 − 2𝑌 𝑠 = X (s)

𝑠2 + 𝑠 − 2 𝑦 𝑠 = 𝑥 𝑠
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a)         𝐻 𝑠 =
𝑌 𝑠

𝑋 𝑠

= 
1

𝑆2+𝑆−2

=
1

𝑠 − 1 𝑠 + 2

b)         𝐻 𝑠 =
1

𝑠−1 𝑠+2

1 = 𝐴 𝑠 + 2 + 𝐵 𝑠 − 1

Replace s = -2

1 = 𝐵 −2 − 1

𝐵 = −
1

3

Replace s = 1

1 = 𝐴 3

𝐴 =
1

3

𝐻 𝑠 =
1

3

1

𝑠 − 1
−
1

3

1

𝑠 + 2

ℎ 𝑡 =
1

3
e𝑡 − e−2𝑡

i) System causal         Re(s)>1, we find 

ℎ 𝑡 =
1

3
e𝑡𝑢 𝑡 −

1

3
e−2𝑡𝑢 𝑡

ii) System causal      -2< Re(s)<1 , we find

ℎ 𝑡 = −
1

3
e𝑡𝑢 −𝑡 −

1

3
e−2𝑡𝑢 𝑡

ii) Neither causal or nor stable      Re(s)<-2 , we find

ℎ 𝑡 = −
1

3
e𝑡𝑢 −𝑡 +

1

3
e−2𝑡𝑢 −𝑡

the answer:



1. Calculate the Laplace transform of the following x(t)
a) x(t) = sin ω0 tu(t)
b) x(t) = cos(ω0 t +  )u(t)
c) X(t) = e-atu(t) – eatu(-t)

2. Solve Inverse transform function of
F(s) = 6s2 +10s + 2

s3 + 3s2 + 2s

3. Solve the inverse Laplace transform of:

𝐿−1
𝑠 + 1

𝑠2 − 6𝑠 + 13

4. A continuous-time LTI system's step
response is provided by (1 – e-t) u(t). The
result y(t) is observed to be for a given
unknown input x(t). (2 - 3e-t, + e-3t)u(t). Find
the input x(t).

FOR ANSWER
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INTRODUCTION

The z-transform is the most basic concept for discrete-time series

transformation.

The Laplace transform is a more general concept for continuous

time process transformation.

The Laplace transform, for example, can be used to convert a

differential equation and its associated initial and boundary value

problems into a space where the equation can be solved using

standard algebra.

Operational calculus is the process of switching spaces to convert

calculus equations into algebraic operations on transformations.

The most essential methods for this are the Laplace and z

transforms.
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LAPLACE VS Z TRANSFOM

Definition Purpose

Laplace 
transform

X 𝑠 = ∞−׬
∞

𝑥 𝑡 e−𝑠𝑡d𝑡 Integral-differential 
equations are 
converted to 
algebraic equations.

Z transform X 𝑧 = σ𝑛=−∞
∞ 𝑥 𝑛 𝑧−𝑛 Differential 

conditions are 
changed over to 
arithmetical 
conditions.

DEFINITION

A sequence of x[n] has a Z-transform defined by :




=

−=

0

)()(

n

nznxzX

▪ Two-sided z-transform:




−=

−=

n

nznxzX )()(

▪ One-sided z-transform (for causal system):
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Example 3.11

Solution

Find the z-transform of these sequences:

𝑥 𝑛 = 5,3, −2,0,4, −3

𝑋 𝑧 = ෍

𝑛=−∞

∞

𝑥 𝑛 𝑧−𝑛

= ෍

𝑛=−2

3

𝑥 𝑛 𝑧−𝑛

= 𝑥 −2 𝑧2 + 𝑥 −1 𝑧1 + 𝑥 0 𝑧0 +
𝑥 1 𝑧−1 + 𝑥 2 𝑧−2 + 𝑥 3 𝑧−3

= 5𝑧2 + 3𝑧 − 2 + 4𝑧−2 − 3𝑧−3

Example 3.12

Take a look at the x[n] sequence in the table below.

Solution 𝑋 𝑧 = ෍

𝑛=−∞

∞

𝑥 𝑛 𝑧−𝑛

X 𝑧 = 2 + 4𝑧−1 + 6𝑧−2 + 4𝑧−3 + 2𝑧−4

We obtain;

We obtain;
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Z TRANSFORM PAIRS

The z-transforms of some common sequences are in Table 3.3.

