
Zhenjun Ming · Anand Balu Nellippallil · 
Ru Wang · Janet K. Allen · Guoxin Wang · 
Yan Yan · Farrokh Mistree

Architecting 
A Knowledge-Based 
Platform for Design 
Engineering 4.0



Architecting A Knowledge-Based Platform
for Design Engineering 4.0



Zhenjun Ming · Anand Balu Nellippallil ·
Ru Wang · Janet K. Allen · Guoxin Wang ·
Yan Yan · Farrokh Mistree

Architecting
A Knowledge-Based
Platform for Design
Engineering 4.0



Zhenjun Ming
Institute for Industrial and Intelligent
Systems Engineering
School of Mechanical Engineering
Beijing Institute of Technology
Beijing, China

Ru Wang
Institute for Industrial and Intelligent
Systems Engineering
School of Mechanical Engineering
Beijing Institute of Technology
Beijing, China

Guoxin Wang
Institute for Industrial and Intelligent
Systems Engineering
School of Mechanical Engineering
Beijing Institute of Technology
Beijing, China

Farrokh Mistree
The Systems Realization Laboratory
The School of Aerospace and Mechanical
Engineering
University of Oklahoma
Norman, OK, USA

Anand Balu Nellippallil
Department of Mechanical and Civil
Engineering
Florida Institute of Technology
Melbourne, FL, USA

Janet K. Allen
The Systems Realization Laboratory
The School of Industrial and Systems
Engineering
The University of Oklahoma
Norman, OK, USA

Yan Yan
Institute for Industrial and Intelligent
Systems Engineering
School of Mechanical Engineering
Beijing Institute of Technology
Beijing, China

ISBN 978-3-030-90520-0 ISBN 978-3-030-90521-7 (eBook)
https://doi.org/10.1007/978-3-030-90521-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-6429-5889
https://orcid.org/0000-0003-2363-8595
https://orcid.org/0000-0001-6835-0902
https://orcid.org/0000-0003-1690-1324
https://orcid.org/0000-0003-0686-6764
https://orcid.org/0000-0001-8555-0156
https://doi.org/10.1007/978-3-030-90521-7


Foreword

Architecting Knowledge-Based Platform for Design
Engineering 4.0

The advent of the internet and advances in cloud computing have spawned a new
paradigm for engineering—a network-centric environment of cooperating engi-
neering applications (Industry 4.0 or Industrie 4.0). This new paradigm involves
symbiotic networks of people (social networks), services, and smart devices with
sensing capabilities; these are also referred to as the Internet of People, Internet
of Services, and Internet of Things, respectively. To realize this vision of globally
cooperative engineering, we need to address several computational challenges: engi-
neering design, modeling, interoperability, knowledge/information/data analytics
(involving artificial intelligence techniques [AI]), privacy, security, network behav-
iors, visualization, and novel architectures and storage mechanisms. The authors of
this monograph focus on several of these topics, in particular, engineering design,
modeling with ontologies, decision-making using AI techniques that are instantiated
in a cloud-based architecture.

The authors briefly discuss the evolution of engineering design paradigms in line
with the evolution of various industrial revolutions—from Industry 1.0 to Industry
4.0. In Industry 1.0, the focus of design was not on customers but more on mecha-
nization. However, in Industry 4.0, it is customer and network-centric. The authors
augment the Industry 4.0 construct to include a new paradigm for designing, namely,
Design Engineering 4.0, that is appropriate use in a network-centric environment of
cooperating engineering applications.

The senior authors of the monograph—Farrokh Mistree and Janet K. Allen—are
known for their contributions to engineering design. They have pioneered a technique
called Decision Support Problem Technique (DSPT) and its extensions. A satisficing
strategy instead of an optimization strategy is implemented in the DSPT. In this
monograph, the authors extend their previous work to support knowledge-intensive
collaborative design, taking into consideration various uncertainties that arise in
design. They describe the architecture and functionalities of a platform to support
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vi Foreword

knowledge-intensive design—Platform for Decision Support in the Design of Engi-
neered Systems (PDSIDES). PDSIDES supports many of the functionalities needed
for Design Engineering 4.0—knowledge management, decision-making, workflow
to support collaborations, uncertainty management, and adequate user support.

Foundational to architecting the knowledge-based platform is the ontology for
selection, compromise, and hierarchical coupled decisions and the Decision Support
Problem template (addressed inChaps. 2 and 3). The authors demonstrate the efficacy
of the foundations for different users to formulate and capture decision-related knowl-
edge, thereby leading to the development of the PDSIDES prototype (addressed in
Chap. 4). Further, the authors extend the foundational ontology to support users
in carrying out the meta-design of decision workflows. Ontology to represent the
knowledge in decision workflows based on the Phase-Event-Information-X (PEI-
X) diagram is developed by the authors as part of this functionality (addressed in
Chap. 5). To facilitate uncertaintymanagement in decisionworkflows and capture the
associated knowledge, the authors present the ontology for a systematic robust design
space exploration procedure (addressed in Chap. 6). Users thereby are able to formu-
late decision-centric design workflows under uncertainty and explore design alter-
natives that are relatively insensitive to uncertainty—defined as “satisficing robust
solutions.”

Cloud computing, where services are delivered over the Internet, has the poten-
tial to transform the practice of engineering. With tools and services residing in the
cloud environment, engineering andmanufacturing companies cannowaccess shared
computing resources and advanced application services everywhere and anytime on
an as-needed basis. This results in considerable cost savings in expenditures on Infor-
mation Technology (IT) and enhances the ability to deliver high-quality engineered
products. In the final chapter (Chap. 7), the authors describe a cloud-based exten-
sion to PDSIDES—calledCB-PDSIDES.This extension includes intelligent services
composition, security, and other tools and techniques for realizing the Internet of X,
discussed earlier. The authors also discuss the various challenges involved in realizing
such an environment.

I am pleased to recommend this stimulating and insightful monograph for your
personal library, organization, university, or company (whether Fortune 500 or a start-
up). I would also encourage the ideas presented here to become part of a broader
conversation regarding design engineering at the interface of various engineering
disciplines. Their approach to architecting a knowledge-based platform to support
design engineering 4.0 is systematic and well-conceived, helping a reader organize
the relevant challenges and opportunities for transformational change. I trust its value
will endure.

Ram D. Sriram, Ph.D.
Chief Software and Systems Division, Information Technology Laboratory

National Institute of Standards and Technology
Maryland, USA

https://www.nist.gov/people/ram-d-sriram

https://www.nist.gov/people/ram-d-sriram


Preface

Design Engineering for Industry 4.0 (DE4.0) represents
the ‘human-cyber-physical view of the systems
realization ecosystem’ that is necessary to accommodate
the drivers of Industry 4.0 (IoX) and provide an open
ecosystem for the realization of complex systems.
Seamless integration of digital threads and digital twins
throughout the product design, development, and
fulfillment lifecycle; ability to accommodate diverse and
rapidly changing technologies; mechanisms to facilitate
the creation of new opportunities for the design of
products, processes, services, and systems are some of
the desired characteristics of DE4.0.1

In keeping with the Design Engineering 4.0 construct, we describe architecting a
computer platform to support human designers make decisions associated with the
realization of complex engineered systems. The platform is designed to facilitate
end-to-end digital integration, customization and personalization, agile collaboration
networks, open innovation, co-creation and crowdsourcing, product servitization, and
anything-as-a-service.

Recognizing that simulation models are abstractions of reality, we opt for a satis-
ficing strategy instead of an optimization strategy. We include fundamentals and
describe tools for architecting a knowledge-based platform for decision support.
Challenges associatedwith developing a computational platform for decision support
for the realization of complex engineered systems in the context of Design Engi-
neering 4.0 are identified.Constructs for formulating design decisions (e.g., selection,
compromise, and coupled decisions), knowledgemodeling schemes (e.g., ontologies
and modular templates), diagrams for designing decision workflows (e.g., the PEI-
X diagram), and some analytical methods for robust design under uncertainty are
presented. We describe integrating the knowledge-based platform with the cloud to

1 Jiao, R., Commuri, S. Panchal, J., Milisavljevic-Syed, J, Allen, J.K., Mistree, F. and Schaefer, D.,
“Design Engineering in the Age of Industry 4.0,” ASME Journal of Mechanical Design, 143(7),
070801, 25 pages.
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Fig. 1 Challenges addressed in the monograph

architect a cloud-based platform for decision support promoting co-design and cloud-
based design communication essential for mass collaboration and open innovation
for Design Engineering 4.0.

The key features of the knowledge-based platform PDSIDES for Design Engi-
neering 4.0 include

• Capability to integrate models and simulation tools spanning different processes
and length scales (typically defined as vertical and horizontal integration from the
context of integrated design of materials, products, andmanufacturing processes),

• Capability to define computational workflows involving decision-making, span-
ning multiple activities and users,

• Capability to define modular, reusable sub-workflows for specific processes,
• Capability to connect to external databases on materials, products, and processes,
• Capability to provide knowledge-guided assistance to different types of users in

design-related decision-making,
• Capability to carry out collaborative and multidisciplinary design,
• Capability to manage complexity (reduced cost of computation via surrogate

models/metamodels),
• Capability to explore and visualize the design and solution space,
• Capability to carry out dynamic and cost-efficient reconfiguration and integration

of design decision templates to explore different robust design strategies (meta-
design to deliver robust products).

Major challenges addressed in this monograph are illustrated in Fig. 1. They
include
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• Foundational concepts and techniques for architecting a knowledge-based deci-
sion support platform,

• Ontologies for individual decisions, including selection, compromise, and coupled
decisions,

• The functionalities (components) of the PDSIDES platform,
• Ontology for meta-design of designing decision workflows,
• Ontology for robust design space exploration.

This monograph is comprised of seven chapters; see Fig. 2. In Chap. 1, we provide
an overview of the monograph, and in Chap. 7 a summary of what is presented and
more importantly identify in the context of Internet of People, Internet of Services,
Internet of Things, and Internet of Commerce areas for future research for furthering
Design Engineering 4.0. These include

• Design for User Experience,
• Design of Human-Cyber-Physical Systems,
• Design with Smart Sensing and Artificial Intelligence Technologies,
• Design as Strategic Engineering.

While we recommend reading the chapters sequentially, each chapter is self-
contained, and chapters can be read independently or in any preferred sequence.

In Chap. 2, we introduce the foundations for the decision support platform archi-
tecture, namely, (1) primary constructs in decision-based design, (2) frameworks
for robust decision-making, (3) the PEI-X diagram for designing decision work-
flows, and (4) knowledge-based techniques for decision support. In Chap. 3, we
address modeling and capturing knowledge related to selection, compromise, and
coupled hierarchical decisions in design using template-based ontological methods.
In Chap. 4, we present the knowledge-based platform PDSIDES, its users and
working scenarios, and the corresponding knowledge-based decision support modes.
The efficacy of the platform is tested using a multiscale, multistage materials design
problem—vertical and horizontal integration and integrated design of hot rod rolling
process chain (manufacturing processes), steel (material), and rolled rod (product). In
Chap. 5, we extend the functionalities of PDSIDES presented in Chap. 4 to facilitate
capturing, representing, and documenting the knowledge related to hierarchical deci-
sion workflows in designing the process of designing complex engineered systems,
that is, the meta-design of complex systems. The meta-design of a heat exchanger
in a thermal system is used as an example to test the functionality. In Chap. 6,
the functionalities of PDSIDES are extended to include uncertainty management
and formulating robust design decision workflows. The ontologies for robust design
and a template-based ontological method that facilitate the systematic formulation
of decision workflows under uncertainty are presented. In Chap. 7, we summarize
our contributions in this monograph, propose a conceptual framework for a Cloud-
Based Platform for Decision Support in the Design of engineered Systems (CB-
PDSIDES) and identify several new research opportunities in Design Engineering
4.0, and provide some closing comments.
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Fig. 2 Organization of the monograph

In closing, we observe that the work embodied in this monograph is one of the
outcomes of the Systems Realization Partnership conceived by Professor Yan Yan
and ably instantiated and nurtured by Professor Guoxin Wang. The material in this
monograph is anchored in the doctoral dissertations of three former doctoral students
and their collaboration among each other and their faculty mentors:

• Zhenjun Ming and Ru Wang, whom we were privileged to mentor with our
colleagues Professors Guoxin Wang and Yan Yan from the Beijing Institute of
Technology, Beijing, China.

• Anand Balu Nellippallil, whom we were privileged to mentor together with
our colleagues Dr. B. P. Gautham (TCS Research, Pune, India) and Professor
Amarendra Kumar Singh (IIT Kanpur, India).

We recognize Maryam Sabeghi and Chung-Hyun Goh who collaborated with
Ming andWang and Vignesh Rangaraj, who collaborated with Nellippallil during his
doctoral research and added value to thematerial presented herein.We received finan-
cial support from several sources to pursue the concepts outlined in this monograph.
Ming and Wang were supported by scholarships from China Scholarship Council
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and Beijing Institute of Technology Postgraduate Internationalization Project Foun-
dation. Funds from the LA Comp Chair account and the John and Mary Moore
Chair account at the University of Oklahoma, and the Tata Consultancy Services,
India, were used to support Nellippallil through his doctoral studies in the School
of Aerospace and Mechanical Engineering at the University of Oklahoma, Norman,
USA.

Norman, USA
September 2021

Janet K. Allen
Farrokh Mistree
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Chapter 1
Requirements and Architecture
of the Decision Support Platform
for Design Engineering 4.0

In the era of Industry 4.0, with the increase of machine intelligence and the internet
of things/services in production systems, one of the ramifications is that it will
foster a highly customized and dynamically changing market where more and more
customers demand personalized or individualized products. This imposes a challenge
to designers who are the decision-makers in the design of these products as well as
the systems that support the production of the products. Designers must be able to
quickly respond to market variations and make quality decisions. This necessitates a
platform for supporting design decisions. To assist in designing and developing such
a platform, in this chapter we introduce the paradigm of Industry 4.0 and analyze
the features of design decisions and decision workflows in the context of Industry
4.0. Then, we identify the requirements of a platform to support these decisions and
decision workflows, and we propose an architecture that meets the requirements of
the platform. Finally, we outline the organization of the monograph.

1.1 Background: Design Decision Support in the Context
of Industry 4.0

The fourth industrial revolution, also known as Industry 4.0, is significantly influ-
encing manufacturing industries across the globe [1]. Industry 4.0 represents a
comprehensive transformation of the whole sphere of industrial production through
the merging of digital technology and the internet with conventional industry [2]. It
provides a framework to address the challenges arising in the integration of cyber-
systems and physical resources and covers all aspects of manufacturing systems
[3], including: robust and flexible automation; data collection, analysis, learning
and decision-making; distributed production systems; industrial IoT; and supply
chain integration [4]. Factories conforming to Industry 4.0 will integrate services
across the entire manufacturing and operations processes and will be able to adapt to
disruptions in real-time, thereby improving the quality of products and services [5].
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The digital transformation of manufacturing industries brought about by Industry
4.0 has created a framework through which substantial improvements in produc-
tivity, quality, and customer satisfaction can be achieved. This digital transforma-
tion, according to Jiao et al. [4], not only affects the way products are manufactured,
but also creates new opportunities for the design of products, processes, services,
and systems. Engineering design is essentially a decision-making process and the
principal role of designers is tomake decisions [6]. Providing decision support is crit-
ical for augmenting human designers’ decision-making ability and thus generating
quality designs. In this section, we review the literature related to design, decisions,
and decision support, which provides the background for the need of a platform for
decision support in the design of engineered systems in the context of Industry 4.0.

1.1.1 Design Engineering 4.0 and the Industrial Brain

Engineering Design, by the definition of Accreditation Board for Engineering and
Technology (ABET) [7], is the process of devising a system, component, or process
to meet desired needs. It is a decision-making process (often iterative), in which
basic science, mathematics and engineering sciences are applied to convert resources
optimally to meet a stated objective. Among the fundamental elements of the
design process are the establishment of objectives and criteria, synthesis, analysis,
construction, testing, and evaluation.

The evolution of engineering design, as shown in Fig. 1.1, is typically divided
into four stages (i.e., Design Engineering 1.0 to 4.0) according to its interplay with
the industrial processes of manufacturing from Industry 1.0 to 4.0 [4]. In the age
of Industry 1.0, industries tried to use steam power to offload labor-intensive manu-
facturing processes, and the focus of design and manufacturing was on mimicking

Fig. 1.1 Design Engineering 4.0 in line with Industry 4.0 [4]
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the process adopted by the human worker. The key feature of Design Engineering
1.0 is dictatorial and can be summarized as “design of the customers”. In the age
of Industry 2.0, electrification and assembly lines gave birth to the mass produc-
tion of products so that products could be produced in large volumes and at higher
rates. Therefore, the focus of Design Engineering 2.0 shifted to product assembly
which led to the push for standardization and interchangeability of parts/processes to
achieve economies of scale. And redesign is often needed to address issues in manu-
facturing. The focus of Design Engineering 2.0 is “design for customers”, and it is an
iterative process. Industry 3.0 is characterized by increasing automation and the use
of CNC machines. Manufacturing processes are networked, and data can be shared
across processes to ensure high-quality products with tight tolerances. Because of
digitalization, CAD designs can be directly used in the manufacturing process using
CNC Machines, and design and manufacturing became more tightly coupled than
ever before. Therefore, the key feature of Design Engineering 3.0 is being collab-
orative, and can be summarized as “design with customers”. In the age of Industry
4.0, manufacturing systems are expected to able to add product personalization to
a mass-produced product, which means that designers must partition base function-
ality of the product from customizable features. Engineering Design is evolving to
a new paradigm for design by customers through co-creation of product value chain
fulfillment in a human-cyber-physical environment [8]. Jiao et al. [4] define this new
paradigm as Design Engineering 4.0, which represents the “human-cyber-physical
view of the systems realization ecosystem” that is necessary to accommodate the
drivers of Industry 4.0 (IoX) and provide an open ecosystem for the realization of
complex systems. The embodiment of human-cyber-physical view of the systems
realization ecosystem represented by Design Engineering 4.0 is shown in Fig. 1.2.
The key idea is anchored in: (1) the Internet of People, where designers take into
account user preferences and users can interact with the products and among them-
selves; (2) the Internet of Services, where products and services are customized to
user requirements while producing products of “zero lot size” and “mass produc-
tion costs”; (3) the Internet of Commerce, where business are run by monetizing
services through the internet and design is performed as strategic engineering; and
(4) the Internet of Things, where systems are designed with smart sensing and AI
technologies.

The concept of “human-cyber-physical system” is also found in Zhou et al.’s [9]
work where they attempt to define the new generation of intelligent manufacturing
(NGIM). In their framework, they defineNGIMas a composite intelligent system that
is comprised of relevant humans, AI-capable cyber-systems, and physical systems,
with the aim of achieving specific manufacturing goals at an optimal level. Physical
systems act as the “executing body” which execute the energy and material flow of
manufacturing activities. AI-capable cyber-systems act as the core of the information
flow of manufacturing activities, and help humans to complete the necessary percep-
tion, cognition, analysis, decision-making, and control of the physical systems for
optimal operation. The human is the “master” who create both the physical systems
and the cyber-systems, and remains in the central position to make decisions and
enact control. The advance of NGIM is anchored in the idea of using AI-capable
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Fig. 1.2 Design Engineering 4.0: human-cyber-physical view of the systems realization ecosystem
[4]

cyber-systems to offload a substantial amount of mental work from humans, given
that most of the manual labor work has been replaced by physical systems. This idea
is also emphasized by Kang et al. [10] who propose the so-called “Industrial Brain”
as the referencemodel for realizing intelligent manufacturing. The “Industrial Brain”
is comprised of big data, computing power, and algorithms, and its main function-
ality is to replace the mental work of humans in decision-making. Since engineering
design is essentially a decision-making process and most of the designing work is in
the mental domain, the “Industrial Brain” seems a promising intelligent “HUB” for
supportingDesign Engineering 4.0. However, one of the disadvantages of the “Indus-
trial Brain” is related to its ultimate goal of replacing the role of decision-making of
humans, which is not possible since human judgement is critical in design. To address
this, we revise the “Industrial Brain” model and tie it to the “human-cyber-physical
system” framework, as shown in Fig. 1.3.

Using the data collected from the physical system (consist of materials, machines,
and products, etc.) through advanced sensors, the algorithms and computing power
provided by the cyber-system (consisting of digital twins, digital threads, cloud
computing, etc.), and the judgement provided by the human beings (e.g., designers,
manufacturers, suppliers, and customers, etc., who are the key stakeholders in the
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Fig. 1.3 “Industrial brain” of “human-cyber-physical systems”

manufacturing business), the “Industrial Brain” is expected to deliver real-time
control to the physical system and real-time decision support to human beings. The
idea of decision support is very important in the context of Design Engineering 4.0,
which is discussed next in Sect. 1.1.2.

1.1.2 Decisions and Decision Support in the Context
of Design Engineering 4.0

As mentioned earlier, one of the ramifications of Industry 4.0 due to the digitization
of every part of a manufacturing enterprise and connecting them using the internet
of things and the internet of services is that it will enable flexible production of small
batch products and foster a highly customized and dynamically changing market in
which more and more customers demand personalized or individualized products.
To respond to this trend, as what is stated in Jiao et al.’s definition of Design Engi-
neering 4.0 [4], we need a “human-cyber-physical view of the systems realization
ecosystem” that can accommodate customers’ individualized demands and develop
proper fulfillment capabilities. The human dimension of Design Engineering 4.0
highlights the importance of user experience not only for customers as end-users at
the frontend, but also for multiple stakeholders especially designers at the backend
of product realization [4]. Mistree et al. [6] point out that the principal (but not only)
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role of a designer is to make decisions. It is critical to improve the experience of a
design decision-maker in the age of Design Engineering 4.0 so as to speed up the
decision-making process and generate quality designs.

Hazelrigg [11, 12] defines a decision as an irrevocable allocation of resources,
which is made at an instant in time and must be made based on the information
available at the time it is made. The information is often from many sources (and
disciplines) and the decisions that are made based on such information may have
wide-ranging repercussions. Decisions help bridge the gap between an idea and
reality. In Decision-Based Design, decisions serve as markers to identify the progres-
sion of a design from initiation to implementation to termination [13]. Some principal
observations and beliefs from a Decision-Based Design perspectives are as follows
[6]:

• The principal role of an engineer or designer is to make decisions.
• Design involves a series of decisions some of which may be made sequentially

and others that must be made concurrently.
• Design involves hierarchical decision-making and the interaction between these

decisions must be taken into account.
• Design productivity can be increased through the use of analysis, visualization

and synthesis in complementary roles, and by augmenting the recognized capa-
bility of computers in processing numerical information to include the processing
of symbols (for example, graphs, pictures, drawing, words) and reasoning (for
example, artificial intelligence).

• Life-cycle considerations that affect design can be modeled in upstream design
decisions.

The characteristics of decisions are governed by the characteristics associatedwith
the design of real-life engineering systems. These characteristics are summarized by
the following descriptive sentences:

• Decisions in design are invariably multileveled and multidimensional in nature.
• Decisions involve information that comes from different sources and disciplines.
• Decisions are governed by multiple measures of merit and performance.
• All the information required to arrive at a decision may not be available.
• Some of the information used in arriving at a decision may be hard, that is, based

on scientific principles and some information may be soft, that is, based on the
designer’s judgment and experience.

• The problem for which a decision is being made is invariably loosely defined
and open. Virtually none of the decisions are characterized by a singular, unique
solution. These decisions are less than optimal and are called satisficing solutions.

• Design is the process of converting information that characterizes the needs and
requirements of a system into knowledge about the system itself. In Decision-
Based Design, it is the making of decisions that brings about the transformation
of information into knowledge about a system.

In addition to the characteristics summarized above, decisions in engineering
design are also characterized by ambiguity, uncertainty, risk, and tradeoffs [14].
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Due to these characteristics, making design decisions in a rigorous way is nontrivial
even though the fundamental principles of decision analysis are generally appli-
cable to decision-making in engineering design [15]. Taking into consideration the
new features of Industry 4.0 such as dynamic market and personalized customer
demands, designers as decision-makers are facing new challenges in the design of
products themselves as well as the processes for realizing them. These challenges
include dealing with: (1) frequent and dynamic variations in both products and the
associated processes, (2) the intensive, multidisciplinary knowledge that is needed in
design, (3) the uncertainties that are anchored in the parameters and models that are
used for decision-making, (4) the huge amount of (user generated) data/information
that needs to be processed to generate useful results for decision support. Confronting
these new challenges, as shown in Fig. 1.4, we believe good decisions in engineering
design should be: (i) rapid decision, which can quickly generate some results to
respond to changes; (ii) informed decisions, which aremade based on gathering suffi-
cient information/data; (iii) satisficing decisions, which are good enough answers to
questions whose best answers are unknowable (for the differences between opti-
mizing and satisficing strategy, see Sect. 2.1.2 in Chap. 2); (iv) robust decisions,
which are relatively insensitive to variations; and (v) visualized decisions, which are
made based on that information are shown in a visualized, meaningful, and intuitive
way. To realize this, there is an emerging need for decision support tools, platforms,
or an ecosystem (e.g., the “Industrial Brain”) in design.

Recently there has been a trend to support design decisions from a data-driven
perspective, where most of the data are user experience data which are collected
from smart sensing [16], E-commerce platforms [17], social media [18], etc. The
basic idea behind data-driven decision-making is to base design decisions on facts
instead of assumptions [4]. For example, Young et al. [19] use the data acquired
from physiological experiments to support decisions in the design of robotic control
systems. Green et al. [20] leverage the product usage data collected by customer
interviews to gain insights for product design. Zhang et al. [21] propose a method for
projecting actual product operating data to the design stage so as to support decisions

Fig. 1.4 Characteristics of quality decisions confronting the challenges
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in early design stages. Zhou et al. [22] propose a method that can extract latent
customer needs from online product reviews through use case analogical reasoning,
which is helpful to support decisions in design. Zheng et al. [23] propose a framework
for utilizing the data generated by users to support design innovation in a cloud-based
cyber-physical environment.

The essence of the prevailing data-driven decision support methods is to use the
user-generated content or experiment and simulation data to create surrogate (or
approximate) models that can be used to support decisions [4]. The challenge is
that the design process itself and the decisions involved cannot be driven by this
data per se. What really supports designers to make informed decisions is the design
knowledge and informatics acquired from data [21]. Therefore, data-driven design
can be essentially viewed as a knowledge-based design decision-making process
[24]. This is consistent with the notion that design decision support should emphasize
knowledge management and value extraction to achieve an integration from data to
information and then to knowledge in light of the DIKW pyramid model [25].