Table 3.3  The z-transform pairs

Noted. Adapted from Signal and System, by Hwei, 2010, p. 141. The 

McGraw-Hill Companies, Inc. owns the copyright to this work.
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Example 3.13

Calculate the z-transform of:

a) 𝑥 𝑛 = 𝑎𝑛𝑢 𝑛
b) 𝑥 𝑛 = 𝑢 𝑛 − 1
c) 𝑥 𝑛 = −𝑎𝑛𝑢 −𝑛 − 1
d) 𝑥 𝑛 = 𝑎−𝑛𝑢 −𝑛 − 1

Solution
a) 𝑥 𝑛 = 𝑎𝑛𝑢 𝑛

𝑋 𝑧 = ෍

𝑛=−∞

∞

𝑥 𝑛 𝑧−𝑛

𝑋 𝑧 = ෍

𝑛=−∞

∞

𝑎𝑛𝑢 𝑛 𝑧−𝑛

= ෍

𝑛=0

∞

𝑎𝑛𝑧−𝑛

= ෍

𝑛=0

∞

𝑎𝑧−1 𝑛

Using Summation Formula;

=
1

1 − 𝑎𝑧−1
𝑥 ҧ𝑧
𝑧

=
𝑧

𝑧 − 𝑎

Solution b) 𝑥 𝑛 = 𝑢 𝑛 − 1

𝑋 𝑧 = ෍

𝑛=−∞

∞

𝑥 𝑛 𝑧−𝑛

𝑋 𝑧 = ෍

𝑛=−∞

∞

𝑢 𝑛 − 1 𝑧−𝑛

= ෍

𝑛=1

∞

𝑧−1 𝑛

Using Summation Formula;

=
𝑧−1

1 − 𝑧−1
𝑥 ҧ𝑧
𝑧

= 
1

𝑧−1
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Solution c) 𝑥 𝑛 = −𝑎𝑛𝑢 −𝑛 − 1

𝑋 𝑧 = ෍

𝑛=−∞

∞

𝑥 𝑛 𝑧−𝑛

𝑋 𝑧 = ෍

𝑛=−∞

∞

−𝑎𝑛𝑢 −𝑛 − 1 𝑧−𝑛

= − ෍

𝑛=−∞

−1

𝑎𝑛𝑧−𝑛

= − −1 − ෍

𝑛=0

∞

𝑎−𝑛𝑧𝑛

Change 
polarity

= 1 −෍

𝑛=0

∞

𝑎−1𝑧 𝑛 = 1 −
1

𝑎−1𝑧

=
−𝑎−1𝑧

1 − 𝑎−1𝑧
×

−𝑎

−𝑎

=
𝑧

𝑧 − 𝑎

Solution d) 𝑥 𝑛 = 𝑎−𝑛𝑢 −𝑛 − 1

𝑋 𝑧 = ෍

𝑛=−∞

∞

𝑥 𝑛 𝑧−𝑛

𝑋 𝑧 = ෍

𝑛=−∞

∞

𝑎𝑛𝑢 −𝑛 − 1 𝑧−𝑛

= ෍

𝑛=−∞

−1

𝑎−𝑛𝑧−𝑛

= −1 +෍

𝑛=0

∞

𝑎𝑛𝑧𝑛

Change 
polarity

We get;
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= ෍

𝑛=0

∞

𝑎𝑧 𝑛 − 1 =
1

1 − 𝑎𝑧
− 1

=
1 − 1 + 𝑎𝑧

1 − 𝑎𝑧

=
𝑎𝑧

1 − 𝑎𝑧
×

1
𝑎
1
𝑎

=
𝑧

1
𝑎
− 𝑧

= −
𝑧

𝑧 −
1
𝑎

REGION OF CONVERGENCE

Convergence Region The ROC is significant since it determines the

area in which the Z-Transform can be found. The z-transform should

be represented as a rational function.

)(

)(
)(

zQ

zP
zX =

where P(z) and Q(z) are polynomials in z.

Zeros

Poles

We get;
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PROPERTIES OF THE ROC

1) In the z-plane, a ring or disc centred at the origin.