In summary, knowledge plays a critical role in supporting design decisions and
there is a need of platform that can make full use of knowledge to support human
designers in decision-making. To address this need, in this monograph we propose
to architect a knowledge-based Platform for Decision Support in the Design of Engi-
neered Systems (PDSIDES). Specific requirements of such a platform are discussed
in Sect. 1.2.

1.2 Requirements for a Design Decision Support Platform

1.2.1 Knowledge Management and Reuse

Decision-making in design is a knowledge-intensive process which requires different
types and sources of knowledge as input. Most of the tasks that designers perform
in design require applying scientific and engineering knowledge to find (generate,
evaluate and select) the solutions to design problems, and then improve or optimize
those solutions within the framework composed of requirements and constraints set
by physical, environmental andhuman-related considerations [26].Building a knowl-
edge base that manages the design knowledge is critical for supporting decisions.
There are two types of knowledge: knowledge about the design process (proce-
dural knowledge) and knowledge about the product (declarative knowledge) being
designed. According to Rich [27], procedural knowledge is defined as a set of well-
defined procedures that represent information about doing things, and declarative
knowledge is defined as a set of facts represented (usually) according to the protocol
defined by procedural knowledge. In the context of design decision-making, proce-
dural knowledge dictates how information is to be used and depends on the design
method and not its application. The information about structuring, defining, and
processing the design problem is and does not change. This procedural knowledge
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is domain-independent. It is the knowledge about using knowledge and must be
modeled in the knowledge base. Declarative knowledge is dependent on the product
being designed and independent of the method used to design it. This type of
knowledge represents the physics of the problem, serves as the input of procedural
knowledge, and must also be modeled in the knowledge base for supporting design
decisions.

Modeling design decision knowledge in a reusable manner is another important
factor for supporting decisions in addition to knowledge management. Baxter et al.
[28] pointed out that knowledge reuse can bring many benefits to enterprises for
improving their engineering designs, because the next generation product is likely
to have a significant overlap with the previous version, and knowledge reuse allows
more time for innovation especially when it is difficult to achieve a competitive
advantage in mature domains. In the context of decision-making, overlaps are often
seen in many decisions where variant or adaptive design is the case and knowledge
reuse can save the designer a significant amount of time in making the decision.
Therefore, we need a functionality of knowledge reuse in the platform to improve
efficiency in making decisions.

1.2.2 Formulation of Decisions and Decision Workflows

According to the definition in Wikipedia [29], formulation is to put together of
components in appropriate relationships or structures, according to a formula. In that
sense a formulation is created according to the standard for the product. In the context
of engineering design, formulation of decisions means framing or structuring the
components of a design problem in a way that facilitates a designer making a rational
decision about it. Mullen and Roth [30] describe decision-making as a process that
includes recognizing problems and analyzing values; generating alternative choices
(gathering information about choices); evaluating choices (identifying best choices
[optimizing] or satisfying some external criteria [satisficing] by analyzing cost and
benefits of outcomes); and binding the will (committing to choice) and ignoring
sunk cost (effort already expended). In the light of this description, the formulation
of a design decision is to cast the design problem into those sub-processes, and the
formulation should have somemathematics or quantificationmetrics to be involved so
as to ensure mathematical rigor. To support the formulation of decisions, a computer-
based platform needs to have linguistic and mathematical constructs (serving as
formulas) so that designers can directly use them for structuring the problem as
decisions.

Even though Mullen and Roth [30] have defined a generic decision-making
processes, the formulation of design decisions can be more complex than that. The
first complexity is anchored in that the alternative choices in design can be discrete,
continuous, or a mix, and the number of choices can be very large (to infinity). For
example, in the design of a cantilever beam, alternatives include a set of materials
(discrete), a set of cross-section shapes (discrete), and the sizes (continuous). The
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overall design candidates are a combination of all the three, which make formulating
the choices a complex task. The second complexity is anchored in the problem that
the evaluation of choices needs to consider both objectives and constraints which
can be linear or nonlinear functions of the choice attributes. For example, when
evaluating an alternative design of a cantilever beam, a designer needs to not only
consider minimizing the mass as a goal but also consider the constraints introduced
by yield strength and bending strength, etc. These are nonlinear functions of the
beam properties. The third complexity is anchored in the formulating of uncertainty
and risk of choices (which is discussed in Sect. 1.2.4) before committing to them.
For example, in a cantilever beam design problem, what are the uncertainties asso-
ciated with the choices, and what are the associated risks if a designer chooses them
for implementation? These concerns must be well addressed in the decision support
platform.

In addition to the formulation of individual or single decisions (e.g., the design
of a cantilever beam), the platform also needs to support the formulation of decision
workflows which represent a network of individual decisions. Engineering systems
especially complex systems are, by definition, made-up of inter-related subsystems
[31]. For example, a gearbox is comprised of multiple gears and shafts which are
assembled to a product which performs a function of transferring motion and torque.
The design of such complex systems involves a network of decisions to be made.
There are usually coupling or dependent relationships among these decisions, which
may result in the consequence that a decision influences other decisions and vice
versa. For example, the decision about the material and sizing of a shaft will impact
the decisions about the gear and vice versa, because they are strongly coupled. The
workflows and the associated interactions among decisions are frequently seen in the
design of complex systems, and must be addressed in the decision support platform.

1.2.3 Solution Space Exploration

As we mentioned in Sect. 1.2.2, in the design of engineering systems the alterna-
tive choices can be infinite (especially when the choices or design variables are
continuous), which means the solution space for a decision can be huge and multi-
dimensional. Therefore, there is a need to support designers to explore the solution
space and search for those solutions that can satisfy the goals as well as possible.

Kang et al. [32] identify three ingredients of design solution space exploration,
namely, representation of the solution space, analysis of the solutions, and the explo-
ration methods. The representation of the solution space is to formally define a space
in which every design is valid and satisfies all the constraints. This can be done by
identifying the bounds of design variables, the function, and limits of constraints.
The solution analysis means analyzing the solutions against the constraints and goals
using computational methods such as finite element analysis or surrogate models
(e.g., response surfaces that approximate the response of a design given an input).
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There must be some computational tools to facilitate designers performing the over-
whelming analysis tasks so as to improve efficiency. Exploration methods are used
to search for superior solutions and these methods involve search or optimization
algorithms. There are many exploration methods in the optimization literature, for
example, Tabu Search [33], Genetic Algorithms [34], Rapidly-exploring Random
Trees [35], simulated annealing [36], the classic mathematic programming [37],
and goal programming [38]. The decision support platform should have exploration
techniques as built-in functions to support exploration of the solution space.

In addition to the three basic ingredients, solution space exploration also needs
to account for variations (e.g., the variation of the boundary) that may happen to the
solution space caused by uncertainties. This is discussed in Sect. 1.2.4.

1.2.4 Uncertainty Management

Uncertainty management in the context of supporting design decisions is to inform
designers about the risk of making decisions under uncertainty, facilitate designers
managing (not removing) the uncertainty and searching for robust solutions that
are insensitive to uncertainty. In model-based or simulation-based design, decisions
are usually based on models with simplified assumptions, idealizations, and non-
deterministic simulations which inevitably bring about uncertainty. As George Box
[39] said: “essentially, all models are wrong but some models are useful,” designers
have to accept the fact that the models used to support decisions are not perfect. In
the real-world practice, it is expensive or even impossible to eliminate all sources of
uncertainty, and designers have to manage the uncertainty and identify a way to find
solutions which are robust or insensitive to variations. To well manage uncertainty,
having a classification scheme is very important.

In the engineering design literature, many classifications and definitions have
been proposed. For example, Isukapalli et al. [40] classify uncertainties into three
types: (1) “natural uncertainty/variability” which stands for inherent randomness
or unpredictability of the physical system; (2) “model uncertainty” which refers to
approximations and simplifications in model formulation, and (3) “data uncertainty”
denoting incomplete knowledge of model parameters/inputs. Based on Isukapalli’s
classification, Choi et al. [41] further introduces propagated uncertainty caused by a
chain of models in the context of hierarchical system design. Oberkampf et al. [42]
carefully distinguishes between variability, uncertainty, and error in computational
simulations. In their definition, variability is defined as inherit variation associated
with the physical system; uncertainty is defined as a potential deficiency in any
phase or activity of the modeling process that is due to lack of knowledge; error is
defined as a recognizable deficiency in any phase or activity of the modeling process
that is not due to the lack of knowledge. From a system function perspective, Allen
et al. [43] classify uncertainty into three categories, namely, uncertainty in noise
or environment, uncertainty in design variables or control factors, and uncertainty
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introduced by modeling methods. Based on this classification scheme, three types of
robust design are identified accordingly.

Since uncertainty is inevitable, expensive or impossible to eliminate, we need
a functionality in the decision support platform to facilitate designers in effec-
tively managing uncertainty and making robust decisions.

1.2.5 User/Activity Specific Decision Support

User-specific decision support means that the platform should be able to provide
decision support to different types of users (decision makers) in various activities.
Herbert Simon [44] has classified decision-making activities into three categories:
intelligence, design, and choice. Intelligence, or problem finding, includes activities
such as comparisons of current status with goals or standards, exception reporting,
preliminary computations, and so on. Design encompasses activities related to devel-
opment of alternatives. Choice covers activities related to evaluating and selecting
from alternatives. These activities can find their counterparts in engineering design,
such as gathering information and framing the design problem, generating design
concepts, evaluating and choosing a design concept for embodiment design, etc. Due
to the different features of the activities, the needs of support are also different, which
requires the platform to have the flexibility to accommodate the variety of decision
activities. In addition to the difference in activities, the styles, skills, and knowledge
of decision-makers may also be different [45]. This observation is particularly true
in engineering design. For example, designers can be roughly classified into three
types based on their level of knowledge and experience, namely, expert designers,
senior designers, and novice designers. Due to the difference in knowledge and expe-
rience, what they need from a platform to support their decisions varies. An expert
designer has considerable knowledge about design and can perform the decision-
making process independently, the support that he or she needs from the platform is
very different from a novice designerwho only has basic knowledge about design and
needs to get most of the knowledge from the system. Therefore, a decision platform
needs to accommodate the variety in decision-makers.

1.3 Architecture and Functionalities of the Design Decision
Support Platform

In order to fulfill the requirements identified in Sect. 1.2, we propose an architecture
for the platformPDSIDES as shown in Fig. 1.5. It is an open architecture that is rooted
in the foundation of Decision-Based Design and Knowledge-Based Systems, and
will provide designers with decision support in the design of engineered systems by
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Fig. 1.5 The architecture of the platform PDSIDES

exerting some key functionalities.We summarize the key features and functionalities
as follows:

• Goal. Our goal in architecting the platform PDSIDES is to augment (not to
replace) the designers’ role of decision-makers in the design of complex engi-
neered systems so as to improve the efficiency of the decision-making process
and the quality of the decisions that are made. This is different from some
design automation platforms which attempt to automate the entire design process
including decision-making and output a solution which is the final design. In
PDSIDES, a designer is the “master” who makes the decision, the computer is an
assistant who provides support that is needed by the designer tomake the decision.

• User. Users of PDSIDES are designerswho need support tomake informed, rapid,
satisficing, visualized, and robust decisions when designing engineered systems.

• Foundation. The foundation of the platform is two-fold: decision and knowledge.
From the decision aspect, PDSIDES is based on the Decision Support Problem
Techniques (DSPT) [46] that provides the basic constructs for modeling decisions
including selection and compromise decisions and combinations thereof (i.e.,
couple decisions). Derivatives of the DSPT include the Phase-Even-Information-
X (PEI-X) diagram [47] for modeling decision workflows, and the robust design
framework [43] for managing different types of uncertainties. To model knowl-
edge we use templates and ontology [48] to represent decision-related knowl-
edge and build the knowledge base for providing decision support. Details of the
foundation are discussed in Chap. 2.

• Functionalities:

– Knowledge Management. This functionality ensures that the decision-related
knowledge (including both procedural and declarative knowledge) is well
managed in PDSIDES. Knowledge is captured when designers use templates
for making decisions in design, the captured knowledge is then stored in
a knowledge base which is built with ontologies to insure that populated
knowledge base is searchable, sharable, and reusable.
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– Individual Decisions Formulation. This functionality facilitates designers
formulating single decisions using the Decision Support Problem (DSP) [46]
constructs in PDSIDES. This includes the formulation of selection decisions
that involve making a choice among a number of possibilities considering a
number of measures of merit, and compromise decisions that determining the
“right” values of design variables to describe the best satisficing solution with
respect to constraints and multiple goals, using the selection DSP (sDSP) and
the compromise DSP (cDSP) constructs, respectively. The combinations of
these two types of decisions are formulated using the coupled DSP construct.

– Decision Workflows Formulation. This functionality facilitates designers
formulating decision workflows which are critical in meta-design of design
processes using the PEI-X diagram [47]. Designers can use the entities defined
in the so-called DSPT palette [47] to compose different decision workflows
for representing design processes and analyzing them before they are imple-
mented.This is important since it enables the exploration of process alternatives
during the design stage.

– Solution Space Exploration. This functionality facilitates designers exploring
the solution space by following a formal procedure that centers on the cDSP
construct. The procedure takes design requirements as input and gives satis-
ficing design specification as output. Steps include clarification of the design
event, definition of the problem, identification of theoretical and empirical
models that are available, development of surrogate models, formulation of
the cDSP, solving the cDSP and performing post-solution analysis. The solu-
tion space exploration functionality insures that the output design specification
is acceptable.

– Uncertainty Management. This functionality help designers deal with
different types of uncertainties and identify robust solutions against the uncer-
tainties using robust design indices such as the Design Capability Indices
(DCI) [49] and the Error Margin Indices (EMI) [50]. With these functionali-
ties, designers are able to make “safe” decisions that are relatively insensitive
to variations.

– User/Activity Specific Decision Support. This functionality tailors decision
support to accommodate different types of users in various activities. In
PDSIDES, we define three types of users for customized decision support,
namely, domain expertswho are responsible for creating decision templates in
original design activities, senior designers who are responsible for editing (or
tailoring) existing decision templates in adaptive design activities, and novice
designers who are responsible for executing existing decision templates in
variant design activities. This ensures that they each receive the appropriate
decision support.

• Connection to Other Platforms. Since the basic structure for representing knowl-
edge in PDSIDES is an ontology, in which the terms and relationships are
explicitly and formally defined, this enables PDSIDES to exchange knowledge
(particularly the decision templates) with other Product Lifecycle Management
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(PLM) platforms such as product data management systems and simulation-based
analysis systems.

In Table 1.1, we summarize the constituents of the architecture for PDSIDES. A
similar table is included in each chapter to provide readers with an overview of what
to expect in each chapter of the monograph.

In the chapters that follow we discuss how the functionalities of PDSIDES
are realized using the constructs and techniques from Decision-Based Design and
Knowledge-Based Systems, and how those functionalities are demonstrated using
examples. In Fig. 1.6, we show how the functionalities of PDSIDES are mapped to
different chapters where the key constructs for realizing the corresponding function-
alities are discussed and the efficacy of the constructs are tested by using examples.
The foundations of the architecture including the DSP constructs, PEI-X diagram,
robust design framework, decision templates and ontologies, etc., are discussed in
Chap. 2. Support for formulating individual decisions is covered in Chap. 3 where
we develop templates and ontologies for selection, compromise, and hierarchical
decisions. The support for formulating decision workflows is covered in Chap. 5
where an ontology based on the PEI-X diagram is developed. User-specific decision
support is afforded in Chap. 4 where we present a prototype of PDSIDES to which
different types of users and the corresponding working scenarios are defined and the
associated requirements for decision support are discussed. Design space exploration
and uncertainty management are covered in Chap. 6 where we present the procedure
and the ontology for robust design space exploration under different types of uncer-
tainties. Since PDSIDES is a knowledge-based platform, knowledge management is
covered in most of the chapters, including Chaps. 3–6, where ontology development
and knowledge reuse are involved. The logical flow of the chapters is discussed in
Sect. 1.4.

Table 1.1 Summary of architecture for PDSIDES

Architecture
constituents

Summary interpretation for a knowledge-based decision support
platform in design of engineered systems

Elements What?

Components Key components of the decision support platform (refer to Fig. 1.5)

Connectors The media that links the components, namely, the platform

Form How?

Component roles Different roles that the components play in the platform

Properties Attributes or features of the components

Relationship The relationships among different components in the platform

Rationale Why?

Motivation The underlying reason to use this platform, driven by requirements

Characteristics/beliefs Characteristics, assumptions, and beliefs used to guide the selection
of elements and form

Interpretation Understanding the big picture of the decision support platform
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Fig. 1.6 Mapping the functionalities of PDSIDES to the chapters

1.4 Organization and Validation Strategy
of the Monograph

The monograph is organized as a flowchart shown in Fig. 1.7. In this chapter, we
introduce the background, motivation and the frame of reference, and propose the
requirements and architecture for a decision support platform—PDSIDES. The foun-
dational constructs and techniques for decision support in model-based realization of
complex engineered systems are reviewed and discussed in Chap. 2. In Chap. 3, we
develop the ontologies for representing the knowledge related to selection, compro-
mise, and coupled decision templates, which can be used by designers to formulate
individual decisions in design. Based on the decision templates and ontologies, we
develop a prototype of PDSIDES inChap. 4which can support the three types of users
making decisions in original, adaptive, and variant design. In Chaps. 5 and 6, we add
more functionalities to PDSIDES so that it can provide knowledge-based support
in meta-design of decision workflows and robust design space exploration under
uncertainty. In Chap. 7 we summarize our contributions in this monograph, propose
a conceptual framework for a Cloud-Based Platform for Decision Support in the
Design of engineered Systems (CB-PDSIDES) and identify several open questions
for future research, and provide some closing comments.

The relationship of research efforts with the constructs of the architecture and
connection between chapters of the monograph are shown in Fig. 1.8. The ontolo-
gies for the selection and compromise decisions developed in Chap. 3 form the foun-
dation for the ontology for hierarchical coupled decisions developed in the same
chapter. And the three ontologies provide the knowledge representation schemes for
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Fig. 1.7 The organization of the monograph

Fig. 1.8 Relationship of research efforts with the constructs of the architecture and connection
between chapters of the monograph
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the knowledge base of the prototype of PDSIDES developed in Chap. 4. Based on the
prototype of PDSIDES, in Chap. 5 we extend the ontology to represent the knowl-
edge of decision workflows based on the PEI-X diagram and enable the functionality
of PDSIDES to support meta-design of decision workflows. Then, the idea of repre-
senting phase- and event-based procedural knowledge is extended fromChaps. 5 and
6 for representing a robust design space exploration processes, where the issues of
uncertainty management and robust decision-making can be addressed in PDSIDES.
Based on the current functionalities of PDSIDES, the focus ofChap. 7 is on furthering
the research vision by exploring opportunities for a service-oriented architecture for
decision support using the cloud.

The verification and validation strategy used in this monograph is based on the
validation square proposed by Pederson et al. [51, 52]. Key to the validation square
are the four quadrants: Theoretical Structural Validity (TSV), Empirical Structural
Validity (ESV), Empirical PerformanceValidity (EPV), andTheoretical Performance
Validity (TPV), as shown in the center square of Fig. 1.9. The corresponding verifica-
tion involves checking for internal consistency. The goal of checking TSV is to verify
the individual constructs constituting a method as well as the internal consistency of
the integration of all constructs to form an overall method, therefore TSV consists of
establishing requirements for the design method, carrying out a literature review, and
establishing the logical soundness of constructs used—individually and integrated.

Fig. 1.9 The organization of the chapters according to the validation square
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The goal of checking ESV is to build confidence in the appropriateness of the test
example problems chosen for illustrating and verifying the performance of the design
method, therefore ESV consists of checking the appropriateness of the test example
problems selected to test the design method and accepting the design methods and
constructs. The goal of checking EPV is to build confidence in the usefulness of
the method using example problems, therefore EPV consists of checking the ability
of the method to provide useful results for selected example problems. The goal
of checking TPV is to build confidence in the generality of the design method and
accepting that themethod is useful beyond the example problems considered, so TPV
consists of checking the ability to provide useful results beyond example problems
and showcasing the generic form of method.

In this monograph, the mapping of the chapters to the validation square is shown
in Fig. 1.9. In Chaps. 1 and 2we cover a literature review, identify the requirements of
a decision support platform, identify the components and the architecture of the plat-
form, therefore they correspond to the TSV quadrant of the validation square where
we check the structural and logical soundness of platform. In Chap. 3, we discuss the
development of thee ontologies for representing the knowledge related to selection,
compromise, and coupled decisions, respectively, and using three small examples
(i.e., pressure vessel design, the light switch cover material selection, and portal
frame design) to test their utility, therefore Chap. 3 maps to ESVwhere the appropri-
ateness of the test examples are checked. InChaps. 4–6,we highlight the development
of a prototype platformPDSIDES and the functionalities of designing decisionwork-
flows. We describe robust design space exploration. We illustrate the efficacy using
two examples, namely, a hot rod rolling system design problem and a heat exchanger
design problem. In Chaps. 4–6, we map to Quadrant EPV and establish that the
results from PDSIDES are useful. In Chap. 7, we summarize what is presented in the
monograph and this maps to Quadrant TPV. We suggest that the platform as well as
the associated constructs and functionalities are valid beyond the example problems
selected for empirical validation. Further, in Chap. 7, we discuss avenues for future
research and broader applications of the fundamental ideas in this monograph and
propose the framework of cloud-based PDSIDES (CB-PDSIDES) and the associated
research questions. Details associated with the particular verification and validation
steps are discussed at the end of each chapter.
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Chapter 2
Foundations for Design Decision Support
in Model-Based Complex Engineered
Systems Realization

In this chapter, we introduce the foundations for the decision support platform archi-
tecture proposed in Chap. 1. The foundations include (1) primary constructs in
decision-based design, (2) frameworks for robust decision-making, (3) the PEI-X
diagram for designing decision workflows, and (4) knowledge-based techniques for
decision support. After introducing the foundations, we review the key elements in
the decision support platform architecture and check theoretical structural validity.
Table 2.1 is a summary of this chapter. Themapping of the sections to the components
(topics) discussed in this chapter is presented in Row 2 of Table 2.1.

2.1 Primary Constructs in Decision-Based Design

Decision-BasedDesign (DBD) involves designing and creating designmethods orig-
inating from the notion that decision-making is fundamental to design.We recognize
that there are two types of implementation of DBD. One is the utility-based frame-
work suggested by Hazelrigg [1], which exploits utility theory assuming objective
rationality where designers seek to maximize the design utility using complete and
accurate models. The second is the Decision Support Problem Technique (DSPT) by
Mistree and co-authors [2] anchored in the notion of bounded rationality, proposed
byHerbert A. Simon in the book Sciences of the Artificial, mandating satisficing solu-
tions using models we know are incomplete, inaccurate, and not of equal fidelity. It
is unrealistic to treat human decision-makers as objective rational beings. Herbert A.
Simon proposed that there are restrictions in the capacity of human decision-makers
to be fully rational and that we should treat them as “intendedly” rational, but only
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Table 2.1 Summary of this chapter

Elements What?

Components Foundation to PDSIDES: DSP constructs (Sect. 2.1), robust design
framework (Sect. 2.2), PEI-X diagram (Sect. 2.3), knowledge-based
techniques (Sect. 2.4)

Connectors Decision-based design

Form How?

Component roles Provides the foundational concepts to build the platform

Properties Theoretical foundation

Relationship Methods for modeling decisions, workflows, and knowledge

Rationale Why?

Motivation The need of supporting technologies for the platform

Assumptions The principal role of a designer is to make decisions

Interpretation Understanding the available technologies upon which the platform is
going to be built

“boundedly” so. Simon outlines at least three ways in which actual behavior falls
short of objective rationality [3]: (i) Rationality requires complete knowledge and
anticipation of the consequences that will follow on each choice. In fact, knowledge
of consequences in always fragmentary. (ii) Since these questions lie in the future,
imagination must supply the lack of experienced feeling in attaching value to them.
But values can only be imperfectly anticipated. (iii) Rationality requires a choice
among all possible alternative behaviors. In actual behavior, only a very few of all
these possible alternatives come to mind. In this monograph, we utilize the DSPT as
our implementation of DBD. Key to DSPT is that there are two primary types of deci-
sions in design, i.e., selection and compromise [4]. The selection Decision Support
Problem (sDSP) [5] and the compromise Decision Support Problem (cDSP) [6] are
the constructs for formulating the compromise and selection decisions, respectively.
In Sects. 2.1.1 and 2.1.2, we discuss the sDSP and cDSP constructs in detail.

2.1.1 sDSP—The Selection Decision Support Problem

A selection decision in design is to indicate a preference for one among the potential
alternatives based on multiple attributes. Selection is endemic throughout a design
timeline.Decision Support Problems (DSP) afford the ability tomodel selection deci-
sions, where several attributes are quantified utilizing insight-based soft and science-
based hard information. Typically, the taxonomy of a design timeline information
flow involves three categories: (1) the complete information utilized for the decision
being soft, (2) part of the information being soft and the remaining being hard, and
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Fig. 2.1 Word formulation
for the preliminary selection
DSP

Given  A set of concepts. 

Identify The principal criteria influencing selection 

The relative importance of criteria 

Capture Experience based knowledge about concepts with 

respect to a datum and established criteria 

Rank The concepts in order of preference based on multiple 

criteria and relative importance 

(3) the entire information is hard. Based on the available information types, selec-
tion problems can be modeled as preliminary selection DSPs and selection DSPs.
The former is formulated and solved if the decision exploits experience-based soft
information, while the latter when significant hard information is available. Prelim-
inary selection considers choosing the concept with the highest success probability
that is further developed into viable alternatives. The DSP construct for representing
preliminary selection is illustrated in Fig. 2.1.

Pugh’s technique is the algorithm’s basis to solve the preliminary selection DSP.
In preliminary selection, choices are made based on some criteria to reduce the range
of possible solution concepts to those with the highest success probability depending
on the preferred performance of the solution [7, 8]. The selection DSP prioritizes the
alternatives choices utilizing multiple features of varying importance, utilizing both
experience-based subjective and science-based objective information. The priority
order does not solely indicate the rank but also the quantitative preference of one
choice over an alternative one. TheDSP construct (word formulation andmathematic
formulation) for representing selection is shown in Fig. 2.2.