2) ROC cannot contain any poles .

3) Finite duration sequences : The ROC is the entire z-plane

except possibly z=0 or z= ∞

4) Right sided sequences (Causal ): From the outermost finite

pole in X(z) to z = ∞, the ROC spreads outward.

5) Left sided sequences (anti-Causal ): From the innermost

nonzero pole in X(z) to z = 0, the ROC extends inward.

AntiCausal: x(n) =0 and n >0

Causal: x(n) =0 and n < 0



TOPIC 2 Z TRANSFORM

44

6) Two-sided sequence : The ROC is a ring with no poles

inside it, bounded by two circles passing through two

poles.

Two-sided = Anticausal + Causal

Example 3.14

Calculate the z-transform X(z) and sketch the pole-zero plot with ROC
for

1)      𝑥 𝑛 =
1

2

𝑛
𝑢 𝑛 +

1

3

𝑛
𝑢 𝑛

2) 𝑥 𝑛 =
1

3

𝑛

𝑢 𝑛 +
1

2

𝑛

𝑢 −𝑛 − 1

Solution
From Table 3.3;

1

2

𝑛

𝑢 𝑛 →
𝑧

2 −
1
2

z >
1

2

1

3

𝑛

𝑢 𝑛 →
𝑧

𝑧 −
1
3

𝑧 >
1

3
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1)        𝑋 𝑧 =
𝑧

2−
1

2

+
𝑧

2−
1

3

=
𝑧 𝑧−

1

3
+𝑧 𝑧−

1

2

𝑧−
1

2
𝑧−

1

3

=
𝑧2 −

1
3
𝑧 + 𝑧2 −

1
2
𝑧

𝑧 −
1
2 𝑧 −

1
3

=
2𝑧2 −

5
6 𝑧

𝑧 −
1
2 𝑧 −

1
3

=
2𝑧 𝑧 −

5
12

𝑧 −
1
2 𝑧 −

1
3

We see has two zero :   z=0, z=5/12 and two poles z=1/2, z=1/3 . That 

ROC is z >
1

2
, as shown in figure below
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Solution From Table 3.3;

1

3

𝑛

𝑢 𝑛 →
𝑧

2 −
1
3

z >
1

3

1

2

𝑛

𝑢 −𝑛 − 1 → −
𝑧

𝑧 −
1
2

𝑧 <
1

2

𝑥 𝑛 =
𝑧

𝑧 −
1
3

−
𝑧

𝑧 −
1
2

=
𝑧 z −

1
2 − 𝑧 𝑧 −

1
3

z −
1
3 𝑧 −

1
2

=
−
1
6 𝑧

𝑧 −
1
3 𝑧 −

1
2

We see has one zero :   z=0 and two poles z=1/2, z=1/3 . That ROC is          
1

3
< z <

1

2
, as plotted in figure below
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INVERSE Z TRANSFORM

The inverse z-transform is the inversion of the z-transform to get 
the sequence x[n] from its z-transform X(z).

An inverse Z Transform can be done in numerous ways:

❑ Partial fraction expansion
❑ Long division
❑ Power series expansion

Example 3.14

Find the inverse z transform of the following signal using the power 
series expansion technique.

𝑋 𝑧 =
𝑧

2𝑧2 − 3𝑧 + 1
𝑧 <

1

2
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Solution
Since the ROC is I z I <     ,   x[n] is a left-sided 
sequence

1

2

𝑋 𝑧 =
𝑧

2𝑧2 − 3𝑧 + 1
𝑧 <

1

2

Thus,

𝑥 𝑧 = ⋯+ 15𝑧4 + 7𝑧3 + 3𝑧2 + 𝑧

And so by definition we obtain 

𝑥 𝑛 = ⋯ , 15,7,3,1,0

Example 3.15

Find the inverse z transform of the following signal using the partial 
fraction expansion technique.

X 𝑧 =
𝑧

𝑧 𝑧−1 𝑧−2 2 | 𝑧| > 2
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Solution

𝑥 𝑧 =
𝑧

𝑧 𝑧 − 1 𝑧 − 2 2
| 𝑧| > 2

Using partial-fraction expansion,

𝑥 𝑧

𝑧
=

1

𝑧 𝑧 − 1 2 − 2 2

𝐴

𝑧 − 1
+

𝐵

𝑧 − 2
+

𝐶

𝑧 − 2 2=

1 = 𝐴 z − 2 2 + 𝐵 𝑧 − 1 𝑧 − 2 + 𝐶 𝑧 − 1

1 = 𝐴 𝑧2 − 4𝑧 + 4 + 𝐵 𝑧2 − 3𝑧 + 2 + 𝐶 𝑧 − 1

Replace z=1;

1 = 𝐴 1 − 4 + 4 + 𝐵 1 − 3 + 2
1 = 𝐴

Replace z=2;

1 = 𝐵 4 − 6 + 2 + 𝐶 2 − 1
1 = 𝐶

Solve z2;

𝐴 + 𝐵 = 0
1 + 𝐵 = 0
𝐵 = −1

Thus

𝑥
1

𝑧

𝑥 𝑧

𝑧
=

1

𝑧 − 1
−

1

𝑧 − 2
+

1

𝑧 − 2 2
× 𝑧

𝑥 𝑧 =
𝑧

𝑧 − 1
−

𝑧

𝑧 − 2
+

𝑧

𝑧 − 2 2

Since the ROC is I z I > 2, x[n] is a right-sided sequence, and from Table 3-3 
we get 

𝑥 𝑛 = 𝑢 𝑛 − 2𝑛𝑢 𝑛 + 𝑛2𝑛−1𝑢 𝑛
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Example 3.16

Solve inverse z transform of the following signal

X 𝑧 =
1−𝑧−1+𝑧−2

1−
1

2
𝑧−1 1−2𝑧−1 1−𝑧−1

, 1 < 𝑧 < 2

Solution X 𝑧 =
1−𝑧−1+𝑧−2

1−
1

2
𝑧−1 1−2𝑧−1 1−𝑧−1

x
𝑧3

𝑧3

𝑋 𝑧 =
𝑧3 − 𝑧2 + 1

𝑧 −
1
2 𝑧 − 2 𝑧 − 1

𝑥
1

𝑧

𝑋 𝑧

𝑧
=

𝑧2 − 𝑧1 + 2

𝑧 −
1
2 𝑧 − 2 𝑧 − 1

=
𝐴

𝑧 −
1
2

+
𝐵

𝑧 − 2
+

𝐶

𝑧 − 1
𝑧2 − 𝑧 + 1

We obtain,

𝐴 = 1, 𝐵 = 2, 𝐶 = −2

Thus,
𝑥 𝑧

𝑧
=

1

𝑧 −
1
2

−
2

𝑧 − 2
+

2

𝑧 − 1
× 𝑧

𝑥 𝑧 =
𝑧

𝑧 −
1
2

−
2𝑧

𝑧 − 2
+

2𝑧

𝑧 − 1

Since the ROC is 1< I z I > 2, x[n] is a right-sided sequence, and from Table 3-3 
we get 

𝑥 𝑛 =
1

2

𝑛

𝑢 𝑛 − 2 2 𝑛𝑢 −𝑛 − 1 − 2𝑢 𝑛



1. Transform the x[n] signal into an x-domain signal.

𝑥 𝑛 =

1, 𝑛 = −1
2, 𝑛 = 0
−1, 𝑛 = 1
1, 𝑛 = 2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2. When x[n] is known to be causal, find x[n] from 
X(z) below using partial fraction expansion. X[n] 
=0 for n<0

𝑥 𝑧 =
3 + 2𝑧−1

2 + 3𝑧−1 + 2𝑧−2

4. Consider a discrete-time system with a
causal relationship between the output y[n]
and the input x[n].

3. Solve the inverse z transform of the 
following signal

𝐹 𝑧 =
1

1 − 0 ⋅ 5𝑧−1 1 − 0.75𝑧−1 1 − 𝑧−1

𝑦 𝑛 −
5

6
𝑦 𝑛 − 1 +

1

6
𝑦 𝑛 − 2 = 𝑥 𝑛

a) Find its system function H(z). 
b) Calculate its impulse response h[n].

N
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FOR ANSWER
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Understanding the behavior of signals and systems requires the use of Fourier
analysis. Sinusoids are Eigenfunctions of linear, time-invariant (LTI) systems, hence
this is the case. This means that when we run a sinusoid through an LTI system,
we get a scaled version of the same sinusoid on the output.