It should be noted that for the two selection types, we use different terms for
similar items. For the preliminary selection, we start with concepts and evaluate
the concepts exploiting some criteria that are quantified using experienced-based
judgment, and thus, a preliminary selection has to be utilized to define the top-of-the-
heap concepts. Engineering is then applied to the possible top-of-the-heap concepts,
and the concepts develop to feasible alternatives. During the selection, the feasible
alternatives are evaluated based on attributes quantified using science-based data
to identify the optimum alternative. For further information on the selection DSP, the
reader is referred to [8], for its utilization in catalog design in [9, 10]. To deal with
the performance uncertainty concerning attributes, the selection DSP is extended
to the utility-based selection DSP (u-sDSP) [11] that combines utility theory and
the sDSP structure. The u-sDSP formulation is illustrated in Fig. 2.3. The utility
theory employed in the u-sDSP provides the mathematical rigor for decision-making
under uncertainty, while the sDSP the construct and context to formulate and bound
the decisions to facilitate practical use. The u-sDSP affords the designer a means
to indicate preferences and identify the favored alternatives, which is more evident
when uncertainty is considered in relation to alternative performance, i.e., variability.
Additionally, the designer’s role and his/her judgment are maintained to provide
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Fig. 2.2 Word and mathematic formulation of the selection DSP

Fig. 2.3 Utility-based
selection DSP word
formulation

Given  Finite set of feasible alternatives. 

Identify The principal attributes influencing selection. 

The uncertainty associated with each attribute.

Assess Decision-maker’s utility with respect to each attribute

and with respect to combinations of attributes. 

Evaluate Each alternative using the decisionmaker’s utility 

functions. 

Rank Most promising alternative(s) based on expected utility. 

structure, context, critical evaluation, and justification during the decision-making
procedure. The necessary stages to properly implement the u-sDSP are presented in
[11], while the guidelines for assessing utility functions and calculating the expected
utility are provided in Keeney and Raiffa [12].
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2.1.2 cDSP—The Compromise Decision Support Problem

A compromise decision is to determine the proper values or their combination for
the design variables (e.g., system parameters) to characterize the best satisficing
systemdesign concerning the considered constraints andgoals [6].Compromise deci-
sions are formulated employing the cDSP construct illustrated in Fig. 2.4. A cDSP
formulation is a hybrid formulation involving concepts from classic mathematical
programming schemes and goal programming [13] combined with new concepts. It
is closely related to goal programming in formulating multiple objectives or goals as
system goals, and the objective function encompasses the goal deviation variables.
Nevertheless, involving system constraints is retained from the classic constrained
optimization formulation, as, unlike both other formulations, particular emphasis is
given to the system’s variable bounds. A detailed discussion about the difference
between the cDSP, goal programming, and single-objective optimization is provided
in [14] and thus is not repeated here.

The system descriptors are utilized to characterize a system’s state completely. In
this section, the cDSP’s system descriptors are presented.

Fig. 2.4 Word formulation of the utility-based selection DSP
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• System variables (Xi, i = 1, …, n). The majority of the engineering scenarios
involve a minimum of two system variables. Commonly, X represents n design
variables that could be Boolean (0 for FALSE and 1 for TRUE), continuous, or
their combination. By nature, systemvariables are unaffected by other descriptors,
and the designer can change them as needed to modify the system’s state. System
variables employed to define an artifact are nonzero positive. In general, the n
design variables within X represent the axis of an n-dimensional space.

• System constraints (Ci (X) − Di (X) = , ≥ 0 i = 1, . . . , p + q). These
involve constraints that must be satisfied to assure a feasible design. Their mathe-
matical notation involves functions that rely only on the system variables. System
constraints are rigid, cannot be violated, and link the system’s demand Di(X) with
its capability Ci(X) to attain the demand.

• System goals (Ai (X) + d−
i − d+

i = Gi i = 1, . . . , m). These model the
designer’s aspiration and are expressed as equality, relating the designer’s aspi-
ration level Gi to the goal’s true achievement Ai(X). Nevertheless, the designer’s
aspiration might be quite high, or the system constraints too tight to manage the
anticipated level of accomplishment.

• Deviation variables
(
d+

i , d−
i i = 1, . . . , m

)
. These permit the designer

a specific latitude degree during the decision-making process. A specific
goal could be overachieved

(
d−

i = 0 and d+
i > 0

)
or underachieved(

d−
i > 0 and d+

i = 0
)
. Therefore, the deviation variables link the true design

performance with the aimed performance level and bound the requirement levels
to be realistic. A deviation and a system variable differ in terms of the latter
representing the distance from the design space origin in the ith dimension, while
the former has as its origin the system’s goal surface.

• Bounds. These are magnitude-related limits for each variable that involve an
upper and lower bound resulting from the designer’s judgment and the system’s
limitations.Most engineeringdesignoptimizationmethods neglect bounds despite
these being necessary to restrict the system variables, i.e., L ≤ X ≤ U, defining the
search space for a viable solution. If two or more system goals exist, all deviation
variables must either be dimensionless or have the same dimension, preferably
varying within a fixed range, for example, 0 to 1. To impose all deviation variables
varying within a fixed range, it is mandatory to manipulate Gi’s value correctly.

• The objective. In cDSP, the objective is minimizing the achievement function,
Z(d+

i , d−
i ) expressed by exploiting the deviation variables. The aspiration level

per goal is set by the designer, with the possibility of a design being impossible
to meet the standards set. Therefore, the designer has to accept a compromise
solution that affords a performance close to his aspirations. In essence, this is
a compromise solution objective. To express the difference among goals and
achievements, the deviation variables Z(d+

i , d−
i ) are used, which can be either

arranged as anArchimedean function or a preemptive function (see [8] for details).

The solution algorithms are of two types, i.e., (1) approximately solving the exact
problem and (2) solving a problem’s approximation exactly. We solve the cDSPs
utilizing the adaptive linear programming (ALP) [6] algorithm that belongs in the
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latter category. ALP relies on second-order terms regarding linearization, normali-
ation and transforming the constraints and goals into overall well-behaved convex
functions within the region of interest, and employing a “smart” constraint accumu-
lation and suppression strategy. Detailed steps for implementingALP and a computa-
tional tool called “DSIDES” are used [15]. cDSP, ALP, and DSIDES are anchored in
the satisficing (rather than optimizing) philosophy.Differences between optimization
and satisficing strategy are summarized as follows [16].

(1) Differences between optimizing and satisficing strategy

In summary, there are four advantages to using satisficing strategy which is realized
by using cDSP, ALP and DSIDES. The advantages include the following.

The advantage in formulation

• Using Goals and Minimizing Deviation Variables Instead of Objectives.

• The benefits are: At a solution point, only the necessary Kuhn-Tucker condi-
tions are met, whereas the sufficient Kuhn-Tucker conditions do not have to
be met.

• Therefore, designers have a higher chance of finding a solution and a lower
chance of missing a solution due to parameterizable and unparameterizable
uncertainties.

The advantages in approximation:

• Using second-order sequential linearization

• The benefit is: Designers can have a balance between linearization accuracy
and computational complexity.

• Using accumulated linearization

• The benefit is: Designers can manage non-convex problems, and deal with
highly convex, nonlinear problems relatively more accurately.

The advantage in exploration:

• Combining interior-point searches and vertex searches:

• The benefit is: Designers can avoid being stuck in local optimum to some extent
and identify satisficing solutions which is relatively insensitive to the change
in starting points.

The advantage in evaluation:

• Allowing some violations of soft requirements, such as the bounds of deviation
variables.

• The benefits are: Designers can manage rigid requirements and soft require-
ments in different ways to ensure feasibility.

• As a result, goals and constraints with different scales can be managed.
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(2) Differences among cDSP, Goal Programming, and Mathematical
Programming

We summarize the differences among cDSP, Goal Programming, and Mathematical
Programming seeking optimal solutions as follows.

Stage 1: Formulation. First, the cDSP is a hybrid of mathematical program-
ming (seeking optimal solutions) and goal programming. In a cDSP, there are both
constraints and goals. In goal programming, there are no constraints.1 In a cDSP, the
constraints are requirements (demands) that cannot be violated, whereas the goals
are soft requirements (wishes) whose targets may not be reached but we want to
minimize the distance between the targets and our results. The constraints and goals
can be linear or nonlinear (convex or non-convex) or both, and equalities or inequal-
ities or both. The benefit of being able to model both demands and wishes in one
formulation is attractive in design. Due to the complexity of the supply chains for
mass customization, the resulting cDSP often entails dealing with non-convex and
convex constraints and goals.

Second, in a cDSP, we use deviation variables to assess the extent by which
we over-achieve or under-achieve a goal. By adding the deviation variables, we
ensure that the solutions to a cDSP satisfies the necessary Kuhn–Tucker condition.
The solutions do meet the test of sufficiency to guarantee a “true” or “global”
optimum. A satisficing solution to a cDSP is the mapping of an optimal solu-
tion on a lower-dimensional space. The dimensions being reduced consist of the
deviation variablesD = [d−

1 , d+
1 , d−

2 , d+
2 , . . . d−

k , d+
k ]T

. By adding deviation vari-
ables, we increase the dimensionality of a design problem, from [x1, x2, . . . xn]T

to [x1, x2, . . . xn, d−
1 , d+

1 , d−
2 , d+

2 , . . . d−
k , d+

k ]T
, thus making it possible to absorb

the risk of uncertainty at the constraint boundary. This results in a robust solu-
tion, that is, one that is relatively insensitive to uncertainties. By returning solu-
tions consisting only of system variables, as is the case in solving an optimiza-
tion problem,X = [x1, x2, . . . xn]T , we decrease the dimensionality. Such “dimen-
sionality reduction” may not result in a solution that is relatively insensitive to the
uncertainties embodied in themodeling of the constraints of an optimization problem.

Third, although a cDSP has similarities with the auxiliary problem of a linear
programming problem when using the two-phase method,2 there are differences.
For a linear programming problem (P), when we relax the m equality constraints
A · X = b to m inequality constraints A · X + U = b, by adding slack variables (or
artificial variables) U = [u1, u2, . . . um]T , and change the objective function from
minCT ·X tomin

∑m
i=1ui , an auxiliary problem (A) of the original linear programming

1 Although in later publications, the formulation ofGoal Programming allowsmanaging constraints.
By the time Mistree and the coauthors published their work on cDSP and ALP [6], it was generally
accepted that in Goal Programming, there are only “soft requirements” as goals but no “rigid
requirements” as constraints.
2 The introduction of the auxiliary problem is given at “http://www.math.uwaterloo.ca/~hwolkowi/
henry/teaching/f05/350.f05/L18.pdf”.

http://www.math.uwaterloo.ca/~hwolkowi/henry/teaching/f05/350.f05/L18.pdf
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problem (P) is created. If a solution [x1, x2, . . . xn, u1, u2, . . . um]T is optimal for (A)
with ui = 0, i = 1, 2, . . .m, then the solution [x1, x2, . . . xn]T is feasible for (P).

There are similarities between a cDSP and an auxiliary problem (A). The slack
variables U in the auxiliary problem are similar to the deviation variables D in a
cDSP, if we treat the equality constraints A · X + U = b of (A) as the goals of
a cDSP Goali (X)

T argeti
+ d−

i − d+
i =1. The objective of (A) is minimizing the sum of the

slack variables U , similarly, the merit function of a cDSP is minimizing the linear
combination of the deviation variables D.

There are differences, however, between a cDSP and an auxiliary problem (A)
of a linear programming problem (P). An auxiliary problem is a linear problem,
whereas a cDSP can be nonlinear—both constraints and goals. When solving an
auxiliary problem (A), one can only obtain the feasibility of its original problem (P)
but a satisficing solution (a good enough solution) is not guaranteed because the
original objective function minCT · X is not incorporated in (A). On the contrary, in
a cDSP, goals are satisfied as equality constraints in a corresponding optimization
problem, thus, a satisficing solution that is close to achieve the goals is identified.
In addition, in an auxiliary problem, for any constraint, we only minimize either its
under-achievement or over-achievement, whereas in a cDSP, we can minimize both
under-achievement and over-achievement of each goal. Furthermore, in an auxiliary
problem, we treat all constraints equally by simply adding the slack variables U ,
while in a cDSP, we use weights to linearly combine the deviation variables so that
we may assign different priorities to each goal.

In summary, a cDSP is different from goal programming, optimization, or an
auxiliary problem in linear programming. Further a satisficing solution to a cDSP is
not only feasible, but also adequate with respect to the achievement of the goals.

Stage 2: Exploration of the solution space. In the second stage, the solution
space is explored to find satisficing solutions associated with each design prefer-
ence (scenario), in different phases in the product life cycle. Type I and Type II
uncertainty (refer to Sect. 2.2) are managed in the exploration of the solution space
(ESS).

Weight sensitivity analysis—exploration of the design preferences.Weuseweight
sensitivity analysis to explore how assessing different weights to the goals affects
the system performance, that is, identifying satisficing solutions that are relatively
insensitive to uncertainties.

System capacity analysis—identification and management of the sensitive
segment and bottleneck. To overcome the capacity limitation of constraints or
bounds, we propose system capacity analysis to identify the sensitive segment and
bottleneck. If an inequality constraint has zero or a tiny surplus or slack compared
with its right-hand side value, we define it as an active constraint. The solution is
on or close to the boundary of the active constraint, so the solution is sensitive to
the uncertainty of the active constraint. If the shadow price of an active constraint
is lower than other active constraints, by relaxing this active constraint, we may not
get much improvement in achieving the goals, and we define such a constraint as
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a “sensitive segment.” We then move the solution away from the sensitive segment
by restricting the active constraint, that is, by adding a buffer to the constraint to
prevent the solution from reaching the boundary defined by the constraint. If the
shadow price of an active constraint has the largest value in comparison with that of
other constraints, relaxing the constraint can result in the greatest improvement of
the achievement of the goals. We define such an active constraint as a “bottleneck.”
Also, it is important to find ways of relaxing the bottleneck in the physical system
to boost the system potential. Once there is no longer the potential of physically
relaxing the constraint, we move the solution away from the newly relaxed boundary
by restricting the constraint by adding a buffer to the defined boundary. Thus, we
balance the need for robustness of the solution with our desire to obtain the best
satisficing solution.

2.2 Framework for Robust Decision-Making

In engineering design, the concept of robustness is used to alleviate the consequences
of variability without removing its underlying sources [17–19]. The anticipated vari-
ability usually represents information originating from other parts of the product
realization process that exceed the modeled and designed system’s boundaries [17].
For example, a system may be designed for performance (response) that is relatively
insensitive to design variations caused by the manufacturing processes. Character-
ization and classification of uncertainty are essential for developing robust design
methods. In the literature concerning engineering design and analysis, uncertainty is
presented employing several definitions and classifications. For example, Isukapalli
et al. [20] suggest the following uncertainty types: (a) “natural uncertainty or vari-
ability” that involves the physical system’s inherent randomness or unpredictability,
(b) “model uncertainty” that it used to consider simplifications and approximations
in model formulation, and (c) “data uncertainty” referring to the imperfect informa-
tion regarding the model inputs or parameters. Based on Isukapalli’s classification,
Choi et al. [21] introduce the notion of propagated uncertainty caused by a chain of
models in the context of hierarchical system design. Oberkampf et al. [22] distinguish
uncertainty, variability, and error in computational simulations. In their definition, the
definition of variability involves the inherent variation linked to a physical system,
where uncertainty is the possible modeling process deficiency during any stage or
activity due to the lack of knowledge, and error is defined as a recognizable modeling
process deficiency during any stage or activity not linked to the absence of knowl-
edge. Allen et al. [17] suggest from a system design perspective three uncertainty
types: uncertainty in noise or due to environmental and other noise factors, uncer-
tainty in design variables or control factors, and uncertainty introduced by modeling
methods. These authors also suggest a robust design framework for multidiscipline
and multiscale applications. In this monograph, we afford robust decision-making in
engineering design by implementing the framework proposed by Allen et al. [17].
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Fig. 2.5 Robust design
types

According to Allen et al. [17], the three robust design types are (see Fig. 2.5):

• Type-I robust design is employed to determine the design variable (control factor)
values satisfying a collection of performance requirement targets, regardless of
the noise factor variations.

• Type-II robust design is utilized to determine the design variable values satisfying
a collection of performance requirement targets, regardless of the control factor
variations. For example, in the early design stages, the design variable values
change as the design evolves; hence, it is preferable to identify starting values
which, if changed, have the least possible impact on the system’s performance
and thus minimal iteration during the evolution of the design process.

• Type-III robust design is employed to determine the adjustable ranges of the design
variables satisfying the performance requirements that are not sensitive to the
systemmodel variability. For example, a systemmodel might include simplifying
assumptions or random factors, e.g., random microstructure in materials design
realizations, affecting the prediction’s precision and accuracy.

Solutions to the three types of robust design can be depicted using the curves
shown in Fig. 2.6. The solid bold line represents the nominal deviation or objective
function (i.e., Y = f (X)). Due to systemmodel uncertainties, the nominal deviation
function may vary within the upper and lower limits represented with two dash
lines. The optimal solution is the design variable X with a value that minimizes the
nominal deviation function, denoted asA.When there is a variation (represented using
a Gaussian distribution) around A, it can result in a dramatic variation in deviation Y ,
which means that system performance is susceptible to variation around the optimal
solution. Robust design Types I and II seek to identify the curve’s plateau where the
deviation of the nominal function is relatively insensitive given the variations in both
noise and control factors, as Solution B is shown in Fig. 2.6.

It should be noted that even though Solution B is not sensitive to control factors
and noise variations, it is sensitive to system model variations. Solution C is the
solution that is insensitive to control factors, noise variations, and the system model
and is the solution for robust design Type I, II, and III. It can be seen that solution
C is located at the curve’s plateau and within the “narrowband” of the system model
variation, and therefore solution C is a robust design solution that we look for in this
monograph.
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Fig. 2.6 Robust solutions in engineering design

In Fig. 2.7, we present the procedure to explore robust design solutions. The
specific steps involved are as follows:

Step 0: Data Input/Output. The robust design solution exploration procedure starts
with the designer identifying the system design requirements of the problem under

Fig. 2.7 Computing architecture of the robust concept exploration method [17]
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study and concludes with determining the design parameters fulfilling the design
requirements and satisfying the designer’s wishes (goals).

Step 1: Pre-process—Processors A and F (Fig. 2.7). The designer identifies the
factors influencing the system’s performance and the ranges associated with formu-
lating the cDSP. Control factors identified in Processor A will become the system
variables in the cDSP formulation in Processor F, noise factors will become param-
eters of the cDSP, and ranges will become the bounds of the variables of the
cDSP.

Step 2: Design of Experiments and Simulation—Processors B, C, and D
(Fig. 2.7). The designer establishes the experiments to generate sample points in the
factor space, run simulations, and analyze the simulation results to iteratively refine
the experiments. Examples of design experiments include the Central Composite,
Plackett–Burman, Taguchi Orthogonal Arays, and Full Factorial. The generated
sample points are sent to simulation programs for computing the responses. The
analyzer (Processor D) analyzes the simulation results to remove factors that are not
important, restrict the design within the region of interest, and plan supplementary
trials.

Step 3: Response Surface Modeling—Processor E in Fig. 2.7. The sample points
and their associated responses are exploited to construct the response surface model
for function y = f (x, z). The response surface models are the approximate models
for the constraints and/or goal functions in the cDSP formulation in Processor F.

Step 4: Compromise DSP formulation for Robust Design—Processor F in
Fig. 2.7. In this step, robust design indices such as Error Margin Indices (EMI)
[23] and Design Capability Indices (DCI) [24] are incorporated as goals in the cDSP
formulation for bringing the “mean on the target” as well as “minimizing the devia-
tion”. The DCI is a collection of metrics specifically designed to assess the capability
of a ranged set of design conditions whether it satisfies some design requirements.
DCI addresses robust design Types I and II. EMI is a mathematical model high-
lighting the system’s average performance location and the spread regarding the
variability in both design variables and system models. EMI is utilized to address
robust design Type III. For more information regarding combining EMI-DCI in a
cDSP to address robust design Types I, II, and III, the reader is referred to [25].

2.3 Utilizing PEI-X Diagrams to Design Decision
Workflows

From the viewpoint of DBD, design processes can be modeled decision workflows
comprised of a series of decisions. In our DSPT framework, the DSPT palette
[26] provides the entities for modeling decision workflow. The entities are used
to construct hierarchies and model decision workflows regardless of the application
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Fig. 2.8 DSPT palette entities ( modified from Ref. [26])

domain. DSPT involves the distinct entity classes: base, potential support problem,
and transmission entities, as shown in Fig. 2.8.

Potential support problem entities. P identifies the phase icon and represents the
parts of a split process. Events occur within a phase, and E is used for identifying the
event icon. Systems and/or human designers have direct involvement in tasks and
decisions. On the other hand, performing tasks (i.e., an activity to be accomplished)
and making decisions manage to accomplish phases and events. For the design team,
the design process itself is a task containing other tasks and decisions, or even phases
and events.

Nevertheless, trivial tasks such as “running computer program A” do not contain
any decisions. T identifies a task and a rectanglewith a questionmarkwithin it defines
the decision icon in the palette. Concurrently, we include selection, preliminary
selection, compromise, and heuristic decisions (not primary) [3]. A system is defined
as a circle within a smaller circle.

Base entities. These involve basic objects to model design procedures which
are computer-implemented and/or easily understood by designers. System variables
are embedded in systems. Auxiliary parameters are utilized to model a process but
are not system variables, e.g., counters in the loop. Although auxiliary parame-
ters can be multidimensional, system variables are always scalars. Relationships
are represented as rectangles, and thus rectangular-shaped icons are relationships.
Phase, tasks, events, and decisions are also relationships. Analytical relationships
are divided into equality relationships, assignments, and functions. Conditional rela-
tionships are rules and loops. Icons consisting of a nozzle within a rectangle indicate
limiting relationships. Limiting relationships are grouped into goals, constraints, and
bounds.
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Transmission entities. Most of these entities rely on input and provide an output.
Transmission entities are used to achieve connections and capture the input and
output. Transmission entities involve three types: information, energy, and matter
[27, 28], while their combinations may also occur. A transmission object commonly
includes a catalog of other DSPT palette objects transmitted from one object to
another. For example, the task “Provide the goals and constraints” outputs an
information transmission object embedding a catalog of constraint and goal objects.

The Phase-Event-Information-X (PEI-X) diagram models the timeline and the
hierarchy of decision-based design processes exploiting the DSPT palette entities. In
such a diagram, the Xmay be Decisions, Tasks, and Systems. It ultimately provides a
way to represent the life cycle timeline hierarchically. In Fig. 2.9 we show a part of a
frigate’s life cycle timeline, including the design phases, events, and product-specific
information, highlighting the increasing qualitative relationship among hard and soft
information. In this example, the design process is split into four major design stages
on the top line. Commonly, each phase does not end abruptly, and thus usually, it
is not trivial to define the start of a new stage. The overlapping stages are presented
in Fig. 2.9. Several events can be identified in these phases. The horizontal bar in
Fig. 2.9 provides an indication of the duration, in physical time, of phases and events.

The design procedure inputs a strategic need or foreign policy, and the whole
process is represented in terms of phases, events, and information. Accord-
ingly, designing involves generating the product-specific information identified as
“Strategic Need/Foreign Policy” and ends with “Service Life History”. In a desktop

Fig. 2.9 PEI-X diagram for designing a frigate (modified from Ref. [3])
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environment, a designer can “open” the lower-level model included in a specific
object by clicking its icon. The lower-level models of the phase icons are repre-
sented using a network of the DSPT palette entities. An example of the designing
phase icon for the concepts is illustrated in [26].

2.4 Knowledge-Based Techniques for Decision Support

Decision-making is a knowledge-intensive procedure, where knowledge is vital both
in accelerating and affecting the decision procedure. Providing decision support from
a knowledge-based perspective is critically important for enhancing the role of the
designers as decision-makers. In Sect. 2.4, we introduce three techniques that we use
in thismonograph for knowledge-based decision support: template-based knowledge
capture and reuse, ontology-based knowledge formalization, and knowledge-based
platformization.

2.4.1 Template-Based Knowledge Capture and Reuse

Design processes can be described employing an information transforming equation
[29] that includes an input, output, and a function that converts the input to the output,
as shown in Eq. 2.1:

K = T (I ) (2.1)

where I denotes the requirement information (e.g., design goals, constraints, param-
eters), K the knowledge of product or system specifications after the design (e.g.,
design variable values, design goal deviations), andT the design process (e.g., formu-
lating the design problem employing the cDSP construct and solving it using theALP
algorithm). In a computational environment, implementing the design process equa-
tion (Eq. 2.1) in a reusable manner is very important because process reusability can
bring great value. A conservative estimation [30] suggests that more than 75% of
design activity consists of case-based design—reuse of previous design knowledge
to address a new design problem. In the light of this fact, it is necessary to capture
and store the knowledge related to previous design processes so that designers can
reuse it for solving similar or new design problems which will save them a lot of
time in design from scratch. The idea of reusability has a long history in the industry.
A typical example is to achieve reusability through modularization and standardiza-
tion. Complex products are decomposed into smaller parts, and the ones with similar
functions are grouped and standardized so that they can be reused in the assembly
of different products, reducing the time and cost of developing a new product.
In this work, we extend the concept of reusability to model design processes and
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Problem 1 Problem 2

Design Process Template

Slot

Domain 
Information

Fig. 2.10 Modular template for knowledge capture and reuse (modified from Ref. [32])

propose reusable and executable templates [31, 32], as shown in Fig. 2.10. A process
template consists of two types of components, namely, a “bread board” with several
connected slots, which stands for the procedural knowledge of the design process,
and a “chipset”, which stands for the declarative knowledge and can be installed onto
the “bread board”. The “bread board” represents the domain-independent know-how
(e.g., the DSP constructs) that are constant across problems, and the “chipset” repre-
sents the domain-specific know-what (e.g., the variables, parameters, constraints,
goals in a cDSP and alternatives and attributes in an sDSP) that varies from problem
to problem. By separating the declarative and procedural knowledge, the reusability
of both the “bread board” and “chipset” can be achieved. The “bread board” can be
reused to instantiate any design process of the defined structure, and the “chipset”
for instantiating processes with similar elements.

In PDSIDES, decision constructs (including the sDSP, cDSP, and coupled DSP)
and the workflows composed using the decision constructs are represented as
templates to facilitate the capture and reuse of decision-related knowledge. Three
different types of template users are defined in PDSIDES, are discussed in Sect. 2.4.3.

2.4.2 Ontology-Based Knowledge Formalization

Knowledge related to the DSP constructs, design processes, and templates must
be formalized to facilitate managing, retrieving, and sharing on PDSIDES. Ontolo-
gies, defined as explicit formal specifications of terms and their relations [33], are
gaining attention for knowledge management in engineering. The knowledge model
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of Protégé, which consists of facets, classes, instances, and slots [34], is widely
used for constructing ontologies. The critical components of the Protégé model are
discussed as follows.

• Classes and Instances. A class is an object collection, where an object is a
class instance, and the class is the instance’s type. Classes follow a taxonomic
hierarchy, e.g., if class A is B’s subclass, then each instance of A is also of B.
Protégé’s class hierarchy root is the built-in class THING. A class may have
multiple super-classes, enabling modeling various concepts’ classifications in a
domain [35].