INTRODUCTION

We can redefine signals in terms of sinusoids using Fourier analysis; all we have
to do is figure out how any given system affects all available sinusoids and we
have a comprehensive knowledge of the system. We may also transform the
passage of any signal through a system from convolution (in time) to
multiplication (at the same frequency) since we can define the passage of
sinusoids through a system as multiplication of that sinusoid by the transfer
function at the same frequency (in frequency).
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PERIODIC SIGNAL

The fundamental period To of x(t) is the smaller positive value of T and 
1/To = fo is referred to as the fundamental frequency

x(t) = cos(ωot + ᶲ)

The complex exponential 
signal

Fundamental angular 
frequency

Real sinusoidal signal

Ωo = 2π/To = 2πfo

A continuous-time signal x(t) to be periodic if there is a positive nonzero value 
of  T for which 

x(t + T) = x(t) for all t

“Fear and pain should be treated as signals not to 

close our eyes but to open them wider”

~Nathaniel Branden~
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COMPLEX EXPONENTIAL FOURIER SERIES

The complex exponential Fourier series representation of a periodic signal x(t) with 
fundamental period To is given by

EXPONENTIAL FOURIER SERIES

The complex Fourier coefficients, Ck, are defined as follows:

Where ∫To denotes the integral over any one period and 0 to To or –To/2 to 
To/2 is commonly used for the integration. If k=0

Which means Co is equal to the average value of x(t) across time.
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Determine the complex exponential Fourier series representation for each of the
following signals:
(a) x(t) = cos ωₒt
(b) x(t)= sin ωₒt

Example 4.1

Solution

To evaluate the complex Fourier Coefficient, Ck, using Euler’s 
formula, 

Thus, the complex Fourier Coefficient for cos ωₒt

In similar

Thus, the complex Fourier Coefficient for sin ωₒt
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TRIGONOMETRIC FOURIER SERIES (FS)

A periodic signal x(t) with fundamental period To has a trigonometric Fourier
series representation given by

Where ak and bk are the Fourier coefficients given by

ODD SIGNAL

EVEN SIGNAL

If x(t) is an even periodic signal, then bk = 0 and the Fourier series 
contains just the cosine term.

If x(t) is an even periodic signal, then ak = 0 and the Fourier series 
contains solely sine terms.
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DISCRETE FOURIER SERIES

A discrete time signal x[n] to be periodic if there is a positive  integer N

where Ck are the Fourier coefficients and given by

What is real? How do you define real? If you're 

talking about what you can feel, what you can 

smell, what you can taste and see, then real is 

simply electrical signals interpreted by your brain. 

~Lana Wachowski~
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Determine the Fourier coefficient for the periodic sequence x[n] shown in figure below.

Example 4.2

Solution
The periodic extension of {0,1,2,3} with fundamental period No = 4

The discrete time Fourier coefficient Ck are
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Consider the following sequence.

a) Sketch x[n]

b) Find the Fourier Coefficients, Ck of x[n]

Example 4.3

Solution
a) x[n] is the periodic extension of the sequence {1,0,0,0} with 

period No – 4.

b)

Since x[1] = x[2] = x[3] = 0, the Fourier coefficient of x[n] as 

shown in Figure below:
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Determine the discrete Fourier series representation for each of the following
sequences:

Example 4.4

Solution
The fundamental period of x[n] is No = 8, and o = 2/No = /4.
By using Euler’s formula, Fourier coefficients Ck

Thus, the Fourier coefficients for x[n] are C1 = ½, C-1 = C-1+8 = C7 = ½, 
and all other Ck = 0.

Hence, the discrete Fourier series of x[n] is
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FOURIER TRANSFORM

The Fourier transform is a mathematical approach for decomposing a 
Magnetic Resonance signal into a sum of sine waves with various 
frequencies, phases, and amplitudes.

Any periodic signal s(t) may be expressed as a sum of sine waves of variable 
amplitudes, frequencies, and phases, according to Fourier.

If the amplitudes are , the phase shifts are is, and the

fundamental frequency.

Harmonics are higher order frequencies such as 2, 3, and

so on.