• Slots. Slots describe the entity properties in the domain, e.g., a slot hasUnit
can describe the variable’s unit. Slots are frames and exist regardless of their
attachment to classes. When a top-level slot is attached to a class, it becomes a
template slot of the class, which is inherited to subclasses. A slot can have a value
when the class is instantiated.

• Facets. Facets define the slot’s properties and the constraints on the allowed
slot values, which involve the maximum and minimum value for a numerical
slot, cardinality (e.g., multiple, single), and type of value (e.g., Instance, String,
Boolean, float).

• Meta-classes. A meta-class is a class whose instances are classes themselves
and is a template to build classes, similarly to classes being templates to build
instances. Classes are also meta-classes instances. Meta-classes are used to define
the properties of the classes themselves, rather than properties of the instances of
the classes.

• Constraints, Axioms, and Rules. Although the protégé knowledge model is
quite complete, limitations to what can be expressed using classes, instances,
slots, facets, and meta-classes still exist. Languages such as the Protégé Axiom
Language (PAL)3 and Java Expert System Shell (JESS)4 are complementary to
the Protégé knowledge model for representing complex constraints, axioms, and
rules.

There are several methods for developing ontologies, i.e., the IDEF5 method
proposed by Peraketh et al. [36] and the 7-step method proposed by Noy et al.
[37]. The development of ontologies is an iterative process and there is no “correct”
way to implement them, as one needs to keep revising and refining to obtain a
“good enough” ontology. In this monograph, we use the 7-step method [37] for
developing decision and workflow ontologies for PDSIDES since the method relies
on the Protégé knowledge model. The seven steps are:

Step 1. Determine the ontology’s domain and scope. The ontology process initi-
ates by setting its domain and scope by answering questions such as, what
is the ontology’s domain coverage? What is the ontology’s scope? To
what types of questions should ontology information provide answers?

3 https://protege.stanford.edu/plugins/paltabs/pal-documentation/overview.htm.
4 https://jess.sandia.gov/

https://protege.stanford.edu/plugins/paltabs/pal-documentation/overview.htm
https://jess.sandia.gov/
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Who will employ and maintain the ontology? The goal in PDSIDES is
to provide decision support during the design of the engineered systems,
and the ontologies are used in PDSIDES to model the knowledge linked
to different decisions types and workflows in a reusable and executable
manner. Therefore, the domain of the ontologies for PDSIDES is engi-
neering design, and the scope is the decision-based design where decisions
are the core of design processes.

Step 2. Consider reusing existing ontologies. Reusing (refining or extending)
current ontologies saves time in building new ontologies and facilitates the
interaction with other applications or systems where some existing ontolo-
gies are embedded. In PDSIDES, we reuse the controlled vocabularies in
describing the sDSP, cDSP, and the PEI-X diagram to communicate with
the computational tool DSIDES [15].

Step 3. Enumerate important terms in the ontology. Obtaining a complete
catalog of terms is necessary for describing the domain of interest. In the
context of PDSIDES, these terms include Design, Decision, Compromise,
Selection, Decision Support Problem, and Workflow, etc. At this step, there
is no concern of overlapping concepts or properties these might have, links
between the terms, or if concepts are slots or classes. Steps 4 and 5 deal
with these problems by defining the classes and the class hierarchy, and
the properties (slots) of classes. Steps 4 and 5 are closely related, and thus
it is not trivial to apply them in a specific order.

Step 4. Define the classes and the class hierarchy. Developing a class hierarchy
involves three potential strategies [38]: top-down, bottom-up, and combi-
nation development processes. The first starts by defining the most general
concepts within the domain and then refines the concepts. The following
strategy defines the most specific classes. The hierarchy is then removed
and then these classes are grouped into general concepts. The last strategy
combines the two former ones. In the context of PDSIDES, we adopt the
bottom-up approach. We start with defining specific individual decisions
and then defining a more general ontology for the PEI-X diagram of deci-
sion workflows. Details of the classes hierarchy are presented in Chaps. 3,
5, and 6.

Step 5. Define the properties of classes—slots. Once the class definition process
has ended, we must describe the internal structure (i.e., the properties)
of the concepts. In the Protégé knowledge model, properties are defined
separately from classes. When a property is linked to a class to describe
it, the class becomes a slot. In an ontology, several types of object prop-
erties can become slots, i.e., (1) “intrinsic” properties, e.g., a constraint’s
linearity, (2) “extrinsic” properties, e.g., a constraint’s name; (3) parts, for
a structured object, e.g., the parameters or coefficients in a constraint, (4)
relationships to other individuals, e.g., the creator of a constraint.

Step 6. Define the slots’ facets. A slot may have various facets to describe several
value aspects such as type, the values allowed, cardinality, and other value
characteristics. For instance, the value of a unit slot, e.g., “the unit of a
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variable”, involves one string, while the hasVariable slot, e.g., “a decision
has these variables”, may include multiple values, which are Variable class
instances.

Step 7. Create instances. In the last stage in the hierarchy individual class
instances are created. To define an individual class instance involves (1)
selecting a class, (2) creating an individual instance of that class, and (3)
completing the slot values. For instance, an individual Length is created to
characterize a specific Variable instance, having the following slot values:
[Name: Length; LowerBound: 5; Upperbound: 100; Unit: inch; Symbol:
l; QuantityType: Variable; Description: the length of a pressure vessel].

2.4.3 Knowledge-Based Platform for Decision Support

In the literature, many knowledge-based systems have been developed to support
engineering design. For example, Shah et al. [39] introduce a parametric and feature-
based system that quickly embeds specific algorithms and data structures to generate
a reusable 3D geometric model. However, the parametric feature-based knowledge
representations of [39] do not directly represent a human decision-making proce-
dure during the design. Coyne et al. [40] suggest a prototype-centric scheme to
develop knowledge-based design systems, where prototypes are generated, refined,
and adapted to develop novel designs. Nevertheless, this work does not address the
design decision-making processes. Finger and Dixon [41] surveyed several prescrip-
tive, descriptive, and computer-based models of design processes in the late 1980s
aiming to develop intelligent CAD expert systems. However, emphasis and analysis
of the human decision-making procedure are inadequate, and the “concept selec-
tion” procedure is considered superficial without presenting any detailed informa-
tion. Verhagen et al. [42] analyze 50 studies related to knowledge-based engineering
(KBE), highlights the challenges, and proposes future research directions. Neverthe-
less, the authors state that all KBE methods examined automate the product design
and development procedure without supporting designers to improve their decisions.
Rocca [43] extensively reviews KBE regarding their language-based technological
aspect to realize technological fundamentals and their utilization to automate large
parts of the design process. This paper employs KBE to develop MDO multi-model
generators, but the compromise decision (i.e., the tradeoff) among multidisciplinary
models is not discussed. Jakiela and Papalambros [44] introduce a prototype “intel-
ligent” CAD system, where the decision-making procedure during the conceptual
design automatically utilizes production rules to develop 3D models. Although this
method affords knowledge-based automatic decision-makingduring the design stage,
it only considers geometrical modeling. Sapuan [45] presents a knowledge-based
setup that is appropriate for material selection. Nevertheless, the decision procedure
and the related knowledge representation language are linked to an explicit domain
and are inextensible and non-reusable.
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Although several knowledge-based setups exist, supporting the decision work-
flow during complex engineering systems design is still a challenge which is not
well addressed primarily due to: (i) unavailability of executable and reusable deci-
sion knowledge representation methods. Indeed, knowledge reusability is essential
during an adaptive and variant design, as the bulk of the initial decision workflow
is preserved, i.e., reusable, and only minor part changes. (ii) Lack of user classi-
fications to support decisions. The requirement of designers to support decisions
varies depending on the design novelty involved and the designers’ knowledge of the
design process. Very few knowledge-based systems can recognize the various users’
requirements and provide practical decision support.

To overcome the challenge of supporting the decision workflow in the design
of complex engineering systems and address the requirements mentioned earlier,
in the PDSIDES platform, we incorporate the decision workflow templates and the
associated ontologies and classify users into three template categories, i.e., template
editors, template creators, and template implementers, for tailored decision support.
Details of the architecture and implementation of PDSIDES are discussed in Chap. 5.

2.5 Theoretical Structure Validity

According to theValidation Square [46], Theoretical Structural Verification andVali-
dation (TSV) are to accept the individual constructs constituting a method as well as
the internal consistency of the integration of all constructs to form an overall method.
Theoretical structural validation involves systematically identifying the scope of the
proposed approach’s application, reviewing relevant literature and identifying the
research gaps that exist, identifying the strengths and limitations of the constructs
uses based on literature review, determining the constructs and approaches that can
be leveraged for architecting PDSIDES while reviewing literature on the advan-
tages, disadvantages and accepted domains of application, and checking the internal
consistency of the constructs both individually and when integrated.

In this chapter, we establish the foundational constructs and approaches for
building a knowledge-based platform for decision support in the design of engineered
systems. We also justify why these constructs and approaches (including sDSP,
cDSP, robust design framework, PEI diagram, decision templates, ontology) are
appropriate for architecting the PDSIDES platform. These constructs and approaches
have been previously applied successfully for problems in various domains and have
been verified and validated. The use of these generic constructs and approaches for
architecting a platform for decision support in the design of engineered systems
is not addressed in past literature. The theoretical structural validity of PDSIDES is
accepted by the logic procedural of literature review, gap analysis, and the evaluation
of individual and integrated constructs. Empirical studies need to be carried out to
establish the usefulness and effectiveness of PDSDIES and its associated constructs,
which is addressed in Chaps. 3, 4, 5, and 6.
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2.6 Where We Are and What Comes Next?

In this chapter we enumerate the foundations including DSP constructs, robust
design framework, PEI-X diagram, decision template, and ontology for architecting
the PDSIDES platform, the summary in terms of elements, form, and rationale
is presented in Table 2.1. In the next chapter, we will develop ontologies for
DSP templates which form the core for providing knowledge support in individual
decision-making.
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Chapter 3
Ontology for Decision Support Problem
Templates

We suggest that there are two primary decisions, namely, selection and compromise.
These decisions can be mathematically modeled and coupled to model a process for
designing a complex system. In this chapter, we deal with modeling and capturing
knowledge related to selection, compromise, and coupled hierarchical decisions in
design using template-based ontological methods. The knowledge models form the
core of the knowledge base of the decision support platform. Three small examples,
namely, a light switch cover plate assembly, a pressure vessel, and a portal frame
are used to test the efficacy of the knowledge models. A summary of this chapter
is presented in Table 3.1. The mapping of the sections to the components (topics)
discussed in this chapter is presented in Row 2 of Table 3.1.

3.1 Frame of Reference

As indicated in Chap. 2, ontologies are formal specifications of terms and relations
[1] and are widely utilized in the engineering domain for knowledge modeling,
which includes (1) knowledge sharing, (2) knowledge retrieval, and (3) knowledge
documentation for reuse. The usefulness of an ontology to represent the common
understanding of a domain and to share and exchange information among appli-
cations is embodied in knowledge sharing. Lu et al. [2] utilize ontology to capture
geometric constraint specifications facilitating data exchange among various product
development systems. Accordingly, Barbu et al. [3] create “OntoSTEP” to facilitate
manufacturing utilizing an ontology that transforms digital models with geometric
information into semantically rich models involving behavior and function. The
usefulness of an ontology in representing complex relations among concepts and in
constructing a reference network for knowledge retrieval is embodied in knowledge
retrieval. For example, Li et al. [4] use ontology as an intelligent indexing scheme to
create unstructured document information repositories and retrieve high recall and
precision information. Liu et al. [5] model product families utilizing ontology and
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Table 3.1 Summary interpretation of the problem investigated in this chapter

Elements What?

Components Modeling individual decisions and knowledge management, including the
ontology for selection decisions (Sect. 3.2), the ontology for compromise
decisions (Sect. 3.3), and the ontology for coupled decisions (Sect. 3.4)

Connectors DSP technique, reusable and executable templates

Form How?

Component roles Provides the constructs for modeling individual decisions and capturing the
related knowledge

Properties Design

Relationship Supporting selection, compromise, and coupled decisions

Rationale Why?

Motivation Provide knowledge support to assist designers in individual decision
activities

Assumptions There are three key types of decisions: selection, compromise, and
combinations thereof

Interpretation Understanding how selection, compromise, and coupled decisions are
modeled, and how the associated knowledge is represented in a reusable
and executable manner

recommend a setup for faceted information retrieval. The usefulness of the ontology
in populating instances and documents specific domain knowledge is embodied in
knowledge capture for reuse. For example, Witherell et al. [6] create an ontology to
archive and reuse optimization knowledge involving assumptions, methods, results,
etc. Rockwell et al. [7] create an ontology for archiving the rationale of design
decisions.

In the context of PDSIDES, ontology is used to represent and document the
knowledge related to selection, compromise, and coupled hierarchical decisions,
thus making it possible for a designer to create new decision templates and reuse and
execute existing templates in PDSIDES.

3.2 Ontology-Based Representation of the sDSP Template

In this section, we describe an ontology for representing the sDSP, the selection
DSP template. We initially identify the requirements to model the knowledge related
to selection decisions. Based on the requirements, we then discuss the structure
of an sDSP template as the information model for select decisions. According to
the structure of the sDSP template, an ontology is developed using Protégé, and its
efficiency is demonstrated using a light switch cover platematerial selection example.
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3.2.1 Requirements for Knowledge Modeling to Support
Selection Decisions

To facilitate designers formulating and analyzing selection decisions, we identify the
following requirements for modeling the related knowledge:

• Reusability—the pursuit of design efficiency requires a model to be reused. In
practice, many products or system designs fall into the category of variant or
adaptive designs, where a large part of the underlying design model information
can be reused without requiring the recreation of the model from scratch. For
example, in an adaptive design scenario, only one part is changed, while the others
remain the same, the actual design knowledge should be easily reused (withminor
modifications) to support the design. The knowledge related to selection decisions,
e.g., alternatives, attributes, etc., must be reusable to minimize the efforts and risk
in the variant or adaptive design.

• Executability—the knowledge model of the decision selection needs to be
executable on a computer. Encoding the linguistic and/or mathematical formula-
tion of decision selection as a computational model is a feasible way to obtain
executability. The disadvantage is that the codes are incomprehensible to most
designers who are not programmers. Hence, there is a need for a selection
knowledge model to be executable and simultaneously easy to communicate
among designers. Therefore, the model must capture the semantics in the decision
selection process.

• Consistency—the mathematical rigor of the selection decision formulation
requires the computational model to be consistent with its definition. For example,
the sum of the value of the scaling constants in a utility function should equal one.
This is one of the rules for the mathematical model to maintain consistency. If the
rules are violated during model reconfiguration, it will result in model inconsis-
tency. Therefore, the computational model should support consistency checking
and maintain that consistency.

3.2.2 Information Model of Selection Decisions—The sDSP
Template

To address the requirements listed in Sect. 3.2.1, we propose the (utility-based) sDSP
template, which is the information model of decisions selection (see Fig. 3.1). The
declarative and procedural knowledge (corresponding to the “chips” and “wires”
of Fig. 3.1, respectively) of the sDSP template is discussed in the remainder of
this section. Declarative knowledge includes alternative, attribute, utility function,
evaluation, ranking, and post-solution analysis. Their meaning in the context of a
decision selection process is given as follows:
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U-sDSP Template
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Fig. 3.1 The utility-based sDSP template [8]

(1) Declarative Knowledge of the sDSP template

• Alternatives. A set of feasible options is considered to fulfill specific requirements.
• Attributes. A set of performance measures for the alternatives that are used in the

selection decision.
• Utility Function. A function that takes the attributes of an alternative as the

input and outputs the merit of that alternative. It indicates the decision-maker’s
preference toward a specific alternative.

• Evaluation. The evaluation of the utility of every alternative.
• Ranking. The rank of each alternative according to its utility.
• Post-solution Analysis. The analysis of rank variation (or rank robustness) of

the alternatives is due to the variation of the parameters in the utility evaluation
process.

In addition to the declarative knowledge, we need to identify the procedural
knowledge to enable the executability of the sDSP template. The procedural knowl-
edge includes individual utility function construction, expected utility calculation,
multi-attribute utility function construction, and post-solution sensitivity analysis.
We discuss them as follows:

(2) Procedural Knowledge of the sDSP template

Individual utility function construction. The first step for evaluating the utility of the
alternatives is to construct individual utility functions, which are the functions that
accurately reflect the decision-maker’s preference considering a particular attribute.
The construction procedure consists of two steps. Thefirst is to determine the attribute
value levels that indicate specific utility values by answering lottery questions [9].
The second is to fit these identified attribute values into a function, which is deemed
to be the decision-maker’s utility function for that attribute. Typically, curve fitting
is used as an automated method for transforming the answers to lottery questions to
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Fig. 3.2 Individual utility function construction [8]

individual utility functions. In Fig. 3.2, we show a specific input and output of the
fitting method, with numbers x0, x0.25, x0.5, x0.75, and x1 indicating the five attribute
value levels, where superscripts indicate whether they are the right-hand side or
left-hand side of the target and the subscripts indicate the utility value. For the
non-monotonic (target-based) attributes, both the right-hand side and left-hand side
attribute values are required as inputs, while concerning the monotonic attributes,
either right-hand side (for monotonically decreasing attributes) or left-hand side (for
monotonically increasing attributes) are needed. Coefficients aL , bL , cL , dL of the
left-hand side utility function and (or) aR, bR, cR, dR of the right-hand side utility
function represent the corresponding outputs of the method. This work assumes that
the utility function is in the form u(x) = a + bx + cedx , where a, b, and c are
coefficients.

Multi-attribute utility function construction. This procedure is designed to iden-
tify the multi-attribute utility function, which reflects the decision-maker’s require-
ments as a combination of multiple conflicting attributes, through the integration of
individual utilities. The core concept is that themulti-attribute utility function scaling
constants ki (i = 1, . . . n) [9, 10] are calculated by solving a system of n linear equa-
tions (see Fig. 3.3). In Fig. 3.3, Ai0 , Ai∗ , Ai∗∗ , and Ai ? are various attribute levels
i , with Ai0 being the poorest level with zero utility, Ai∗ and Ai∗∗ levels conform to
Ai∗∗ � Ai∗ (it is assumes that Ai∗∗ refers to utility value 0.55 and Ai∗ to 0.45, thus Ai∗∗

is favored to Ai∗ ), Ai ? level is determined by the decision-maker to establish equiv-
alent attribute combinations so that (A1? , A2∗ , . . . , An∗) ∼ (A10 , A2∗∗ , . . . , An∗∗)

posing the same utility as the decision-maker is indifferent. If both the additive and
the multi-utility independence properties [9] hold, the multi-utility function adapts
to the additive form U = ∑n

i=1kiui (Ai ). Based on the additive utility function form
and the equivalent attribute combinations, multiple linear equations can be set up
to represent the corresponding same utilities. These equations create an equation
system involving n-variables, fromwhich the k-values are determined. In this system
of equations, n − 1 equations are set using the equivalent attribution combinations
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Fig. 3.3 Multi-attribute utility function construction [8]

determined by the decision-maker, and the remaining one is defined as
∑n

i=1ki = 1,
indicating that the k-values sum to one. In the context of the sDSP template, solving
this equation system resembles an automatic process transferring the specifications
of some attribute levels into the multi-attribute function. The inputs of this equation
system are the A1? , A2? , . . . , An−1? levels of the n − 1 attributes, while the outputs
k1, k2, . . . , kn are the scaling constants.

Expected utility calculation. This process is to evaluate the expected utility of
each alternative and identify the ranking of preferences. For a particular alternative,
the expected utility is challenged first by estimating its expected utility by consid-
ering each attribute employing individual utility functions. Then, the overall expected
utility is calculated by employing the multi-attribute utility function (Fig. 3.4). For
an individual utility calculation, the expected utility of an alternative with respect
to a target-based non-monotonic attribute is used as an example in the figure. For
this example, the alternative’s attribute range is assumed to be bounded between the
attribute’s left-hand side and right-hand side acceptable values, namely, x L

0 and x R
0 ,

Fig. 3.4 Expected utility calculation [8]
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respectively. Additionally, the distribution is assumed to be uniform with a proba-
bility density of f (x) = 1

xu−xl
, where xu and xl are the alternative’s attribute upper

and lower bounds, respectively. Relying on equation E(u) = ∫
u(x) · f (x)dx , the

individual expected utility is E(u) = 1
L (LL · SL + LR · SR), with L being the alterna-

tive’s attribute range length, LL and LR the lengthmeasured from xl to x1 and x1 to xu ,
respectively. SL and SR denote the left-hand side and right-hand side areas bounded
by the x-axis, which are the attribute value and utility function curve bounds, respec-
tively. This equation is critical to generate variations in the post-solution analysis
which is introduced later.

The results of the individual expected utility estimations are input to E(U ) =∑n
i=1 ki · E(ui (Ai )) to generate the overall expected utility of the alternative. In the

context of the sDSP template, the calculation process is automatic, with the inputs
involving (i) x L

0 , x
R
0 and x1, with the first two being the acceptable attribute levels,

and the last the ideal attribute level, (ii) xl and xu denote the alternative’s attribute
value bounds, and (iii) the k-values. Accordingly, the outputs involve the individual
expected utility values u1, u2, . . . , un , and the overall expected utility U .

Post-solution sensitivity analysis. This process is to test the sensitivity of the
results to parameter variations and enhance the decision-maker’s confidence in
selecting the most promising alternative. Firstly, the top-two alternatives (or even
more if the expected utilities are close to each other) are selected to test whether
the parameter variations influence the ranking of the two alternatives. The expected
utility estimation process of Fig. 3.4 highlights that a parameter variation is only
possible in the E(U ) equation, which is used to calculate the overall expected utility,
and equation E(u) is used to calculate the individual expected utility. In Fig. 3.5,�k
is the parameter variation of E(U ), and �x and �L denote the parameter variation
of E(u). �k represents scaling variation, influencing the overall expected utilities of

Fig. 3.5 Post-solution sensitivity analysis [8]



54 3 Ontology for Decision Support Problem Templates

all the alternatives.�x represents the variation of the individual utility function influ-
encing the individual expected utilities of all the alternatives. If �x moves toward
the target value x1, the alternative, is more risk-prone, while moving in the opposite
direction indicates it is more risk-averse. Finally, �L represents the attribute value
range variation of a specific alternative (increasing or reducing), and it only affects
the individual expected utilities of that alternative. For the sensitivity analysis, the
decision-maker may formulate various scenarios utilizing a constant decrement or
increment for �k, �x , and �L , e.g., 5%, and then recalculates E(U ) and E(u) to
obtain the corresponding expected utility values of the top-two alternatives. Then, the
ranking changes are displayed using visualization tools, i.e., the line chart illustrated
in Fig. 3.5. In the context of the sDSP template, post-solution analysis is identified as
an automatic procedure that transfers the decision-maker’s specification of parameter
variations to the sensitivity in the ranking of alternatives. The inputs require: (i) the
top-two alternatives Al1, Al2, (ii) the parameter variation, i.e.,�k,�x , and�L , and
(iii) the number of scenarios (Scs). The output of this process is the corresponding
sensitivity graphs.

3.2.3 sDSP Template Ontology Development

In this section, we deal with knowledge representation, i.e., developing an ontology
relying on the sDSP template. The Slots, Classes, and consistency rules establishing
a frame-based ontology are:

(1) Class Definition

The six “chips” shown in Fig. 3.1 are the key concepts that constitute the main struc-
ture of the u-sDSP template ontology and are explicitly defined as Classes in this
section. In addition to them, seven additional Classes referred as U-SDSPTemplate,
MUtilityFunction, IUtilityFunction, IAttributeAssessment,MAssessment, UtilityCal-
culation, and Coefficient are defined to capture the knowledge that adds to the
semantic richness and integrity of the ontology. The definitions of the Classes are
shown in Table 3.2.

(2) Slot Definition

The semantic relationships between Classes are captured using Slots in a frame-
based ontology. Based on the utility-based sDSP construct and the utility-based
sDSP template structure, the data Slots and object Slots of the ontology are defined
as shown in Tables 3.3 and 3.4, respectively.

(3) Consistency Rule Definition

By restricting the populated Instances based on their definition, an ontology must
preserve its consistency. Ontology inconsistency commonly occurs during the instan-
tiation process and involves populating the ontology employing detailed data in the
modification stage, where the original Instances are modified. Hence, it is critical
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Table 3.2 Utility-based sDSP template ontology classes [8]

Class Definition

U-SDSPTemplate A formulation of a selection decision problem with multiple
conflicting attributes under uncertainty. Integration of all the template
modules and the associated information

Alternative A feasible option considered to fulfill certain requirements

Attribute A quality or feature regarded as a characteristic part of an alternative

UtilityFunction A function used to indicate the decision-maker’s preference with
respect to attribute(s)

MUtilityFunction A subclass of UtilityFunction, whose function values indicate the
decision-maker’s preference with respect to the combination of these
attributes

IutilityFunction A subclass of UtilityFunction, whose function values indicate the
decision-maker’s preference with respect to that single attribute

Evaluation The making of judgments about the utility values of the alternatives.
Including the information captured by Classes IattributeAssessment,
Massessment, and UtilityCalculation

IAttributeAssessment The assessment of the decision-maker’s preference with respect to a
single attribute. Capturing the information of the inputs shown in
Fig. 3.4

MAttributeAssessment The assessment of the decision-maker’s preference with respect to
multiple attributes. Capturing the information of the inputs shown in
Fig. 3.5

Coefficient The coefficient in the utility function of the form

u(x) = a + bx + cedx

UtilityCalculation The calculation of the expected utility of each alternative with respect
to each attribute. This is used to capture the information of the inputs
shown in Fig. 3.6

Ranking The order of the decision-maker’s preferences with respect to the
alternatives

PSAnalysis The analysis of the sensitivity of the decision-maker’s preferences
with respect to the alternatives considering some type(s) of parameter
variation

to detect inconsistency and inform designers to resolve it. A common technique
checking for ontology consistency is rule-based reasoning, with the corresponding
rule-set for the utility-based sDSP template ontology presented in Table 3.5. The
rule engine JESS (Java Expert System Shell) [11] is based on the Java platform. To
comply with JESS, the rules are appropriately defined, with Rule 2 being a typical
example:

(defrule MAIN::rule_2 (object (is-a : IAttributeAssessment) (:attributeLevel 0)
(:side Left-hand-side) (:value ?x) (:attribute ?a))
=>
(if (neq ?x (slot-get ?a lowerBound)) then (printout t WARNING_2 crlf)))
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Fig. 3.6 Overview of the utility-based sDSP template ontology [8]

Hence, if any “IAttributeAssessment” Instance violates Rule 2, the reasoner
sends the designer working on that utility-based sDSP template the message
“WARNING_2” about the inconsistency.