The Fourier expansion of a square wave, for example,

may be represented as



TOPIC 3 FOURIER ANALYSIS OF CT & DT SIGNAL 

63

FOURIER TRANSFORM

On the left, the square wave's time domain signal, s(t), is depicted.

On the right, the so-called frequency domain representation, S(), is

presented. The Fourier transform of s(t) is known as S(ω).

S() is a complex-valued function that is made up of harmonic frequencies,

phases, and amplitudes derived via the Fourier expansion.

Fourier Transform Inverse Fourier Transform
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FOURIER TRANSFORM

FOURIER TRANSFORM     VS       LAPLACE TRANSFORM
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PROPERTIES OF FOURIER TRANSFORM CT Signal
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FOURIER TRANSFORM CT Signal
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PROPERTIES OF FOURIER TRANSFORM DT Signal
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FOURIER TRANSFORM DT Signal
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From table 5.2, identified the Fourier transform of the following signals:
a) x(t) = 1 d) x(t) = cos ωₒt
b) e) x(t) = sin ωₒt
c)

Example 4.5

Solution
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FREQUENCY RESPONSE

The frequency response of the system is 
denoted by H().

The discrete Fourier series representation of a periodic sequence 
x[n] with fundamental period No is given

A periodic signal x(t) with fundamental period To has a complex exponential 
Fourier series representation given by
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A causal discrete time LTI system is describe by

The system's input and output are x[n] and y[n], respectively.
a) Determine the frequency response H( ) of the system
b) Find the impulse response h[n] of the system

Example 4.6

Solution
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a)

b) 

The inverse Fourier transform of H(),

Consider a discrete time LTI system is describe by

a) Determine the frequency response H( ) of the system
b) Find the impulse response h[n] of the system

Example 4.7

Solution
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y[n-2] + 5y[n-1] +6y[n] = 8x[n-1] + 18x[n]

Convert to Laplace Transform

s²Y(s) + 5sY(s) + 6Y(s) = 8sX(s) + 18X(s)
Y(s)[s² + 5s + 6] = X(s) [8s + 18]

Substitute the s =

Sometimes the signs and signals of the non-

language speaking world are not very clear. 

Then we must walk in trust, move forward step 

by small step, until we are sure of the proper 

path.

~Elaine Seiler~

Show that the frequency response of the discrete time system

y[n-2] + 5y[n-1] + 6y[n] = 8x[n-1] + 18x[n]

is

Example 4.8

Solution
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Q2 . Consider a causal discrete-time FIR filter described by the  

impulse response

h[n] = {2, 2, -2, -2}

(a) Sketch the impulse response h[n] of the filter.

(b) Find the frequency response H(Ω) of the filter.

(c) Sketch the magnitude response |H(Ω)| and the phase response   

(Ω )of the filter.

TUTORIAL

Q1. Consider the difference equation for a three-point moving-

average discrete-time filter.

y[n] = -{x[n] + x[n -1] + x[n - 2]}

(a) Find and sketch the impulse response h[n] of the filter.

(b) Find the frequency response H(Ω) of the filter.

(c) Sketch the magnitude response |H(Ω)| and the phase response    

(Ω) of  the filter.
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Q4. Let x[n] be a real periodic sequence with fundamental 

period N0 and Fourier coefficients ck = ak + jbk, where ak

and bk are both real.

(a) Show that a_k = ak and b_k = -bk.

(b) Show that cN01/2 is real if N0 is even.

TUTORIAL

Q3. Determine the discrete Fourier series representation for 

each of the following sequences:



REFERENCES

1. Hwei P.Hsu (2011). SIGNAL AND SYSTEM 2nd

EDISION. New Jersey: McGRAW-HILL

2. Hwei P. Hsu, Ph.D (2014). Schaum’s Outline of  

Signals and Systems. 3rd Edition. The 

McGraw-Hill Companies, Inc.

3. Michael Weeks (2010). Digital Signal 

Processing Using MATLAB & Wavelets. 2nd 

Edition. Jones and Bartlett Publishers, Inc.

4. Alan V. Oppenheim, Alan S. Willsky and S. 

Hamid Nawab (2015). Signals and Systems. 

Pearson Education Limited

5. Monson Hayes (2011). Schaums Outline of  

Digital Signal Processing. 2nd Edition. 

Mcgraw-Hill