(4) Ontology Overview

In Fig. 3.6, we show the u-sDSP template ontology structure integrating the concepts
and relations. Essentially, this is a network structure where nodes represent Classes
and real data. Different Classes and data are linked by Slots (including object and
data Slots), represented as lines with the Slot names placed at the middle. A red node
indicates the ontology’s core Class, representing the template’s information entry.
The six yellow nodes refer to ontology’s key components, representing the template’s
“chips” (see Fig. 3.1). The ontology modeling process exploits the Protégé tool [12]
developed byStanfordUniversity to create and edit ontologies and populate Instances
based on ontologies. Additionally, we use the JessTab plugin [13] to attach JESS to
Protégé and check the ontology’s consistency. We also develop a plugin to execute
the populated instances by employing Java function calls.
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Table 3.3 Utility-based sDSP template ontology data slots [8]

Slot name Definition Type

name Name of an Instance String

description Description of an Instance String

problemStatement A statement of a selection problem String

acronym An acronym of an attribute or alternative String

interest Whether an attribute is of interest for the selection or not
(“Yes” or “No”)

Symbol

reason The reason why an attribute is considered or not String

risk The decision-maker’s attitude about risk toward an attribute
(“Aversion”, “Proneness” or “None”)

Symbol

monotonicity The monotonicity of the decision-maker’s preference about an
attribute (“Target”, “Increasing”, or “Decreasing”)

Symbol

scale The scale of an attribute (“Ratio” or “Interval”) Symbol

unit The unit of an attribute’s measurement String

lowerBound The lower bound of a general attribute or an alternative’s
attribute

Float

upperBound The upper bound of a general attribute or an alternative’s
attribute

Float

targetValue The ideal value of an attribute Float

attributeLevel A level of an attribute (“0”, “0.25”, “0.5”, “0.75”, or “1”) Symbol

side The side of the target (“Left-hand-side” or “right-hand-side”) Symbol

value The value of an attribute or utility Float

specifiedAttriValue An attribute value specified by the decision-maker in creating
an equivalence

Float

k-value The scaling constant associated to an individual utility function Float

position The position of an efficient in u(x) = a + bx + cedx (“a”, “b”,
“c”, or “d”)

Symbol

distribution The distribution of the attribute value (“Uniform”, “Normal”
etc. Default is Uniform)

Symbol

rank The rank of a particular alternative Integer

overallUtility The overall utility of an alternative with respect to all the
attributes

Float

variationType The type of variation in post-solution analysis. (“�k”, “�x”, or
“�L”)

Symbol

variationDirection The direction of variation (“Increment” or “Decrement”) Symbol

variationExtent The extent of variation (the unit is “%”) Float

image The (path of) graph that captures the responding sensitivity String

interpretation The interpretation of a sensitivity graph String
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Table 3.4 Utility-based sDSP template ontology object slots [8]

Slot name Definition Type

hasAlternatives Link a U-SDSPTemplate to a set of
Alternatives

Alternative

hasAttributes Link a U-SDSPTemplate to a set of Attributes Attribute

hasUtilityFunction Link a U-SDSPTemplate to an UtilityFunction UtilityFunction

hasEvaluation Link a U-SDSPTemplate to an Evaluation Evaluation

hasRanking Link a U-SDSPTemplate to a Ranking Ranking

hasPSAnalysis Link a U-SDSPTemplate to a PSAnalysis PSAnalysis

associatedTo Interrelate two different Classes Instance

HasCoefficients Link an IutilityFunction to a set of
Coefficients

Coefficient

hasIFunctions Link a MutilityFunction to a set of
IUtilityFunctions

IUtilityFunction

iAttributeAssessment Link an Evaluation to a set of
IAttributeAssessment

IAttributeAssessment

mAttributeAssessment Link an Evaluation to a set of
MAttributeAssessment

MAttributeAssessment

utilityCalculation Link an Evaluation to a set of
UtilityCalculations

UtilityCalculation

attribute Link a MAttributeAssessment,
IAttributeAssessment, or UtilityCalculation to
a (set of) Attribute(s)

Attribute

alternative Link an UtilityCalculation or a Ranking to an
Alternative

Alternative

Table 3.5 Utility-based sDSP template ontology consistency rules

Rule 1 Every “Attribute” Instance must conform to lowerBound ≤ targetValue ≤ upperBound

Rule 2 Every “IAttributeAssessment” Instance must conform to: (attributeLevel = 0 & side =
Left-hand-side) => (value = attribute.lowerBound)

Rule 3 Every “IAttributeAssessment” Instance must conform to: (attributeLevel = 1) =>
(value = attribute.lowerBound)

Rule 4 Every “IAttributeAssessment” Instance must conform to: (attributeLevel = 0 & side =
Right-hand-side) => (value = attribute.upperBound)

Rule 5 Every “IUtilityFunctions” Instance must conform to 0 ≤ k-value ≤ 1

Rule 6 Every “IUtilityFunctions” Instance must conform to:
∑n

0ki = 1

Rule 7 The number of Instances in the Slot “utilityCalculation” should be equal to alternatives
× attributes

Rule 8 Every “UtilityCalculation” Instance must conform to: lowerBound < upperBound
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3.2.4 Test Example—Material Selection for a Light Switch
Cover Plate

In this section, a Rapid Prototyping (RP) resource selection problem is used as an
example to illustrate the usefulness of the utility-based sDSP template ontology
in terms of facilitating the reuse and execution of the embedded knowledge. The
example is an extension of the problem considered by Fernández and coauthors
[10] who use it to illustrate the process of formulating and solving a specific
utility-based sDSP. First, an instance is created using the original information, then
three knowledge-reuse scenarios are presented, and finally, we give a summary and
discussion.

(1) Populating an Original Selection Instance

Rapid prototyping (RP) affords the opportunity to reduce operating costs and time to
develop new, redesigned, and customized products. Selecting the proper resources,
e.g., materials and manufacturing processes, is a vital attribute of RP technology.
The example used to illustrate the method involves the selection of material-process
combinations to make a light switch cover plate assembly (as shown in Fig. 3.7)
using RP technology [10]. The primary prototype objectives, presented in decreasing
importance order, are (1) validating the function product, specifically concerning the
snap-fitting of components as highlighted in Fig. 3.7, (2) determining the fitting
or tolerance closeness of the two interfacing components, (3) obtaining a feel for
the product, and (4) visually and physically confirming the 3D interface integrity.
To manage these objectives, we consider the four alternatives and five attributes

Fig. 3.7 Light switch cover
plate assembly [10]
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Table 3.6 Alternatives and attributes considered for selection [10]

Alternative Attribute

Process Material Ratio Interval

Tensile
strength
(50-65-75)
MPa

Young’s modulus
(1500-2137-2600)
MPa

Flexural
strength
(70-95-120)
MPa

Detail
capability
(−0.4–0.9)
mm

Accuracy
(−0.02–0.1)

SLA250 DSM7110 44–69 1758–2413 59–110 0.45–0.55 0.04–0.05

SLA3500 DSM8120 23–29 633–773 23–29 0.45–0.55 0.04–0.05

FDM1650 P400 31–37 2234–2730 58–72 0.45–0.55 0.12–0.14

MJM2100 TJ75 9–11 90–110 9–11 0.67–0.83 0.12–0.14

Distribution: Uniform

presented in Table 3.6. The former involves four material-process combinations
(for further details, the reader is referred to [10]). The attributes are a mixed setup
involving ratio and interval scales, i.e., Young’s Modulus, Tensile Strength, and Flex-
ural Strength are measured by ratio scales, and Interval scales measure Accuracy
and Design Capability. The designer’s requirements toward these attributes are a
mixture of monotonicity and non-monotonicity, e.g., Accuracy is an attribute posing
a monotonically decreasing requirement characteristic, while Tensile Strength is a
non-monotonic target-based requirement attribute. For example, “65 MPa” is the
target for Tensile Strength, as presented in Table 3.6. The alternatives’ attribute values
are uncertain and bounded with a lower and an upper bound, e.g., “44–69MPa” is the
range value of the attribute Tensile Strength for the alternative SLA250-DSM7110. It
is assumed that all attribute values are subjected to uniform distributions. From the
data shown in Table 3.6, a designer selects the most promising alternative.

It is assumed that the designer has appropriately formulated the problem
employing the utility-based sDSP construct. Based on the formulation, an RP
resource selection Instance is populated in Protégé, as illustrated in Fig. 3.8. In
Fig. 3.8, the left panel is the Class browser listing all Classes, the middle panel is
the Instance browser presenting all Instances associated with a selected Class, and
the right panel is the Instance editor to create and edit an Instance. For this example,
Slots including both data and object Slots, e.g., “problemStatement”, “hasAlterna-
tive”, “hasAttributes”, etc., of the RP resource selection Instance are created based
on the ontology presented in Sect. 3.2.3 and the problem itself. Given the automated
procedures identified in Sect. 3.2.2, some slot values, e.g., Slot “k-value”, repre-
senting the outputs of the relevant procedures, e.g., multi-attribute utility function
construction, are automatically generated utilizing the Java function calls based on
the encoded logic. The selection process produces the ranking order (in increasing
order) SLA250-DSM7110, FDM1650-P400, SLA3500-DSM8120, MJM2100-TJ75.
The overall utility of the top alternative SLA250-DSM7110 is 0.69, presented in the
window of Fig. 3.8, and indicated with a red arrow.
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Fig. 3.8 Protégé ontology editor screenshot for the RP resource selection instance [8]

(2) Knowledge Reuse—Modification of the Original Instance

Scenario 1: New Alternatives Introduction. In this scenario, we consider a new
combination of the SLA3500 process provided by 3D Systems and the SL7510mate-
rial by Vantico AG as an alternative to prototype the switch cover plate assembly.
Specification of the new alternative SLA3500-SL7510 is presented in Table 3.6. The
problem transfers from a four-alternative problem to a five-alternative problem,
where the designer has to reformulate the new problem and reselect. Concerning
sDSP ontology, given that the knowledge related to the attributes, the multi-attribute
utility function, the individual utility functions, and the remaining parameters are
well documented in the original selection decision template Instance, the selection
process can exploit this knowledge after modifying it appropriately. The incon-
sistency brought by the modification is managed using a rule-based consistency
checking mechanism introduced in Sect. 3.2.3. For a detailed example, the reader is
referred to [14]. Here, the key modification is adding a new alternative exploiting
Table 3.7 and then updating the ranking, as presented in Fig. 3.9. Specific steps are
as follows:

(1) Specify the general information—provide information in Slots “acronym”,
“description”, and “image” to instantiate a new alternative.

(2) Specify attribute value ranges—provide information in Slots “lowerBound”,
“upperBound”, and “distribution” concerning a particular attribute. In this
example, we only present the requirement considering the attribute “Tensile
Strength”, while other attribute value ranges can be similarly determined.

(3) Apply the new alternative in Slot “hasAlternatives”.
(4) Update ranking—once all the compulsory information is input, the ranking is

automatically updated. The experimental results reveal that the new alternative
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Table 3.7 The alternative SLA3500-SL7510 specification [8]

Alternative Attribute

Process Material Ratio Interval

Tensile
strength
(50-65-75)
MPa

Young’s modulus
(1500-2137-2600)
MPa

Flexural
strength
(70-95-120)
MPa

Detail
capability
(−0.4–0.9)
mm

Accuracy
(−0.02–0.1)

SLA3500 SL7510 42.3–55.46 1877–2869 78–96 0.45–0.55 0.04–0.05

Distribution: Uniform

Fig. 3.9 Modifying the original Instance when new alternatives are introduced [8]

manages an overall utility of 0.56 and ranks second. Thus, it is not the best
alternative.

Scenario 2: Introducing New Attributes. In this scenario, we consider a new
attribute, i.e., Flexural Modulus, which measures a material’s flexural stiffness
modulus to evaluate the five alternatives. This attribute is necessary as it involves
validating the stiffness requirements of the snap-fit design. Specifying this attribute
involves the four facets presented in Table 3.8, (i) general information, i.e., scales,
units, lower and upper unacceptable values, and target (ideal value), (ii) assessing the
right-hand and left-hand side utility that is required to construct the attribute’s utility
function, (iii) the attribute levels to create equivalences to re-determine the attribute’s
“k-values”, (iv) the Flexural Modulus range value per alternative that is employed
to evaluate the expected utility concerning this attribute. Utilizing the specifications
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introduced in Table 3.8, a designer needs to formulate a new six-attribute problem
and reselect. Asmentioned earlier, the majority of the documented knowledge can be
reused after being adequately modified. Concerning sDSP ontology, the key modi-
fication is instantiating a new attribute and then updating the ranking, as shown in
Fig. 3.10. Specific steps are as follows (the input of the steps come from Table 3.8):

(1) Specify the general information—provide information for Slots “name”,
“acronym”, “description,” etc., to instantiate a new alternative.

(2) Specify information for the individual attribute utility assessment—specify
attribute values for the nine levels of utility. Window ➂ in Fig. 3.10 has the
specification of level 0.25.

(3) Specify information for the k-value assessment—specify attribute values for
creating equivalences and determining the k-values of themulti-attribute utility
function. Window ➂ in Fig. 3.12 is the specification for the attribute Flexural
Modulus.

(4) Specify the attribute ranges for each alternative—the attribute’s upper and
lower bounds per alternative are determined. The range of the alternative
SLA3500-SL7510 is presented in window ➃ of Fig. 3.10.

Fig. 3.10 Adjusting the original Instance when new attributes are introduced [8]
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(5) Input the new attribute and update the ranking—the newly specified attribute
Flexural Modulus is input in the “hasAttribute” Slot to update the ranking
automatically. The results indicate that the top-two alternatives are SLA250-
DSM7110 and SLA3500-SL7510, present an overall utility of 0.7 and 0.56,
respectively.

Scenario 3: Parameter Variation. In this scenario, some potential parameter vari-
ation needs to be considered to test the robustness (or sensitivity) of the selection
and strengthen the designer’ confidence in selecting the most promising alterna-
tive SLA250-DSM7110 to prototype the assembly. The alternative ranked second
(SLA3500-SL7510, 0.56) and is close to the top alternative (0.7). In this scenario,
we vary the parameters and investigate whether the ranking is affected. Since post-
solution sensitivity analysis is modeled as a u-sDSP template module, it can be
performed independently by invoking the necessary information of other modules.
In the ontological context, what needs to be done is simply instantiating an Instance
of the Class “PSAnalysis” then plugging in the Slot “hasPSAnalysis”, information in
other Slots are unchanged. The instantiation of “PSAnalysis” includes specifying the
Slots “alternative”, “attribute”, “variationType”, “variationDirection”, “variationEx-
tent”, “numberOfScenarios”, etc., as defined in Table 3.3. The Instance Slot “image”
captures the automatically generated graph based on the preceding specification,
which is then utilized to visualize the change of ranking due to the variation. The
designer interprets the result based on the image, then populates the Slot “interpre-
tation”, and finally documents the Instance. In Sect. 3.2.2, we identify three types of
parameter variation, i.e., Δk, Δx, and ΔL, here we take ΔL, namely, the variation of
attribute value range as an example. In the example, the original range (1877–2869) of
the attribute Young’s Modulus for alternative SLA3500-SL7510 is gradually reduced
(i.e., the uncertainty of this attribute is reduced) to test the responses of the alterna-
tive’s overall utility and the relative ranking compared to the top one, as shown in
Fig. 3.11. It can be seen in Fig. 3.11 that seven scenarios are scheduled for the testing
and the attribute range is reduced by 5% in each scenario. The automatically gener-
ated image indicates that when the attribute range is reduced to 80% (represented
by the fourth scenario in the image), the overall utility of the alternative SLA3500-
SL7510 increases from 0.56 to 0.6. Then it stabilizes at 0.6 despite a further range
reduction. During the entire process, the alternative SLA3500-SL7510 consistently
ranks second. Thus, it is evident that the alternative’s SLA3500-SL7510 ranking is
insensitive to reducing Young’s Modulus uncertainty, and it is safe to select the most
promising alternative, i.e., SLA250-DSM7110, even if the designer is confident about
the Young’s Modulus of SLA3500-SL7510.

3.3 Ontology-Based Representation of the cDSP Template

In this section, we develop an ontology for representing the cDSP template. First,
we identify the requirements for modeling the knowledge related to compromise
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Fig. 3.11 Instantiation of the post-solution sensitivity analysis [8]

Fig. 3.12 The cDSP template [15, 16]
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decisions. Second, we discuss the structure of a cDSP template for addressing the
requirements. Third, we develop an ontology according to the structure of the cDSP
template. Finally, we use as an example a pressure vessel design to test the ontology’s
utility.

3.3.1 Requirements for Knowledge Modeling to Support
Compromise Decisions

According to the cDSP construct, many elements are involved in compromise deci-
sions, such as constraints, goals, variables, parameters, etc. To facilitate designers
formulating and analyzing compromise decisions, we identify the following require-
ments for modeling the related knowledge. These requirements are similar to what
is identified for selection decisions in Sect. 3.2.1, but the context is different.

• Reusability—In the context of a compromise decision, reusability means that
both domain-dependent knowledge (or declarative knowledge, e.g., variables,
parameters, constraints, goals, weights, etc.) and domain-independent knowledge
(or procedure knowledge, e.g., the algorithm for finding a good enough solution
for the decision) should be reusable so that designers can quickly reuse existing
knowledge (with somemodification) in variant and adaptive designs, savingmuch
time compared to re-implementing everything from scratch.

• Executability—In the context of a compromise decision, executabilitymeans that
different decision elements are represented in a computer-interpretable manner
to be integrated as a whole and executed to generate solutions. This is significant
because solving compromise decisions is a computation-intensive process.

• Consistency—In the context of a compromise decision, consistency means that
the elements as individuals and as a whole must keep being consistent with their
definition in a mathematical rigorous cDSP construct. For instance, a cDSP vari-
able should have an initial value lying between a lower bound and an upper bound,
and the sum of the goal weights should equal one, etc.

3.3.2 Information Model of Compromise Decisions—The
cDSP Template

To address the requirements for knowledge modeling and support compromise
decisions, we model compromise decisions using the cDSP template, as shown
in Fig. 3.12. Declarative knowledge in the model includes Constraints, Variables,
Parameters, Goals, Preferences, Driver, Analysis, Objective, and Response.

• Constraints. A hard rules (relationships) collection that must be satisfied to ensure
the design feasibility.
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• Goals. A soft rules (relationships) collection that can be violated to incorporate
the designer’s wishes on the system.

• Variables. A variable quantities collection that defines the system under consid-
eration.

• Parameters. A fixed quantities collection that is given before the decision and
preserved during the decision process.

• Preferences. The weights (or levels) assigned to the goals by the designer
reflecting the relative importance of the goals.

• Objective. The overall objective of the decision is to consider the preferences of
the goals.

• Analysis. The analysis of deviations of the solution points in the feasible design
space.

• Driver. The interface to the problem-solvers running the analysis codes.
• Response. The actual response to a given cDSP template specification.

As discussed in Chap. 2, the adaptive linear programming (ALP) [17] algorithm
and a computational tool called DSIDES are used to solve cDSP. Therefore, in
the context of the cDSP template, the procedural knowledge is embedded in the
DSIDES program. In several adaptive and variant design scenarios, the majority of
the previous decision information can be reused to make decisions on the current
design due to the similarity of the underlying design concepts. In the context of the
cDSP template, this refers to reusing the majority of the modules in future designs.
However, to successfully reuse themodules, partial adaptation is required to meet the
design changes. Our goal in this section is to determine the cDSPmodel modification
types that can be made in future design scenarios. The cDSP construct provides
designers high flexibility to adjust their decision model to meet the requirements of
the explicit problem investigated. The major modification types are: (i) altering the
design variables’ cardinality, (ii) altering the parameter values, and (iii) altering the
goals and constraints’ cardinality. A detailed description of these modification types
is presented next in detail, along with the effects each modification type implies on
the design space (illustrated in Fig. 3.13).

• Type I: Altering the design variables cardinality—this modification type
involves adding new variables and removing current variables. The first case
is implemented considering existing fixed value parameters as variables. For
instance, in Fig. 3.13, x3 while previously considered as a parameter, it is now
reformulated as a variable, transforming the design space from a two-dimensional
to a three-dimensional space. As shown in Fig. 3.13, the latter is realized by
assigning a fixed value to an existing variable, and thus the value of the previous
variable x3 is fixed, and the design space transforms from three-dimensional to
two-dimensional.

• Type II: Altering the parameter’s value—this involves: (i) Altering the value
assigned to the goal’sweights (e.g.,wi ’s value in the deviation function ismodified
in Fig. 3.13) influencing the goals’ achievements (ii) Altering the values assigned
to the equations’ coefficients (e.g., the coefficient value a of goal G1 and coef-
ficient value D of constraint C3 are altered in Fig. 3.13), resulting in changing
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Fig. 3.13 Three types of the cDSP model modification [14]

the curve shapes affecting the aspiration and feasible design space, (iii) Altering
the values assigned to the variables’ bounds (e.g., the xlower

1 value is altered in
Fig. 3.13), resulting in shrinking or expanding the feasible design space.

• Type III: Modifying the goals’ and constraints’ cardinality—this includes: (i)
adding new goals, e.g., G5 in Fig. 3.13, (ii) removing existing goals, e.g., G4 in
Fig. 3.13, (iii) adding new constraints, e.g.,C4 in Fig. 3.13, (iv) removing existing
constraints, e.g., C2 in Fig. 3.13, (v) converting existing goals to constraints or
vice versa, e.g., in Fig. 3.13 constraintC1 is converted to a goal. Adding new goals
and converting existing constraints to goals shrinks the aspiration space, while
removing existing goals and converting existing goals to constraints expands the
aspiration space. Accordingly, adding new constraints and converting existing
goals to constraints shrinks the feasible design space, and removing existing
constraints and converting existing constraints to goals expands the feasible design
space.

In practice, several modification types are simultaneously needed based on the
requirements, e.g., in an adaptive design scenario, designers may need to change
a previously fixed parameter to a variable, alter the variables’ bounds, add new
constraint to the problem, and hence all three cDSP model modification types
may be needed simultaneously. In our cDSP ontology presented in Sect. 3.3.3, the
modification is facilitated by editing the template instances in the data and object
slots.

3.3.3 Ontology Development for the cDSP Template

According to the cDSP template thatwepresent inSect. 3.3.2,wedevelop anontology
for representing the associated knowledge in this section. The development process
includes: (i) identifying the key concepts and formally expressing them as classes, (ii)
identifying the relationship between the concepts and formally expressing them as
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slots, (iii) identifying and formally expressing consistency rules. Finally, presenting
the complete cDSP template ontology structure.

(1) Identifying the Concept

A vocabulary of terms commonly is needed to describe the concepts in a domain.
In Sect. 3.3.3, we identify the required terms to model the cDSP template, including
Goal, Constraint, Variable, Parameter, Analysis, Preference, Response, and Driver.
These terms are exploited and reused by expressing them as classes of an ontology.
Six additional classes referred to as Problem, Behavior, cDSPTemplate, Function,
History, and Quantity, are introduced to capture the information that adds to the
ontology integrity and semantic richness. The relevant class expressions are presented
in Table 3.9.

(2) Relation Definition

In an ontology, the semantic relations between concepts are captured by exploiting
slots. Utilizing the mathematical construct of the cDSP, the cDSP’s ontology data
and object slots are defined in Tables 3.10 and 3.11, respectively (Table 3.10).

(3) Maintaining Consistency

Inconsistency may happen when the design consideration evolves, and in that case,
the initial cDSP template has to be modified. For example, goals, constraints,
or parameters are added or removed. Therefore, detecting the inconsistency and

Table 3.9 cDSP template ontology classes [14]

Class Definition

Problem Design problem general information, e.g., the product under design, functional
requirements to be satisfied, etc

cDSPTemplate Integrating all template attributes and the related information. Problem
formulation. A problem can be formulated as several cDSP templates

Behavior The template expresses the template’s decision model behavioral information,
i.e., sensitivity to parameter variation, converging tendency, etc

History Template history evolution (1) the template from which this template
originates and (2) the template developed from this one

Function General attributes of a constraint and goal

Quantity General attributes of a parameter and variable

Constraint A constant value function that cannot be violated. Function Subclass

Goal A function with a target value that can be violated. Function Subclass

Parameter A fixed valued quantity during the problem-solving procedure

Variable A variable valued quantity during the problem-solving procedure

Preference The designers’ preferences considering the system goals’ satisfaction

Analysis The information regarding inputs, outputs, and the related analysis codes

Driver The problem solvers’ interface running the analysis codes

Response The actual response to a given template specification
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Table 3.10 cDSP template ontology data slots [14]

Slot name Definition Type

name Instance name String

description Instance description String

quantityType Quantity types, i.e., “DeviationVariable”, “SystemParameter”, or
“SystemVariable”

Symbol

symbol A Quantity’s symbol String

value A Quantity’s value Float

unit A Quantity’s unit String

lowerBound A Quantity’s lower bound Float

upperbound A Quantity’s upper bound Float

expression A Function’s expression String

functionType Function types, i.e., “SystemGoal” or “SystemConstraint” Symbol

monotony Function monotony, i.e., “Maximize”, “Minimize”, or “Force” Symbol

equality Constraint Function equality (“≤”, “≥” or “=”) Symbol

linearity Function linearity, i.e., “nonlinear” or “linear” Symbol

target Function target Float

weight Preference weight in Archimedean form Float

level Preference level in preemptive form Symbol

numberOfSamples Samples cardinality for an explicit Preference in the design
experiments

Float

problemSolver Problem solver driving the template Symbol

codeFileLocation Storage path of the analysis code file String

result Response output information String

behavioralInfo Template behavioral information String

modification Modification information of a template from its predecessor
template

String

informing designers to solve it is essential. Similarly to sDSP template ontology, we
use a rule-based reasoning method to check the consistency in the cDSP template
ontology. The rules to preserve the consistency in the cDSP template ontology are
presented in Table 3.12. Considering Rule 6 as an example, the rules are defined as

(defrule MAIN::rule_6 (object (is-a cDSPTemplate) (OBJECT ?y) ) => (foreach
?x (slot-get ?y hasParameter) (if (neq (slot-get ?x lowerBound) (slot-get ?x
upperBound)) then (printout t WARNING_6 crlf))))

This example means that if any instance in the slot “hasParameter” has unequal
values related to the upper and lower bound, the reasoner shall send a message
informing the designer working on that cDSP template about the inconsistency.
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Table 3.11 cDSP template ontology object slots [14]

Slot name Definition Type

elementOf Relate a Quantity to a Functions group Instance

functionOf Relate Function to a Quantities group Instance

associatedGoal Relate a Preference to a Goal Instance

input Relate as input an Analysis to a Quantities group Instance

output Relate as output an Analysis to a Quantities group Instance

hasVariable Relate a cDSPTemplate to a group of Variables Instance

hasParameter Relate a cDSPTemplate to a group of Parameters Instance

hasConstraint Relate a cDSPTemplate to a group of Constraints Instance

hasGoal Relate a cDSPTemplate to a group of Goals Instance

hasPreference Relate a Goal to a Preference Instance

hasDriver Relate a cDSPTemplate to a Driver Instance

hasAnalysis Relate a cDSPTemplate to an Analysis Instance

hasResponse Relate a cDSPTemplate to a Response Instance

hasTemplate Relate a Problem to a cDSPTemplate group Instance

applyTo Relate a cDSPTemplate to a Problem Instance

hasHistory Relate a cDSPTemplate to a History Instance

hasBehavior Relate a cDSPTemplate to a Behaviors group Instance

derivedFrom Relate a cDSPTemplate to another cDSPTemplate Instance

evolveTo Relate a cDSPTemplate to another cDSPTemplate Instance

Table 3.12 cDSP template ontology consistency rules [14]

Rule 1 All instances in slot “hasVariable” must be of the “SystemVariable” type

Rule 2 All instances in slot “hasParameter” must be of the “SystemParameter” type

Rule 3 All instances in slot “hasConstraint” must be of the “SystemConstraint” type

Rule 4 All instances in slot “hasGoal” must be of the “SystemGoal” type

Rule 5 All instances in slot “hasVariable” should conform to lowerBound ≤ value ≤
upperBound

Rule 6 All instances in slot “hasParameter” should conform to: lowerBound = value =
upperBound

Rule 7 All instances in slot “hasPreference” should conform to 0 ≤ weight ≤ 1

Rule 8 All Variable instances of the “DeviationVariable” type should conform to value ≥ 0

Rule 9 All instances in slot “hasPreference” should conform to:
∑k

0wi = 1

Rule 10 All Variable instances of the “DeviationVariable” type should conform to:

d−
i · d+

i = 0

Rule 11 All Variable instances of the “DeviationVariable” type should be included in the
“output” slot

Rule 12 All Variable instances of the “SystemVariable” type should be included in the
“input” slot
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Fig. 3.14 cDSP template ontology architecture [14]

(4) The Ontology Structure

The cDSP template ontology structure, illustrated in Fig. 3.14, is a network struc-
ture where classes are represented as red nodes and data as black nodes. Object slots,
connecting the different classes, are shown with dashed-line arrows, and classes are
related to actual data by data slots (solid-line arrows). Hierarchical relations, e.g., the
link between Classes Constraint and Function, are illustrated utilizing arc arrows.
The ontology modeling procedure is facilitated using the Protégé tool and a cDSP
template instance example is shown in Fig. 3.14. Protégé also makes it possible
to include plugins that extend ontology functions. To execute the populated cDSP
template instances, we develop a plugin that links DSIDES to Protégé using a Java
function call to generate the design solutions.

3.3.4 Test Example—Designing a Pressure Vessel

In this section, we use a thin-walled pressure vessel design example to demon-
strate the cDSP template ontology exploitation in terms of facilitating designers
making decisions by reusing previous design information. The problem examined
here extends the problems used by Lewis and Mistree [18], who illustrated collab-
oration in decision-based designs. In our example, first, an instance is established
employing the initial design decision information. Then, three redesign scenarios are
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presented for demonstrating the exploitation of the ontological method, and finally,
we provide a summary and discussion of the findings.

(1) Populating an Original Design Instance

Radius R, length L , and thickness T , are the pressure vessel design variables shown
in Fig. 3.15. This vessel is used to withstand a specified internal pressure P utilizing
a specific material. The designer has two objectives: minimizing weight and maxi-
mizing the cylinder’s volume, with both having geometry and stress constraints. For
this example, the nomenclature is presented in Table 3.13. The cDSP formulation is
given as follows:

Fig. 3.15 Thin-walled pressure vessel with hemispherical ends [14]

Table 3.13 Pressure vessel
example nomenclature [14]

w Pressure vessel Weight, lbs.

V Volume, in.3

R Radius, in.

T Thickness, in.

L Length, in.

P Pressure inside the cylinder, Klb.

St Allowable tensile strength of the cylinder material,
Klb.

ρ Cylinder material density, lbs./in.3

σcirc Circumferential stress lbs./in.2

T V Target value for a goal

WVOL Weight-related with the weight goal

WWGT Weight-related with the volume goal
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In Table 3.14, we present the input data of this problem. Given all the prepared
information, we initiate in Protégé (see Fig. 3.16) a cDSP template instance for the
design of the pressure vessel. In this figure, the left-hand side panel refers to the class
browser listing all classes; the middle panel represents the instance browser that lists
all instances linked with a specific class, while the right-hand side panel refers to the
instance editor to create and edit a specific instance. For this scenario, all object and
data slots, e.g., “hasVariable”, “hasParameter”, and “name” of the pressure vessel
instance, are created based on the structure defined in Sect. 3.3.3 and the problem’s
data. For a correctly created instance, the result is calculated using JAVA function
calls that communicate with the problem solver DSIDES. The result is (R, T, L) =
(36, 4, 70), (Weight, Volume) = (39,457 lbs., 480,385 in.3) (see front window in
Fig. 3.16).
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Table 3.14 Pressure vessel
input [14]

P 3.89 klb.

St 35.0 klb.

ρ 0.283 lbs./in.3

Ll 0.1 in.

Lu 140.0 in.

Rl 0.1 in.

Ru 36.0 in.

Tl 0.5 in.

Tu 6 in.

WTV 0.1 lbs.

VTV 775,000 in.3

WVOL 0.5

WWGT 0.5

Fig. 3.16 Screenshot of the pressure vessel design cDSP template instance in Protégé ontology
editor [14]

(2) Facilitating Decision-Making in Redesign Scenarios

Consistency Checking. In this scenario, we assume the original design variable R
is fixed to 20 inches due to manufacturing limitations, and therefore, the existing
design should be modified to meet the new condition. As shown in Fig. 3.17, this
problem relies on a suitable choice of L and T and transforming it from a three-
dimensional problem (L − R − T ) to a two-dimensional (L − T ). In Fig. 3.17,
the previously achievable set is a solid vertical box, with one of its ends being the
polygon AJIH in the L = 0 plane, while the other end is formed by the inclined plane
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Fig. 3.17 Design space dimension change [14]

passing through the points marked EFG. Introducing the new constraints requires the
previously achievable solution space to be sliced by a plane vertical to the R-axis at
R = 20, and the cross-section marked DBCK forms the new feasible solution space.
To solve this problem, designers must adequately adjust the original decision model
and form a new decision. The required adjustments are related to Type I described
in Sect. 3.3.2. In the ontology context, this modification comprises a consistency
mechanism shown in Fig. 3.18. The specific processing steps are:

(1) Convert a variable to a parameter—move the previous variable “vessel radius”
from slot “hasVariable” to “hasParameter”.

(2) Check consistency—check the consistency of the modified cDSP template
instance using the JESS rule engine. A message shows, “Rule 6 is violated!—
Parameter ‘vessel radius’ has unequal upper and lower bounds!”

(3) Reconfigure the Parameter—reconfigure the parameter instance “vessel
radius” as: lower bound = value = upper bound = 20 in.

(4) Obtain the result—problem solver DSIDES calculates and returns the results
based on the newly specified cDSP template setup. The result is (T, L) =
(0.5, 53.9), (Weight, Volume) = (1698.7 lbs., 101,191.7 in.3), which is a new
instance.

Trade-off Analysis. In this scenario, we consider setting a new goal aiming to
minimize cost in the pressure vessel’s design. The cost equation is C(R, L, T) =
0.6224RTL + 1.7881R2T + 3.1611T2L + 19.8621RT2, with the target cost being $
0.1 [19]. The new problem requires adjusting the initial decision model concerning
adding a new goal and modifying the goals’ weight value, which is a mixture of
modification Types II and III. We assume that this adjustment is adequately facili-
tated by the consistency checking mechanism presented in the previous section, and
thus here we focus on how trade-off analysis is facilitated in the ontological context.
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Fig. 3.18 Decision model adjustment facilitated by consistency checking [14]

Trade-off analysis involves analyzing how a different goal priority distribution affects
the actual performance of goals, helping designers understand the rationality of their
decisions.

Similarly to [20, 21], we employ a ternary plot as a trade-off analysis tool for
the three-goal cDSPs. The main idea is to generate a sample of the weighted value
sets for the goals and then utilize the latter to calculate each goal’s performance
(represented as a normalized deviation). Finally, a triangle with a color bar illus-
trates the relationship between values and performance (Fig. 3.19). Considering the
triangle, the edges’ scales indicate the goals’ weights, the points inside the triangle
denote different weight sets, e.g., point S refers to set (0.2, 0.4, 0.4), the color refers
to the deviation of the associated points, and the color bar gives the corresponding
values. For a trade-off analysis, designers must prepare large sample sets and run
each sample’s computing code in DSIDES to generate the result. Then, all sample
sets and the corresponding results are input toMatlab to generate a ternary plot. Typi-
cally, this is a time-consuming process that requires automation or platform-related
support to improve efficiency.

In the ontology context, the trade-off analysis involves three processes supported
by Java function calls and afforded by Protégé, sample generation, communicating to
DSDIES for computing, and generating a ternary plot. Sample generation has a crit-
ical role in generating quality ternary plots. In the ontology, the data slot “numberOf-
Samples” (see Table 3.10) controls the sampling procedure by setting the number of
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Fig. 3.19 Ternary plot for
trade-off analysis

scales for the weight of each goal. This process is executed utilizing a Java function
at the computational level, which combines the scales to weight the sets, provided
that the scale’s sum in each set is one (Fig. 3.20a). In the figure, columns present
the goals, the numbers attached to the points in each column indicate the weights’
scales, and the colored lines that link the points are the weight sets. In this scenario,
we set the “numberOfSamples” slot to three and generate six sample sets (“num-
berOfSamples” can be increased to generate more sets). Each sample set in Fig. 3.20
is automatically sent to DSIDES to calculate a result. Then, the ternary plot of the
new “cost” goal is automatically produced utilizing the sample sets and the results
and is captured by the “hasBehavior” object slot (Fig. 3.20b). The blue area of the
Ternary plot refers to the preferred weight sets to minimize the goal “cost”. The
“volume” and the “weight” goal are also plotted for designers’ reference.

Design Space Visualization. To visualize the design space, in this scenario, we
adopt the assumptions of the previous scenario, i.e., the ternary plot offers designers
a trade-off analysis tool concerning the different goals by presenting the relation-
ships between the deviation of the goals and the weight sets. Despite this trade-off
analysis assisting designers in making rational decisions, resulting designs may not

Fig. 3.20 Trade-off analysis in the ontological
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Fig. 3.21 Design space visualization in the ontology

be acceptable. For instance, we set a point (WVOL = 0,WWGT = 0,WCOS = 1) that
sets a preference for the “cost” goal only within the blue area in the ternary plot.
Althoughdesignersmaychoose this point as the priority set tomake their decision, the
corresponding design (R = 2.5, T = 0.5, L = 0.16) could be unacceptable due to
its small size and volume. Therefore, notifying designers about related designs under
specific priority sets is crucial to facilitate decision-making,whichwe realize through
utilizing scatter plots1 (see Fig. 3.21a). In this figure, the axes correspond to the three
problem variables, the points correspond to the sample design specifications that are
within the achievable design space, and the point’s color refers to the objective func-
tion deviation of the associated design. Blue points indicate lower deviations and are
related to superior designs that the designers are looking for. Hence, in this plot, the
blue point locations create an outline of the superior design solutions. For instance,
in Fig. 3.21a, for the set point (WVOL = 0.33,WWGT = 0.33,WCOS = 0.33), which
are acceptable in the ternary plot, the superior designs are located where the associ-
ated size is extensive. By visualizing the design space, designers are more confident
in their decisions.

In terms of ontology, visualizing the design space is achieved by utilizing Java
function calls within Protégé. Such a function gathers information in the “hasParam-
eter”, “hasVariable”, “hasGoals”, “hasConstraints”, and “hasPreference” slots and
produces a scatter plot showing samples in the feasible design space. Finally, the plot
is captured as behavior in the “hasBehavior” slot of a cDSP template instance. The
corresponding plot for a priority set (0, 0, 1) is illustrated in Fig. 3.21b, while other

1 WIKIPEDIA. Link https://en.wikipedia.org/wiki/Scatter_plot refers to Scatter Plot.

https://en.wikipedia.org/wiki/Scatter_plot
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priority sets such as (1, 0, 0), (0, 1, 0), (0.33, 0.33, 0.33), etc., are also captured by
the “hasBehavior” slot.

(3) Summary and Discussion

In this section, based on the thin-walled pressure vessel example, we (i) present
a cDSP template instance that exploits the original design decision information,
(ii) modify the design variables cardinality to make new decisions that rely on
existing template instances, (iii) modify the goals cardinality and the value assigned
to weights and goals to make new decisions, (iv) perform a trade-off analysis facili-
tating decision- making, (V) visualize the design space to enhance decision-making.
We verify the ontology-based cDSP template reusability by reusing and modi-
fying previously created instances and prove its executability through consistency
checking, automatic results generation, performing trade-off analysis, and visual-
izing the design space. The results highlight that the designers’ decision-making
process is facilitated concerning:

• Decision model editing (cDSP template instance) ensuring consistency.
• Fast decision-making assisted by automatic execution schemes.
• Rational decision-making is assisted by insightful information display (ternary

and scatter plots).

3.4 Ontology-Based Representation of Coupled
Hierarchical Decisions

In this section, we present an ontology for representing coupled hierarchical deci-
sions. First, we show the mathematical model of the coupled hierarchical decisions,
and second, we identify the requirements for modeling the knowledge related to
coupled hierarchical decisions. Third, we develop an ontology using Protégé for
addressing the requirements, and finally, we use a portal frame design example to
test the ontology’s efficiency.

3.4.1 Mathematical Model for Coupled Hierarchical
Decisions

A coupled hierarchical decision involves the solution of any combination of selection
and/or compromise DSPs simultaneously by reformulating all the DSPs into a single
cDSP. Publications on coupled DSPs include coupled compromise-compromise
DSPs [22, 23], coupled selection-compromise DSPs [24, 25] and coupled selection-
selection DSPs [26]. The mathematical formulation of the coupled selection-
compromise DSP is shown in Fig. 3.22, while the other two coupling types can
be formulated similarly. In Fig. 3.22 X and Y denote the variables of two decisions.
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Fig. 3.22 Mathematical formulation of the coupled selection-compromise DSP
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Fig. 3.23 A general four-level hierarchical system [29]

System constraints and goals (e.g., MF(Y)X, g(X, Y) and A(X, Y)) that involve both
X and Y represent the lateral interactions among member decisions in a hierarchy.
Vertical interactions (not shown in the figure) can also be modeled with system goals
asX =X(Y), whereX represents the parent decision variables, and Y the sub-decision
variables. For details; see [23, 27, 28]. Coupled DSPs are generally multi-objective,
nonlinear, mixed discrete–continuous problems. Such problems can be solved using
DSIDES combined with the ALP algorithm [17].

A general representation (four-level) for a hierarchical system is proposed by
Sobieszczanski-Sobieski [29], as shown in Fig. 3.23. The nature of the hierarchy is
a two-dimensional (horizontal and vertical) network structure. The nodes represent
the integral parts of the system that can be parent systems or subsystems depending
on their relative positions in the hierarchy. The links represent vertical and lateral
dependencies between two nodes, depending on whether they cross their levels. In
the vertical direction, the root node, e.g., Node “1.1” in Fig. 3.23, is progressively
decomposed into multiple levels, and each level may have multiple nodes. Every two
levels in the neighborhood are interconnected by a vertical dependency between the
nodes of the two levels, which must be subject to the relationship of “parent–child”.
Thus, the network is vertically integrated. In the horizontal direction, nodes of the
same (e.g., Nodes “3.1” and “3.2”) or different (e.g., Nodes “3.2” and “3.3”) parent(s)
at the same level may be connected by lateral dependencies. Thus, the network is
laterally integrated.
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3.4.2 Requirements for Knowledge Modeling to Support
Hierarchical Decisions

From the decision-based design perspective, the design of such hierarchical systems
is supported by the DSP networks in which each node embodies a DSP that supports
the design decision about the related system element, and each link embodies the
interaction between two nodes. To facilitate design engineers in formulating a deci-
sion hierarchy and solving the problem in keepingwith the procedures of hierarchical
system designs, we identify the following requirements for the computational DSP
hierarchy model:

• Decomposability—The multilevel or multiscale characteristic of hierarchical
systems requires the model to be decomposable to capture the complexity of
the physical system and be solvable using the available computational power.
Furthermore, the model should support dynamic decomposition as the design
evolves.

• Flexibility—The evolution of knowledge about a system being designed at
different design stages requires the model to be flexible enough to support recon-
figuration. For example, in the early stages, the system is not decomposed into
very detailed levels because of the lack of knowledge, and much of the depen-
dency is ignored. As time moves forward, knowledge increases and the original
model must be reconfigured to incorporate this knowledge.

• Visualization—A comprehensive understanding of the design problem requires
themodel to be visualized. A hierarchical system is a system of parent systems and
interacting subsystems. The computational model should support visualization
of the hierarchical structure to facilitate designs’ intuitive understanding of the
problem they are dealing with and edit the model effectively.

• Reusability—Same as the definition of reusability for a cDSP (see Sect. 3.3.1).
• Executability—Same as the definition of executability for a cDSP (see

Sect. 3.3.1).
• Consistency—Same as the definition of consistency for a cDSP (see Sect. 3.3.1).

3.4.3 Ontology Development for Decision Hierarchies

In this section, we present an ontology for the computational model (template) of a
DSP hierarchy considering the requirements identified in Sect. 3.4.2. The utility of
an ontology in facilitating the reuse, execution, and consistency maintenance of the
DSP templates has been illustrated in Sects. 3.2 and 3.3. In particular, the reuse of the
DSP templates is facilitated with a common vocabulary embodied in the ontology for
generating different specific instances that can easily be adapted to new scenarios by
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modifying the associated Slots. The execution of theDSP templates is facilitatedwith
OWL—a standard and computer-interpretable modeling language underlying the
ontology,which supports the parsing by other applications through, for example, Java
function calls. The consistency of the DSP templates is maintained by incorporating
reasoning mechanisms for consistency checking within the ontology. In this section,
the ontology is extended to model a hierarchical DSP network, emphasizing to meet
the decomposability, flexibility, and visualization requirements listed in Sect. 3.4.2.

In a computational environment, the decomposability of a model means that it
can be further divided or broken down into smaller components. In a DSP hierarchy,
this involves vertical integration of dependent sub-DSPs. This calls for the iden-
tification of a concept from a higher level than the DSPs alone. This is a general
representation of a hierarchy that incorporates the DSPs and captures the associ-
ated links so that newly derived sub-DSPs can be linked to an existing hierarchy
when decomposition or reassembly is needed. In this paper, the concept is named
Process, which is formally defined as an ontology Class. The flexibility of the DSP
hierarchy is embodied in reconfiguration, which in principle includes (I) dynamic
decomposition of decisions and (II) incorporation of evolving dependencies (or links)
among decisions. This requires the links in the hierarchy to be separately modeled
so that they can be dynamically added, edited, and removed when reconfiguration is
needed. The links are modeled as Interfaces, which are discussed later. Visualization
is implemented with a graph-based editing tool, which is presented later.

(1) Definition of Class Process

The Class Process is a general representation of the building blocks in a hierarchy,
which incorporates oneDSP and its associated dependency. For example, in Fig. 3.23,
the collection of Node 2.2 and its associated links at the top, bottom, left-hand side,
and right-hand side can be called an Instance of a Process. It is called Process
because it represents an information processing unit based on a decision-making
mechanism (sDSP or cDSP) and the associated interaction (information flows) with
other units. The concept of the Class Process is shown in Fig. 3.24. It represents a
standard, scalable hierarchy building block where the solid box (or shell) refers to
the information processing unit with a DSP (the dashed box) plugged in, and lines
stand for the associated vertical and lateral dependencies. A hierarchy is built by
assembling a series of different Processes. In the ontology context, the Slots of the
Class Process are defined in Table 3.15.

Fig. 3.24 Concept of class
process
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Table 3.15 Slots of class process

Slot name Definition Type

name Process name String

description Process description String

IsRoot Indicator of whether the Process is the root
(i.e., no parent) of the hierarchy. Two allowable
values—“Yes (1)” or “No (0)”

Boolean

IsLeaf Indicator of whether the Process is the leaf
(i.e., no subsystems) of the hierarchy. Two
allowable values—“Yes (1)” or “No (0)”

Boolean

Decision Decision corresponding to the Process. Two
allowable Classes, namely, cDSP Template (see
[30]) and sDSP Template (see [31]). One
Processes Instance can have only one
corresponding decision, selection, or
compromise

Instance

DecisionType Indicator of the type of the corresponding
decision. Two allowable
values— “Compromise” or “Selection”

Symbol

LateralDependency Lateral dependencies of the Process. It is
associated with the Class Interface introduced
in the next section. One Processes Instance can
have multiple lateral dependencies

Instance

VerticalDependency_Parent Parent dependency of the Process. It is
associated with the Class Interface introduced
in the next section. One Processes Instance can
have only one parent dependency

Instance

VerticalDependency_Subsystem Subsystem dependency of the Process. It is
associated with the Class Interface introduced
in the next section. One Processes Instance can
have multiple subsystem dependencies

Instance

(2) Definition of Class Interface

The Class Interface is a representation of the vertical or lateral dependency between
two different Processes. For example, in Fig. 3.23, the link between Nodes 2.2
and 3.3 can be called an instance of an Interface. It is called an Interface because
it captures the communication between the two processes. Interfaces are critical
in building a DSP hierarchy because they constitute the medium connecting the
individual building blocks, namely, Processes, to an integrated whole. The concept
of Interface is shown in Fig. 3.25, which highlights that an Interface consists of two
elements: the references (or indices) of two linked Processes represented by dashed
boxes, and the informationflow,which is representedby the solid line between the two
Processes. Based on the strength, the information flow is categorized into two types:
weak and strong flow. The weak flow is a one-way flow (“1 to 2” or “2 to 1”), which
means that one Process has parameters that need to be input from the counterpart.
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Fig. 3.25 Concept of class
interface

A strong flow is a two-way flow, meaning both processes have parameters that need
to be input from the counterpart.

Based on the direction, information is divided into two types, i.e., lateral and
vertical flows. Lateral flow is a flow that links the Processes at the same level in
a hierarchy. Vertical flow is a flow that links Processes at different (neighboring)
levels in a hierarchy. Since the Processes are embedded with DSPs, the information
flow must be modeled to be consistent with the coupled DSP construct introduced
in Sect. 3.4.1. Using the interface shown in Fig. 3.25 as an example, the information
flow characteristics in the context of coupled DSP construct are modeled as follows.
Here, we assume X1 represents the variable vector of the DSP embedded in Process
1 and X2 the DSP embedded in Process 2.

• Vertical—The vertical information flow is usually two-way and occurs between
cDSPs in a hierarchy. Assuming Process 1 is the parent system and Process 2
the subsystem, the coupling is modeled as a system goal of a coupled cDSP,
formulated as A(X1, X2) = X1

X1(X2)
− 1, where X1(X2) is a function that maps X2

to X1.
• Lateral—In this type, the coupling is divided into the following six sub-types:

– sDSP↔sDSP—Two-way flow between two sDSPs. This can be embodied
as: dependent attributes, dependent alternatives, dependent alternatives, and
attributes. For further details, the reader is referred to [32]. Mathematically,
the interdependency is modeled as a system goal of a coupled cDSP.

– sDSP→cDSP—One-way flow from sDSP to cDSP. Assuming that Process 1
is embedded with an sDSP and Process 2 with a cDSP, the information flow is
embodied by the Boolean-type variable vector X1 of the sDSP that constitutes
the parameter of the cDSP’s system constraints represented as g(X1, X2), and
(or) the system goals as A(X1, X2).

– cDSP→sDSP—One-way flow from cDSP to sDSP. Assuming that Process 1
is embedded with a cDSP and Process 2 with an sDSP, then the information
flow is embodied by the variable vector X1 of the cDSP that constitutes the
parameter of the sDSP’s merit function represented as MF(X1) ·X2. The latter
is a system goal in a coupled cDSP. Here, X2 is Boolean.
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– sDSP↔cDSP—Two-wayflowbetween an sDSP and a cDSP.This is embodied
by the combination of the preceding two types.

– cDSP→cDSP—One-way flow between two cDSPs. This is embodied by the
variable vector of the antecedent cDSP that constitutes the system constraints
and goals of the subsequent cDSP.

– cDSP↔cDSP—Two-way flow between two cDSPs. This is embodied by the
variable vectors of the two cDSPs that constitute the counterpart’s system
constraints and goals.

The resolution of a coupled DSP involves reformulating all DSPs into one single
cDSP. In this paper, since the Interface constitutes the dependent part (coupled
system constraints and goals) of the DSPs, it should be integrated with the inde-
pendent parts (embedded in the Processes) to compose a single cDSP. To represent
these dependencies in a hierarchy, in the ontology, we identify and define the Slots
of Class Interface in Table 3.16.

(3) Building DSP Hierarchies Using Processes and Interfaces

The definitions of Class Process, Class Interface, and the associated Slots are facil-
itated by using the Protégé 3.5 tool, as shown in Fig. 3.26. The panel marked with
“➀” is the class browser where ontology Classes list Classes of the cDSP ontology
(termed “CO” [30]), Classes of the sDSP ontology (termed “SO” [31]), and the two
Classes (highlighted in the box) identified in this paper for building DSP hierarchies.
The windowmarked with “➁” is the Instance editor for the Process Instances, where
the Slots are populated with specific problem information. The windowmarked with

Table 3.16 Slots of class interface

Slot name Definition Type

name Interface name String

description Interface description String

snterfaceType Indicator of the type of the Interface. Two allowable
values—“Vertical” or “Lateral”

Symbol

strength Indicator of the strength of the coupling. Two allowable
values—“Weak” or “Strong”

Symbol

originalProcess The original Process is linked by the Interface. It is
associated with the Class Process

Instance

counterpartProcess The counterpart Process is linked by the Interface. It is
associated with the Class Process

Symbol

originalCounterpartFlow Information flow from the original Process to its
counterpart. It is associated with Class Function (see [30]
for detailed definition). One Interface Instance can have
multiple flows from 1 to 2

Instance

counterpartOriginalFlow Information flow from the counterpart Process to the
original Process. The definition is similar to Slot
“Flow:1_to_2”

Instance
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Fig. 3.26 User-interfaces of the DSP hierarchy ontology [14]

“➂” is the Instance editor for the Interface Instances, where the Slots are populated
using specific problem information.

The construction of DSP hierarchies is facilitated by the Protégé Graph Widget
[33], a graphical tool for visually editing the Instance and the relationships among
Instances. The Protégé Graph Widget is especially suitable for building the DSP
hierarchy, as the latter is a network of Process Instances and Interface Instance. A
screenshot of the widget customized for building the hierarchy is shown in Fig. 3.27.
The corresponding building procedure is the following:

Step 1. Creating Process Instances. This is done by first dragging the box marked
“Process” from the left panel (which represents Classes) to the right canvas (which
represents Instances) and then editing the generated Instance using editor “➁” in
Fig. 3.26. The number of Process Instances is determined by the number of decisions
made in a practical problem. In Fig. 3.27, “A” and “B” are two Process Instances.
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Fig. 3.27 DSP hierarchy in Protégé graph widget [14]

Step 2. Embedding DSPs into each Process Instance. This is done by first creating
the DSP (cDSP and sDSP) Instances using the specific information of the problem
in the cDSP and sDSP template editors (see [30, 31]), then embedding the created
DSP Instances into each Process Instance by specifying Slot “Decision”.

Step 3. Creating Interface Instances. This is done first by dragging the circle
marked “Interface” from the left panel to the right canvas, then editing the gener-
ated Instance using editor “➁” in Fig. 3.26. The number of Interface Instances is
determined by the number of dependencies among the decisions in a problem. In
Fig. 3.27, “I” is an Interface Instance.

Step 4. Linking the Process Instances and Interface Instances. This is done by
specifying the Slots “LateralDependency”, “VerticalDependency_Parent”, “Verti-
calDependency_Subsystems” of the Process Instances, and Slots “Process_1” and
“Process_1” of the Interface Instances. The links are automatically shown in the
canvas when these slots are specified. In Fig. 3.27, Interface Instance “I” represents
the lateral interactions between Process Instances “A” and “B”.

Step 5. Run the model and solve the problem in DSIDES. This is done utilizing
the Java function calls in Protégé, which integrates all the information specified in
the hierarchy as a coupled cDSP and then sends it to DSIDES for computing, solving
the problem, and finally obtaining the results from DSIDES.

3.4.4 Test Example—Designing a Portal Frame

In this section, we illustrate the decision hierarchy ontology validity utilizing as
an example a portal frame design problem. This example extends the problem of
Sobieski [29] to demonstrate the decomposition method and the problem considered
by Shupe et al. [23], Allen et al. [27], and Vadde et al. [28] to demonstrate the
advantages of the cDSP in solving hierarchical design problems. The correctness of
the ontology is tested utilizing a refinement process of the decision model (DSP)
corresponding to the portal frame design.
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(1) Creation of a Baseline Model with Limited Information

A portal frame represents a simple hierarchical system, as shown in Fig. 3.28. The
integrated frame represents the parent system, while the three I-beams are the subsys-
tems. The design objective is to minimize the overall mass of the frame. The frame is
subject to two types of constraints: external and internal constraints, with the former
including the static loads P and M , while the latter include normal stress, bending
stress, shear stress, and buckling in each member. Design variables are categorized
into parent system variables and subsystem variables. Parent system design variables
A and I stand for each member’s cross-sectional area and moment of inertia, respec-
tively. Subsystem variables are the dimensions, namely, b1, b2, h, t1, t2, t3 of each
subsystem. Vi denotes the vertical interactions between the parent system and each
of its subsystems and Li j the lateral interactions between subsystems.

At an early design stage, designers usually face the challenge of limited infor-
mation for modeling the problem. In the design of the portal frame, we assume that
information of the vertical interactions Vi and the lateral interactions Li j are unknown
to designers. Designers are required to create a baseline model to design the portal
frame with limited information. The baseline model is a single cDSP in which all the

Fig. 3.28 Design of a portal
frame [14]
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constraints are in terms of the design variables at the subsystem level. In the context
of Fig. 3.28, it involves only subsystem variables b, t , and h for each beam and does
not exploit the parent variables A and I . The mathematical formulation of this single
cDSP is shown in Fig. 3.29. In the ontological context, a Process Instance marked as
“Portal Frame Design” (see Fig. 3.30) is created using the information presented in
Fig. 3.29. Since the vertical and lateral interactions are not modeled, there is no Inter-
face Instance created. Specification of the Process Instance is presented in window
“➀” of Fig. 3.30, and the information of the cDSP template embedded in the Instance
is presented in window “➁”. Given L1 = 500 cm, L2 = 1000 cm, L3 = 1000 cm,
P = 50, 000 N,M = 20×106 N cm, the results corresponding to the baseline model
are shown in Table 3.17. In Table 3.17, due to not considering the interactions among
the three members (subsystems) of the portal frame, there is a noticeable difference
between the resulting dimensions of the members. Using the baseline model as the
starting point, it is assumed that designers will gradually refine the model by consid-
ering lateral and vertical interactions. The performance of the ontology in terms of
facilitating the creation of a DSP hierarchy to support this refinement is tested in the
remainder of this section. Designers refine the baseline model by decomposing the
model into sub-DSPs and then linking the sub-DSPs using lateral interaction infor-
mation. They further refine the laterally interacted model by incorporating vertical
interactions with a parent DSP that supports the decision-making about the parent
system. Finally, the model becomes a comprehensive model with both lateral and
vertical interactions.

(2) Refinement of the Model with Lateral Interactions

Based on the baseline model, designers are assumed to do the refinement with known
lateral interactions between Member 1 and Member 2 and the lateral interactions
between Member 2 and Member 3, namely, L12, and L23 in Fig. 3.28. This means
that the baseline model must be decomposed into three DSPs, and the associated
dependency needs to be modeled. The model can be decomposed by separating the
cDSP formulation into three independent cDSPs, just by setting index i with a value
of 1, 2, and 3, respectively. The (lateral) dependencies necessitate constraints that
match the subsystem variables to their counterparts in the other subsystems. This
“matching” is modeled mathematically by system goals in a cDSP. For example, in
Fig. 3.28, the individual dimensions of the center beam (Member 2) should match
those of the beams (Members 1 and 3) on either side. Thus, lateral equality constraints
are created to handle this, for example, b1,1+d− −d+ = b2,1, where b1,1 and b2,1 are
the width of the bottom flanges of members 1 and 2, respectively. The deviation from
this equality is measured by the system goal’s deviation variables (underachievement
d− and overachievement d+). Given that the dimensions of the three subsystems
should match, lateral interactions are identified and modeled as system goals as
follows, where m stands for the lateral interaction index (m = 1 is the first lateral
interaction, and m = 2 the second).

b1,m + d−
m − d+

m = b1,m+1, m = 1, 2.

b(2,m) + d−
(2+m) − d+

(2+m) = b(2,m+1), m = 1, 2.
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Fig. 3.29 A cDSP formulation at subsystem level with no interaction
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Fig. 3.30 Specification of the model with no interaction included [14]

Table 3.17 Results of the baseline model [14]

Member 1 (cm) Member 2 (cm) Member 3 (cm)

Variable Value Variable Value Variable Value

b1 12.38 b1 10.97 b1 11.86

b2 12.33 b2 13.11 b2 11.08

t1 0.531 t1 0.492 t1 0.526

t2 0.641 t2 0.579 t2 0.491

t3 0.450 t3 0.313 t3 0.282

h 62.81 h 59.5 h 52.84

Volume (cm3): 79,537
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t(1,m) + d−
(4+m) − d+

(4+m) = t(1,m+1), m = 1, 2.

t(2,m) + d−
(6+m) − d+

(6+m) = t(2,m+1), m = 1, 2.

t(3,m) + d−
(8+m) − d+

(8+m) = t(3,m+1), m = 1, 2.

hm + d−
(10+m) − d+

(10+m) = h(m+1), m = 1, 2.

In the ontology, system goals are captured and used to populate the two Inter-
face Instances, namely, “L12” and “L23”, as shown in the canvas of Fig. 3.31.
The three separated cDSPs are used to instantiate three Process Instances, marked
“M1”, “M2,” and “M3”, which are linked by “L12” and “L23” that represent strong
coupling with two-way information flows. The information flows are embodied in
Slots “Flow_1_to_2” and “Flow_2_to_1”, as shown in the window under the canvas
in Fig. 3.31, in which the specification of “L12” is shown. The deviation variables
associated with the interaction system goals and the deviation associated with the

Fig. 3.31 Specification of the model with only lateral interactions included [14]
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Table 3.18 Results of the model with only lateral interactions [14]

Member 1 (cm) Member 2 (cm) Member 3 (cm)

Variable Value Variable Value Variable Value

b1 14.43 b1 14.42 b1 14.42

b2 15.72 b2 15.72 b2 15.71

t1 0.725 t1 0.728 t1 0.730

t2 0.735 t2 0.737 t2 0.739

t3 0.409 t3 0.409 t3 0.347

h 50.24 h 50.21 h 36.10

Volume (cm3): 98,605

mass goal are formulated in a preemptive form in the overall deviation function. The
interaction system goals are of higher priority than the mass goal. The overall devia-
tion function is captured in one of the three Process Instances (in this case is “M1”).
All the Process and Interface Instances information are integrated as a coupled cDSP
and sent to DSIDES for computation at a computational level. The corresponding
results are shown in Table 3.18, indicating that the difference between the subsystem
dimensions is reduced to a tolerable extent because of the lateral interactions that
match the three subsystems. However, the volume increases from 79,537 to 98,605
cm3. The difference is due to the low priority of the mass goal in the deviation
function.

(3) A Comprehensive Model with Lateral Interactions and Vertical Interac-
tions

In this section, the vertical interactions between the parent system and subsystems,
namely, V1, V2, and V3 in Fig. 3.28 are known, and designers are assumed to refine the
model further using this information. Since the vertical interactions are known, a new
cDSP corresponding to the parent system is created so that the existing subsystem
DSP is connected to it through the vertical interactions. Thenewparent cDSP involves
parent system-level design variables Ai and Ii (i = 1, 2, 3), constraints and goals, as
shown in the mathematical formulation in Fig. 3.32.

The vertical interactions necessitate constraints that match the parent system
design variables (A and I ) and the subsystem variables (b, t , h). Similarly, to the
lateral interactions, this “matching” is modeled mathematically by system goals in
a cDSP as follows (i stands for the vertical interaction index, where i = 1 denotes
the first vertical interaction V1, while i = 2 and i = 3 are V2 and V3, respectively):

Ai + d−
i − d+

i = A(b, t, h)i , i = 1, 2, 3.

Ii + d−
i+3 − d+

i+3 = I (b, t, h)i , i = 1, 2, 3.

In the ontology, vertical interactions are captured and used to populate Interface
Instances, namely, “V1”, “V2”, and “V3”, as shown in Fig. 3.33. The information of
the cDSP corresponding to the parent system is used to instantiate a Process Instance
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Fig. 3.32 A cDSP formulation at parent system level [14]

marked as “Parent”, which is linked to the three existing subsystem level Process
Instances “M1”, “M2”, and “M3” by “V1”, “V2” and “V3”, respectively. Also, the
lateral interactions, “V1”, “V2”, and “V3” represent strong coupling with two-way
information flows. The specification of “V1” is shown in thewindowunder the canvas
of Fig. 3.33. Details of the information flows are embodied in Slots “Flow_1_to_2”
and “Flow_2_to_1”. Deviation variables related to the interaction system goals are
incorporated in the deviation function in a preemptive form. The vertical interaction
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Fig. 3.33 Specification of the comprehensive model [14]

goals are of the highest priority, the lateral interaction goals are the second priority,
and themass goal is the third. Specification of the deviation function is assigned to the
“root” node of the hierarchy, namely, “Parent” in Fig. 3.33, being the overall control
for the model. At a computational level, all the hierarchy information is integrated
as a coupled cDSP and computed with DSIDES. The computed results are shown
in Table 3.19, highlighting that the subsystem dimensions match each other very
well, similarly to Table 3.18. This is because lateral interactions are included in the
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Table 3.19 Results of the comprehensive model [14]

Parent system (A-cm2, I-cm4)

Variable Value Variable Value Variable Value

A1 40.21 A2 40.18 A3 40.16

I1 20,445 I2 20,419 I3 20,426

Member 1 (cm) Member 2 (cm) Member 3 (cm)

Variable Value Variable Value Variable Value

b1 12.51 b1 12.5 b1 12.49

b2 13.1 b2 13.1 b2 13.12

t1 0.555 t1 0.554 t1 0.554

t2 0.583 t2 0.583 t2 0.583

t3 0.434 t3 0.433 t3 0.433

h 59.1 h 59.09 h 59.08

Volume (cm3): 100,480

model. This has been verified by manually checking that the values of the parent
system-level variables also match those of the subsystem level variables (e.g., cross-
sectional value of A matches the value of A(b, t, h)). This illustrates the importance
of including the vertical interactions in the model. The final volume of the portal
frame is increased from 98,605 to 100,480 cm3. The difference is partially due to the
bounds (especially the lower bounds) assigned to the parent system-level variables
and partially to the highest priority assigned to the vertical interaction goals.

3.5 Empirical Structural Validity

Empirical structural validation is to build confidence in the appropriateness of the
test example problems chosen for illustrating and verifying the performance of the
framework and methods. The ontology for representing selection decision-related
knowledge is first tested using a light switch cover plate material selection example.
In the example, different scenarios including the documentation of the original mate-
rial selection, adding new material alternatives, adding new attributes for considera-
tion, and parameter variation are considered.Using the ontology-based selectionDSP
template, the reusability, executability, and consistency of selection-related knowl-
edge are tested. The example thus is appropriate to demonstrate the utility of the
ontology for selection decisions as they involve multiple alternatives and attributes,
as well as the variation (which is critical for testing knowledge reusability) of them
in the selection process. Using the second example, the ontology for representing the
knowledge related to compromise decisions is tested using a pressure vessel design
problem. The reusability, executability, and consistency of the ontology are verified
in both original design and variant design (including reduction of the dimensions



100 3 Ontology for Decision Support Problem Templates

of the design space, increase of the number of goals, and changes in the weights
of goals) of the pressure vessel. Therefore, the example is suitable to demonstrate
the utility of the ontology for compromise decisions because they involve multiple
variables, constraints, and goals, as well as their variation in variant design. In the
third example, we use the portal frame design problem to test the decomposability,
flexibility, and visualization capability of the ontology for representing the knowl-
edge related to coupled hierarchical decisions. The portal frame example involves
two level of decisions that are coupled at the same level and cross levels. In the
variant design scenarios, the lateral and vertical interactions are gradually added to
the original all-in-one cDSP, and we see that the ontology is very flexible to support
the decomposition of the original cDSP, the refinement of interaction information
among sub cDSPs, and the visualization of the whole hierarchical cDSP structure.
Based on the features of the problem and the performance of the ontology, it is
concluded that the portal frame design example is appropriate.

3.6 Where We Are and What Comes Next?

In this chapter, we present three ontologies for representing the knowledge related
to selection decisions, compromise decisions, and coupled hierarchical decisions,
that serve as the foundation for providing knowledge support in individual decision-
making on the PDSIDES platform. In the next chapter, we describe ontologies for
representing knowledge related to decision workflows.
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Chapter 4
A Platform for Decision Support
in the Design of Engineered Systems
(PDSIDES) and Design of a Hot Rod
Rolling System Using PDSIDES

In this chapter, we present a knowledge-based Platform for Decision Support in
the Design of Engineered Systems (PDSIDES). PDSIDES is built on the ontolo-
gies developed in Chap. 3, which are the primary constructs of the platform for
decision support. Based on these primary constructs, we introduce the overview of
PDSIDES, users and working scenarios, and the knowledge-based decision support
modes in PDSIDES. Then, we describe how PDSIDES is implemented to deliver
functionalities. Furthermore, in this chapter we test PDSIDES performance via a
gear manufacturing-process design problem, i.e., a complex system design requiring
several decisions. From the raw material to the final gear product, the material
goes through multiple unit operations such as casting, rolling, cooling, forging, and
machining, which are some of the processes in the steel manufacturing chain. To
obtain the desired end-properties of the gear produced, proper decisions need to be
made about the process control parameters (set points) during each of these processes.
Many plant trials involving time and cost are needed to identify these operating set
points. An alternative to this is exploiting the advancements in modeling tools and
frameworks to design the system and realize the end product. Decisions made at
each manufacturing unit are formulated as cDSPs and linked as a decision network
that is mathematically modeled as coupled cDSPs, using a goal-oriented, inverse
decision-based design method. A hot rod rolling system design problem example is
used to test the performance of PDSIDES. A summary of this chapter is presented
in Table 4.1. The mapping of the sections to the components (topics) discussed in
this chapter is presented in Row 2 of Table 4.1.

4.1 Primary Constructs of PDSIDES

In Chap. 2, we state that our implementation of Decision-Based Design (DBD) is
the Decision Support Problem Technique (DSPT), wherein the selection Decision
Support Problem (sDSP) and the compromise Decision Support Problem (cDSP)
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Table 4.1 Summary interpretation of the problem investigated in Chap. 4

Elements What?

Components Prototype of PDSIDES, including platform design (Sects. 4.1–4.2), platform
implementation (Sect. 4.3), and platform performance test (Sects. 4.4–4.9)

Connectors Platform PDSIDES

Form How?

Component roles Provide user-specific knowledge support to different types of users

Properties An integrated decision support platform

Relationship The implementation of the constructs for supporting selection, compromise,
and coupled decisions in design

Rationale Why?

Motivation Providing supports to different types of users based on their knowledge levels

Assumptions There are three types of users: template creators, template editors, and
template implementers

Interpretation Understanding how different types of users are supported in their
decision-based design activities using PDSIDES

are the two primary constructs for formulating decisions in design. Any complex
design can be represented through modeling a network of compromise and selection
decisions. Our goal in designing PDSIDES is to facilitate designers with rapidly
creating decision models for the specific design problems using the DSP constructs,
making decisions, and finally, the produced decision knowledge can be stored and
reused by other users for similar designs. To achieve this goal, the DSPs are repre-
sented as computational decision templates in PDSIDES. The templates include the
sDSP template, cDSP template, and the coupled DSP templates, and their associated
modules are managed in a module repository, as illustrated in Fig. 4.1. It is noted
that the sDSP template and the cDSP template are also defined as a particular type
of module since they comprise the key “building blocks” of a decision hierarchy
and can be linked together using the interface and process modules (see Chap. 3
for details). Template modules represent the declarative knowledge in PDSIDES,
which embodies problem-specific information and can be reused in the instantiation
of DSP templates to support a designer making selection, compromise, and assist
in making hierarchical coupled decisions. The procedural knowledge denotes how
specific information is processed to reach a decision and is archived in the templates
(the printed “wiring” between different modules) to execute decisions. The sepa-
ration of these two types of knowledge makes it reasonably easy for designers to
reconfigure existing templates, which is critically essential in adaptive and variant
designs, where design consideration changes and the original decision model needs
to be modified. Template modification is discussed in Sect. 4.2.

The definition of the templates and their modules are discussed in Chap. 3 using
frame-based ontologies, which provide the foundation for representing the templates
at a computational level. The advantages of employing ontology in PDSIDES are
summarized as follows.
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Fig. 4.1 DSP templates and their associated modules

• Facilitate knowledge sharing. This is embodied in two aspects: knowledge
sharing among different users in PDSIDES and knowledge sharing between
PDSIDES and other Product Lifecycle Management (PLM) platforms. The DSP
ontologies represent the common language used for design decision-making in
PDSIDES. Thus, users from different design disciplines (e.g., thermal, struc-
tural, dynamic, etc.) can easily understand and communicate knowledge such as
variables, goals, and constraints, etc., with each other. Meanwhile, the explicit,
formal specifications of the terms inDSPontologies enable PDSIDES to exchange
knowledge with other PLM platforms such as product data management systems
and simulation-based analysis systems.

• Facilitate knowledge population. In order for the DSP templates to execute and
effect decisions, the modules of the templates must be populated with specific
knowledge or information. The DSP ontologies are the abstract representations
of the templates, which is very convenient for instantiating different instances
with specific information.

• Facilitate knowledge retrieval. One of the prerequisites for the reuse of templates
and the associated modules is that they can be retrieved from the repository, i.e.,
knowledge base when needed. The DSP ontologies capture the complex semantic
relationships among the modules and templates, which allows them to support
semantic-based retrieval that can respond to comprehensive query needs. For
details regarding semantic retrieval, the reader is referred to [1].

• Facilitating consistency maintaining. Modification of the original templates
usually happens in adaptive or variant design, which may lead to inconsistency
of the modified templates since the arrangement or values of the modules are
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changed. The DSP ontologies support rule-based reasoning and appropriately
handle the inconsistency.

4.2 Design of Platform PDSIDES

4.2.1 Platform Overview

An overview of PDSIDES is illustrated in Fig. 4.2. PDSIDES is divided into three
parts: knowledge, users, and decision-based design. What follows is the description
of the platform from a bottom-up perspective that includes how these three parts are
connected to enable the functionalities.

At the bottom of PDSIDES, decision-related knowledge is stored in the knowl-
edge base (including the module repository). The knowledge, including declarative
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Fig. 4.2 PDSIDES overview [2]



4.2 Design of Platform PDSIDES 107

knowledge such as problem statement, alternatives, attributes, variables, parame-
ters, and constraints, etc., and procedural knowledge such as consistency rules and
computing codes which are needed to calculate, e.g., the expected utility of an sDSP
template, are organized by a holistic ontology which is the combination of the three
ontologies developed in Chap. 3. Themiddle part contains the types of users, namely,
the Template Creator, Template Editor, and Template Implementer, formally defined
in Sect. 4.2.2. These three user types embody three different levels of knowledge,
represented by the stairs in Fig. 4.2. The top level is the Template Creator responsible
for creating theDSP templates, themiddle level is the Template Editor responsible for
editingDSP templates, and the bottom level is the Template Implementer responsible
for implementing the DSP templates. The interactions among the three user types are
a closed loop, where the template operational guidance is passed downwards from
the Creator to the Editor, then to the Implementer, and the feedback of operating the
templates is sent upwards from the Implementer to the Editor and then to the Creator.
The creation, editing, and implementation of the DSP templates are all facilitated
using a holistic ontology. The top part of PDSIDES is about decision-based design.
In PDSIDES, design is classified into three types, namely, original design, adaptive
design, and variant design; all are realized from a decision-based perspective using
the DSP templates. In specific design cases, the underlying decision workflow is
represented by networked DSP templates that can be exercised by the three types of
users through creating, editing, and implementing.

4.2.2 Users and Working Scenarios

The definitions of the three user types are introduced, and their associated working
scenarios are described in detail in this section.

Template Creator. Template Creators are domain experts responsible for creating
DSP templates for original designs that call for new concepts. An original design
usually needs the working principle of the system to be determined. In PDSIDES,
to create an original design template, the Creators first need to determine the deci-
sion type that needs to be made since different types of decisions require different
knowledge. For selection decisions, Creators need to define the selection alternatives,
attributes to evaluate the alternatives, and utility functions to measure the perfor-
mance of the alternatives. For compromise decisions, Creators need to identify the
variables representing the system’s features, constraints, and bounds that confine the
feasible design space and goals and preferences that determine the aspiration space.
For hierarchical coupled decisions, in addition to the determination of “nodes” in
the decision workflow, which may be selection or compromise, Creators also need
to identify the dependency and the associated information flows between different
“nodes”. The knowledge can be the Creators’ previous experience, prediction, or
results from simulation analysis. With this knowledge, template modules are created
and assembled to form decision templates that are then tested and stored for reuse.
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Template Editor. Template Editors are senior designers with sufficient knowl-
edge and experience in a specific domain and are responsible for editing or tailoring
existing decision templates in adaptive designs. This requires the original templates
to be adapted for new applications. The adaptive design stands for cases where the
system’s working principle remains the same, while some design considerations vary
due to the requirements’ evolution. For example, a pressure vessel may need to be
redesigned to adapt to a new goal of minimizing the economic cost because of inten-
sive market competition. In PDSIDES, to perform an adaptive design, the Template
Editors need to modify existing DSP templates to reflect the change of the design
requirements. For the sDSP templates, the modification includes adding/removing
alternatives and attributes and reconfiguring the utility functions. For the cDSP
templates, the modification includes adding/removing variables, constraints, and
goals. For the hierarchical coupled DSP templates, the modification includes three
aspects: modifying the modules within the DSP templates in a decision work-
flow, modifying the number of DSP templates (adding/removing sDSP or cDSP
templates), and modifying the arrangement (sequence, information flow, etc.) of the
DSP templates. The Editor’s knowledge related to the modification is captured in the
newly modified DSP templates that are stored and used for new applications.

Template Implementer. Template Implementers are designers who have basic
knowledge and typically little knowledge or interest in the analysis embodied in
the template. They are responsible for executing existing decision templates that
result in variant designs that require only parametric changes to the original decision
templates. Variant designs usually happen when the values of some original design
parameters alter. For example, assuming that some new materials replace the orig-
inal material of a pressure vessel with different density and strength, the values of
parameters density and strength of the original design model (e.g., the cDSP) need
to be updated to reflect the change that will result in a different dimension of the
pressure vessel. In PDSIDES, variant design Template Implementers can change
the DSP template parameters values of: (1) bounds of the sDSP attributes or cDSP
variables, (2) cDSP parameters and targets, and (3) the relative importance of the
sDSP attributes and cDSP goals. By changing the parameters’ values, Template
Implementers can execute the DSP templates and obtain variant designs.

In PDSIDES, users with access to higher knowledge levels also can perform
the operations defined for users of lower knowledge levels. For example, a Template
Creator can be an Editor or Implementer, while an Editor can also be an Implementer.
With decisions modeled as DSP templates and users classified into three types, the
process of decision-based design in PDSIDES is presented in Fig. 4.3. A user, e.g.,
a domain expert, first describes the design problem and then searches PDSIDES for
a DSP template to support the design. In PDSIDES, DSP template searching is a
query-based process where a problem statement (a short text) is used as the input,
and a documented DSP template instance is the output. The problem statement and
template instances are mathematically represented using the bag-of-word approach
[3] during the query process. The similarity between the problem statement and
different template instances is measured by a cosine coefficient [4] as follows:
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B are two n-dimensional vectors representing the word frequencies for
the given problem statement and a specific template instance. It should be noted that
the bag-of-word characterizing the template instance includes not only words from
the textual slots such as “name” and “description”, but also words from the struc-
tural slots such as “variables” and “constraints”, which makes the instance more
comprehensive and more easily matched. If no DSP template instance is matched,
a new template needs to be created, executed, and exploited to make the final deci-
sion. If there is an existing template(s), the designer needs to determine how much
modification needs to be made to the template. If changes involve only the value of
a parameter, then the designer resets the parameter values, executes the template,
and decides. If more adaption is needed, the designer needs to do the editing before
executing the template and then deciding.
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4.2.3 Knowledge-Based Decision Support Modes

The core of PDSIDES is the ontology that integrates the knowledge to support the
three designer types, namely, Template Creators, Template Editors, and Template
Implementers. Figure 4.4 represents how knowledge-based decision support is
provided to the three designer types in their associated working scenarios (by taking
the cDSP templates as an example).

Template Creators—provide the vocabulary for modeling decisions and capture
associated knowledge. Template Creators need a formal language to help them
describe and model the decisions for the original design. The DSP ontologies in
PDSIDES can provide them with the vocabulary to model their decisions. For
example, the term variable is defined as a Class with several slots, including upper
bound, lower bound, unit, and value, which will help specify the module “variables”
of the cDSP template. Using the classes and slots defined in the ontology, DSP
templates can be quickly instantiated as instances, which are captured and stored in
the database for reuse, as shown in the top-left picture of Fig. 4.4.

Template Editors—ensure consistency for editing. As mentioned earlier, modi-
fying existing DSP templates may incur inconsistency, especially when the template
is highly complex, e.g., tens of variables, constraints, or goals, and the Editor who
modifies the template is not the original Creator and does not have complete knowl-
edge about the template. Therefore, a consistency checking mechanism is required
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Fig. 4.4 Knowledge-based decision support in PDSIDES [2]
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to identify the potential inconsistency. A rule-based reasoning mechanism is associ-
ated with the DSP ontologies in PDSIDES to provide a consistency checking service
for the Template Editors. Rules are extracted from the DSP constructs, such as the
sum of the weights assigned to the goals must equal one. An example of a Template
Editor removing an existing goal (minimum cost) from the cDSP template is illus-
trated at the bottom of Fig. 4.4, where PDSIDES will check this inconsistency and
inform the user accordingly.

Template Implementers—reuse of the documented knowledge and perform post-
solution analysis. As stated in Sect. 4.2.2, Template Implementers have little knowl-
edge or interest in the analysis embodied in the templates, andwhat they need is infor-
mation that helps them exercise the template and make the decision. In PDSIDES,
the knowledge provided to the Template Implementers includes both declarative and
procedural knowledge. The former is captured from Template Creators and Editors,
and the latter is built into the platform, for example design space exploration algo-
rithms, plotting routines, etc., which are hard-coded and can be invokedwhen needed.
The picture on the top-right in Fig. 4.4 represents a Template Implementer changing
the weights assigned to different goals and using the ternary plot to identify the
insensitive weight sets to make a robust decision and the knowledge documented in
the template is reused.

4.3 Implementation of Platform PDSIDES

PDSIDES is implemented as a two-tier client–server architecture to provide knowl-
edge-based decision support withweb browser-based graphical user interfaces (GUI)
over the internet, as shown inFig. 4.5. In the client–server architecture, applications of
PDSIDES are deployed to a web application server (marked as “Knowledge Server”
in Fig. 4.5) and provide remote user access using browsers such as Internet Explorer
orGoogleChrome.Due to the easy access throughwebbrowsers, PDSIDES is afford-
able for many users involved in the decision template creation, editing, and executing
the process for an engineering system design. The entire design process becomes a
knowledge capturing, evolution, and reuse process over the internet. Maintenance
and upgrades for PDSIDES in a client–server architecture are convenient since the
application package is deployed in one web server instead of being distributed to a
wide range of client computers. The client-side of PDSIDES is the user interaction
GUI, including a template for searching and browsing that is designed for locating the
desiredDSP templates and presenting them, a template for creating and editing that is
designed to instantiate and modify the DSP templates, and a template execution and
analysis GUI, designed for executing DSP templates and performing post-solution
analysis. The GUI can communicate with the PDSIDES Knowledge Server by a
request-response mode using the HyperText Transfer Protocol (HTTP). PDSIDES
Knowledge Server includes five main parts: Response Server, Knowledge Base,
JESS Reasoner, DSIDES, and Matlab. The Response Server is the central “brain”
that integrates the other four parts responding to requests. The Response Server itself
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has five components: a search engine, an instance Interpreter, a consistency checker,
problem solver, and a result analyzer.

The instance interpreter interprets the data collected from the Template Creators
(or Editors) and formats them into DSP Template instances according to the DSP
ontologies. The generated template instances and module instances are stored in
the Knowledge Base. The search engine is connected to the Knowledge Base to
provide ontological semantic-based knowledge retrieval. Consistency checking is
facilitated through a consistency checker and the JESS Reasoner—the Rule Engine
for the JavaTM Platform [5], which can provide rule-based intelligence inference.
The problem solver is connected to DSIDES for solving the DSPs and is invoked
when a template executer executes a template. The result analyzer is to help users,
especially Template Implementers, to analyze the results produced by the problem
solver. Finally, Matlab has a strong capability in providing data visualization tools
such as ternary plots and scatter plots, and therefore this feature is integrated into
PDSIDES.

The front-end, i.e., GUI, of PDSIDES is realized by JavaScript embedded in web
pages. The development process is facilitated by Sencha Inc.’s GXT [6]. GXT is a
comprehensive Java framework that uses the GWT (Google Web Toolkit) compiler
[7], allowing developers to write applications in Java and compile their codes into
highly optimized JavaScript that supports feature-rich web applications. To enable
graph-based interaction in terms of the operation of the DSP networks that may have
multiple DSP templates and associated connections involved, Apache Flex [8], a
rich internet application developing framework, is integrated into GXT to facilitate
the creation of web-based diagrams. A DSP template such as a cDSP template may
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be very complex and have tens of variables, parameters, constraints, and goals,
which often overloads data transmission between the front-end and the back-end. To
address this issue, JSON [9], a lightweight data-interchange format, is used as the
data transmission scheme together with the HTTP protocol.

The back-end, i.e., the server-side, of PDSIDES is written in Java to enable inter-
operability amongdifferent applications and cross-platformdeployment.Manyback-
end applications such as the instance interpreter, search engine, consistency checker,
and JESS reasoner heavily depend on the DSP ontologies. As discussed in Chap. 3,
the DSP ontologies are formalized using the frame-based paradigm that contains
Classes and Slots. The realization of this paradigm using the frame language is
presented in Fig. 4.6. The top box in the figure represents Class “SystemGoal” in
the cDSP ontology, which includes definitions of slots such as target, linearity, and
equality, and the associated facets include type, cardinality, and allowed-values. The
frame-based ontology is actually an object-oriented mechanism based on which lots
of instances can be populated. Two boxes at the bottom of Fig. 4.6 represent two
instances, i.e., volume goal and weight goal, of the Class “SystemGoal” represented
using frame language. The specific data in the slots of the instances are first collected
using the template creating/editing GUI, then processed by the instance interpreter,
and finally retained in relational databases (in PDSIDES, we use Oracle). Instances
are treated as facts that are processed in the consistency checking process. In the
JESS reasoner, all the facts are matched to the consistency rules and take specific
actions if the corresponding rules are triggered. An example of the consistency rules
is as follows:

Instances of “SystemGoal” 

Class “SystemGoal” 

Instantiation 

Volume Goal 
Weight 

Goal 

Fig. 4.6 Frame-based realization of the ontology and associate instances [2]
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Fig. 4.7 PDSIDES portal [2]

(defrule MAIN::rule_5.1 

(object (is-a cDSPTemplate) (OBJECT ?a)) 

=> 

(bind ?k (Sum (slot-get ?a preference) ONE)) 

(if (and (<> ?k 1.0) (<> ?k 0.0)) then (printout t "MESSAGE: the sum of all the preferences is not 1.0!" 

crlf)))

This rule means that if the sum of all preferences, i.e., weights, in any instance
of Class cDSPTemplate is not equal to one, the reasoner will send a message about
this inconsistency to the user operating the template instance.

The portal of PDSIDES is illustrated in Fig. 4.7. A user can log in to PDSIDES
through a web browser using a username and password. Template Creators, Editors,
and Implementers are three roles assigned to the users according to their knowledge
in a specific domain, while a designer can have more than one role. Each role has
its particular platform setup, and the portal is the view shared by all three roles.
The portal includes two main parts, the left-hand side is the navigation panel, and
the right-hand side is the statistical information panel. The former represents the
critical functionalities of PDSIDES, including the Decision Knowledge Manage-
ment portion (managing knowledge about selection, compromise, and hierarchical
decisions. Access is assigned to Creators and Editors), the Design Decision Support
portion (providing the DSP template execution and analysis service, assigned to
Implementers), and the settings portion (purview management, access is assigned
only to system administrators). The latter presents the charts and tables in terms of
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the decision-related knowledge and users. Users can see the number and the distri-
bution of DSP templates in PDSIDES, the ranking of Creators who contribute their
knowledge to PDSIDES, the ranking of templates that are reused frequently, and the
latest updated DSP templates. They can also search, browse, and execute specific
templates.

4.4 Testing the Performance of PDSIDES—Hot Rod
Rolling Example Problem

The performance of platform PDSIDES is tested utilizing a gear manufacturing-
process design problem, i.e., a complex system design that calls for a series of
decisions. The foundational problem is contributed by our industrial partner, the
Tata Consultancy Services in India [10]. From the raw material to the final gear
product, the material goes through multiple unit operations such as casting, rolling,
cooling, forging, and machining, which are some of the steel manufacturing-process
chain processes. To obtain the desired end properties of the produced gear, some
proper decisions must be made about the process control parameters (set points)
during each process, with a large number of plant trials involving time and cost are
required to identify these operating set points. An alternative solution is exploiting
the advancements in modeling tools and frameworks to carry out the system’s design
to realize the end product. To couple the material processing-structure–property-
performance spaces, we integrate the vertical and horizontal models, which further
make it possible to carry out the integrated decision-based design of the manufac-
turing processes to realize the end product [11–17]. Decisions to be made at each
manufacturing unit are formulated as cDSPs and are linked as a decision network
(mathematically modeled as coupled cDSPs) using a goal-oriented, inverse decision-
based design method [11]. In this chapter, the hot rod rolling system-design problem
by Nellippallil et al. [11, 17, 18] is modified and exploited as an example to demon-
strate the performance of PDSIDES. As mentioned earlier, the problem includes
multiple stages. For the sake of simplicity, we frame a boundary within the cooling
stage and the final rod product requirements.

4.5 Hot Rod Rolling System (HRRS) Design Problem

One of the critical requirements in a gear manufacturing process chain is minimizing
the dishing/distortion during the gear blanks’ forging stage. A significant factor
influencing the distortion in forged gear blanks is the banded microstructure that
occurs due to the creation of micro segregates (caused by the segregation of alloying
elements likemanganese) and processing carried out at the rolling and cooling stages.
Managing the processing and the microstructural factors associated with banding
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will indirectly affect the final mechanical properties of the product. Hence, there is
a need to predict the final mechanical properties of the product (rod) as a function
of composition, microstructure, and the rolling and cooling parameters, satisfying
the requirement of managing the banded microstructure. To predict the mechanical
properties, several model integrations need to be implemented (vertical across scales
and horizontal across processes), starting from rolling and cooling up to the end rod
product, as illustrated in Fig. 4.8.

Nellippallil et al. [11] demonstrate applying a goal-oriented, inverse, decision-
based design method using the cDSP construct. They integrate the vertical and hori-
zontal models for the gear manufacturing process chain’s hot rolling and cooling
stages to produce a rod with defined properties. The mechanical property goals and
requirements for yield strength (YS), tensile strength (TS), toughness measured by
impact transition temperature (ITT), and hardness (HV) are identified for the rod.
These mechanical properties are dependent on the final microstructure after cooling,
like the ferrite grain size after cooling (FGS, Dα), the phase fractions of ferrite (X f )
and pearlite (1−X f ) the pearlite interlamellar spacing (S0) and the composition vari-
ables like silicon (Si), nitrogen (N), phosphorous (P), and manganese (Mn). Again,
these microstructure factors after cooling are defined by the cooling rate (CR) at

Fig. 4.8 Vertical and horizontal integration of models and information flow for hot rod rolling
problem [14, 17]
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which cooling is carried out, the final austenite grain size after rolling (AGS), and
the composition variables like carbon (C) and manganese (Mn). The AGS is defined
by the processing carried out at the rolling stage which requires the modeling of hot
deformation, recrystallization, grain growth, etc., for its prediction. In this study, we
frame a boundary within the cooling stage and the rod end product requirements. The
inputs to the cooling stage are the AGS, CR, C, and Mn from the rolling process, and
the outputs are Dα , X f , and S0, which, along with the composition variables, define
the YS, TS, ITT, and HV of end rod produced. The models used to formulate the hot
rod rolling problem are summarized in Table 4.2.

4.6 Knowledge-Based Decision Support in the Design
of HRRS

On the platform, the process designers are divided into three groups [2], namely
(1) Template Creators: They create single cDSP templates corresponding to each
operation of the gear manufacturing process using the terminologies defined in the
ontology and link these cDSP templates as decision network templates. (2) Template
Editors: They edit the existing templates when the requirements of the final gear
product are changed, e.g., new requirements are added. (3) Template Implementers:
They execute existing templates by specifying parameter values. Here, we test the
performance of PDSIDES in terms of template creation, consistency checking, and
post-solution analysis.

4.7 Original Design

In the original design, the template creator (domain expert) formulates in PDSIDES
the cDSP for the problem boundary framed within the hot rod rolling process chain
problem by considering the complete information flow across models, thereby estab-
lishing relationships. The relationships established in the original design cDSPare the
end mechanical properties of the product; YS (yield strength), TS (tensile strength),
ITT (impact transition temperature) and HV (hardness) as a function of the system
variables that are the output after rolling and are input to the cooling stage. The output
parameters after cooling are FGS (ferrite grain size,Dα ,Xf (phase fractions of ferrite),
S0 (pearlite interlamellar spacing). Moreover, composition variables that define the
end mechanical properties are defined as constraints in the formulated cDSP. The
end product mechanical property goals, e.g., maximizing YS, TS and minimizing
ITT, along with the goal for managing banding by maximizing ferrite fraction, are
captured in the cDSP. These goals are controlled by the independent system vari-
ables of this problem, namely CR (cooling rate), AGS (grain size after rolling), C
(carbon), and Mn (manganese). The upper and lower limits for the system variables
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Table 4.2 Models used to formulate hot rod rolling problem

Quantity Model References

Yield strength

Y S = X f

(

77.7 + 59.9 × [Mn] + 9.1×(0.001Dα)−0.5
)

+ 478[N ]0.5 + 1200[P]

+ (

1 − X f
)[145.5 + 3.5S−0.5

0 ]
where Y S is in MPa, So in µm, Dα in µm

Kuziak and
co-authors
[19]

Tensile strength

T S = X f

(

20 + 2440 × [N ]0.5 + 18.5 × (0.001Dα)−0.5
)

+ 750
(

1 − X f
) + 3

(

1 − X0.5
f

)

S−0.5
0

+ 92.5 × [Si]
where T S is in MPa, So in µm, Dα in µm

Kuziak and
co-authors
[19]

Hardness H V = X f
(

361 − 0.357Tm f + 50[Si]) + 175(1 − X f )

Average austenite to ferrite transformation temperature (Tm f )

is assumed as 700 ◦C

Yada [20]

Impact transition
temperature

I T T = X f

(

−46 − 11.5D−0.5
α

)

+ (

1 − X f
)

(−335 + 5.6S−0.5
0

− 13.3p−0.5 +
(

3.48 × 106
)

t)

+ 49[Si] + 762[N ]0.5

where Dα , So, p and t are in mm. We have assumed the value
of pearlite colony size p as 6 µm and carbide thickness t as
0.025 µm

Gladman
and
co-authors
[21]

Allotriomorphic
ferrite

X f a = 1.59 − 0.26[C] − 0.00856C R − 0.0105D

− 3.08[C] + 0.000826[Mn]C R

+ 0.0009[Mn]D + 0.7647[Mn][C]
+ 0.000011C R ∗ D + 0.002C R[C]
+ 0.0032D[C] − 0.05058[Mn]2

+ 0.00004C R2 + 0.000036D2

+ 2.483[C]2

Nellippallill
and
co-authors
[14, 17]

(continued)

and the maximum and minimum values for specific cooling stage parameters, and
the mechanical properties are defined in the cDSP as bounds and constraints. The
target values for the goals are defined as Y ST arget= 400 MPa, T ST arget= 780 MPa,
I T T T arget= −90 ◦C, X f T arget= 0.8. The original design cDSP reads as follows:
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Table 4.2 (continued)

Pearlite

X p = 0.206 − 0.117[Mn] − 0.0005C R − 0.00113D

+ 0.248[C] + 0.00032[Mn]C R

+ 0.000086[Mn]D + 0.9539[Mn][C]
− 4.259 × 10−6C R ∗ D + 0.00726C R[C]
+ 0.0023D[C] − 0.0305[Mn]2
− 0.0000056C R2 + 4.859 × 10−6D2

+ 0.79[C]2

Nellippallill
and
co-authors
[14, 17]

Widmanstätten
ferrite

X f w = 1 − (X f a + X p) Nellippallill
and
co-authors
[14, 17]

Total ferrite X f = (X f a + X f w) Nellippallill
and
co-authors
[14, 17]

Ferrite grain size
Dα =

(

1 − 0.45ε0.5r

)

× {(−0.4 + 6.37Ceq
)

+ (

24.2 − 59Ceq
)

C R−0.5 + 22
[

1 − exp(−0.015D)
]}

for Ceq < 0.35

Dα =
(

1 − 0.45ε0.5r

)

× {(22.6 − 57Ceq
) + 3C R−0.5

+ 22
[

1 − exp(−0.015D)
]

for Ceq > 0.35

where D is the final austenite grain size after rolling and εr is
retained strain. Ceq is the carbon equivalent defined as

Ceq = (C + Mn)/6

Hodgson
and Gibbs
[22]

Pearlite
interlamellar
spacing

So = 0.1307 + 1.027[C] − 1.993[C]2 − 0.1108[Mn]

+ 0.0305C R−0.52
Kuziak and
co-authors
[19]

Given

(1) End requirements identified for the rod rolling process

• Maximize Yield Strength (Goal)
• Maximize Tensile Strength (Goal)
• Minimize ITT (Goal)
• Maximize Ferrite Fraction (Goal)
• Maximize Hardness (Requirement)
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Table 4.3 System variables
and ranges for cDSP [2]

Sr. No. System variables Ranges

1 X1, Cooling rate (C R) 11–100 K/min

2 X2, Austenite grain size (AGS) 30–100 µm

3 X3, the carbon concentration ([C]) 0.18–0.3%

4 X4, the manganese concentration
([Mn])

0.7–1.5%

(2) Well-established empirical and theoretical correlations, RSMs, and complete
information flow from the end of rolling to the end product mechanical
properties (more description in Refs. [14, 17])

(3) System variables and their ranges for the original design cDSP (Table 4.3)

Find
System Variables
X1, Cooling Rate (C R)
X2, Austenite Grain Size (AGS)

X3, the carbon concentration ([C])
X4, the manganese concentration ([Mn])
Deviation Variables
d−

i , d+
i , i = 1,2,3,4

Satisfy
System Constraints

• Minimum ferrite grain size constraint
• Maximum ferrite grain size constraint
• Minimum pearlite interlamellar spacing constraint
• Maximum interlamellar spacing constraint
• Minimum ferrite phase fraction constraint (manage banding)
• Maximum ferrite phase fraction constraint (manage banding)
• Minimum manganese concentration constraint (manage banding)
• Maximum manganese concentration constraint (manage banding)
• Maximum carbon equivalent constraint (manage banding)
• Minimum yield strength constraint
• Maximum yield strength constraint
• Minimum tensile strength constraint
• Maximum tensile strength constraint
• Minimum hardness constraint
• Maximum hardness constraint
• Minimum ITT constraint
• Maximum ITT constraint
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System Goals
Goal 1:

• Maximize Yield Strength

Y S(Xi )

Y ST arget
+ d−

1 − d+
1 = 1

Goal 2:

• Maximize Tensile Strength

T S(Xi )

T ST arget
+ d−

2 − d+
2 = 1

Goal 3:

• Minimize ITT

I T T T arget

I T T (Xi )
− d−

3 + d+
3 = 1

Goal 4:

• Maximize Ferrite Fraction

X f (Xi )

X f T arget

+ d−
4 − d+

4 = 1

Variable Bounds
Defined in Table 4.3
Bounds on deviation variables

d−
i , d+

i ≥ 0 and d−
i ∗ d+

i = 0, i = 1,2, 3

Minimize
We minimize the deviation function
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Z =
4

∑

i=1

Wi
(

d−
i + d+

i

);
4

∑

i=1

Wi = 1

By utilizing the cDSP formulation, knowledge associated with the following
inverse the problem statement becomes: Given the end product mechanical prop-
erties of a new steel product mix, what should be the microstructure after rolling
and the design set points for the cooling stage that satisfies the requirements iden-
tified? To facilitate the knowledge capturing process in the computational environ-
ment, PDSIDES provides a GUI for the template creator to create the required DSP
templates (Fig. 4.9).

The building blocks on the left-hand side of the canvas, including Process and
Interface, are formally defined in the ontology to create decision network templates
(Hierarchical DSP templates). Since there is only one cDSP formulated for the orig-
inal design of HRRS, the template creator can instantiate a process on the canvas
and embody it with a cDSP template. The cDSP template is created in the “Compro-
mise Decision Template Base” portion of PDSIDES. As shown in the window on the
top-right of Fig. 4.9, the template creator can instantiate the HRRS cDSP template
by specifying the slots including name, problem statement, variables, parameters,
constraints, goals, and preferences using data such as Cooling Rate, Austenite Grain
Size, and Carbon Concentration of the HRRS cDSP. As shown in the two panels at
the GUI’s bottom, facet information of the slots, such as symbol, unit of a variable,
and equation, the limit of a constraint, are further specified using the GUI designed
for the instantiation of template modules. When the HRRS cDSP template is popu-
lated with specific information, it is sent to the knowledge server for consistency
checking, calculating the results, retention in the knowledge base, and availability
for future reuse in adaptive and variant designs.

Fig. 4.9 Creating the HRRS design decision template in PDSIDES [2]
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4.8 Adaptive Design

The template editor (senior designer) modifies the existing original design cDSP
template according to the new requirements in an adaptive design. In the hot rod
rolling problem addressed, the cDSP template of the original design relates the end
product mechanical properties as a function of themicrostructure factors after rolling
and the cooling stage operating parameters. The intermediate factors, e.g., the ferrite
grain size after cooling and the pearlite interlamellar spacing,which directly influence
mechanical properties, are defined as constraints. Suppose the designer is interested in
knowing the range of microstructure factors after cooling that will satisfy a given end
mechanical property requirement. In this case, a new decision model must be created
by considering the microstructure factors after cooling as independent variables to
define the end mechanical properties. This requirement can be easily satisfied by
editing the existing formulated original design cDSP template in PDSIDES. The
editing involves two significant steps: Step 1: decomposes the original cDSP template
into two separate cDSP templates, and Step 2: link the two separate cDSP templates
using an Interface.

The process of the first step is shown in Fig. 4.10. The original cDSP is decom-
posed into two cDSPs, namely, cDSP 1 and cDSP 2, with the former relating the end
mechanical properties as a function ofmicrostructure factors (Dα , X f , S0, Mn, Si ,N)
after cooling. The combination of microstructure factors after cooling that best satis-
fies the end requirements is identified by exercising this sub-cDSP. Regarding cDSP
2, it has the best combination of microstructure factor values after the cooling identi-
fied from cDSP 1 as goals. Using cDSP 2, the relationship between themicrostructure
factors after cooling with the microstructure after rolling and the cooling stage oper-
ating parameters (AGS, C R, C , Mn) is established. To realize the decomposition,
the modification of the original cDSP is as follows.

• For cDSP 1:

– Set ferrite grain size (Dα), phase fraction of ferrite (X f ), pearlite interlamellar
spacing (S0), manganese concentration ([Mn]), the composition of Si ([Si]),
and the composition of N ([N]), which are system constraints of the original
cDSP, to be system variables.

– Keep the other constraints and goals the same as the original cDSP.

• For cDSP 2:

Fig. 4.10 Decomposition of the original design cDSP
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– Keep the system variables, namely, Cooling Rate (CR), Austenite Grain Size
(AGS), the carbon concentration ([C]), and the manganese concentration
([Mn]), the same as they are in the original cDSP.

– Set ferrite grain size (Dα), phase fraction of ferrite (X f ), and pearlite inter-
lamellar spacing (S0), which are system variables of cDSP 1, to become system
goals.

– Set the final values of Dα , X f , and S0 obtained from cDSP 1 to be the targets
of the system goals of cDSP 2.

The first cDSP reads as follows:

Given

(1) End requirements identified for the rod rolling process

• Maximize Yield Strength (Goal)
• Maximize Tensile Strength (Goal)
• Maximize Ferrite Fraction (Goal)—Minimize Banding
• Minimize ITT (Requirement)
• Maximize Hardness (Requirement)

(2) Well-established empirical and theoretical correlations, RSMs, and informa-
tion flow from the end of cooling to the end product mechanical properties (for
a further description, see Refs. [14, 17])

(3) System variables and their ranges for cDSP 1 (Table 4.4)

Find
System Variables
X1, ferrite grain size (Dα)

X2, the phase fraction of ferrite (X f )

X3, the pearlite interlamellar spacing (S0)
X4, manganese concentration ([Mn])
X5, the composition of Si ([Si])
X6, the composition of N ([N])

Table 4.4 System variables
and ranges for cDSP [2]

Sr. No. System variables Ranges

1 X1, ferrite grain size (Dα) 5–25 µm

2 X2, the phase fraction of ferrite (X f ) 0–1

3 X3, the pearlite interlamellar spacing
(S0)

0.15–0.25 µm

4 X4, manganese concentration ([Mn]) 0.2–1.5

5 X5, the composition of Si ([Si]) 0.18–0.3

6 X6, the composition of N ([N]) 0.007–0.009
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Deviation Variables
d−

i , d+
i , i = 1,2,3

Satisfy
System Constraints

• Minimum yield strength constraint
• Maximum yield strength constraint
• Minimum tensile strength constraint
• Maximum tensile strength constraint
• Minimum hardness constraint
• Maximum hardness constraint
• Minimum ITT constraint
• Maximum ITT constraint

System Goals
Goal 1:

• Maximize Yield Strength

Y S(Xi )

Y ST arget
+ d−

1 − d+
1 = 1

Goal 2:

• Maximize Tensile Strength

T S(Xi )

T ST arget
+ d−

2 − d+
2 = 1

Goal 3:

• Maximize Ferrite Fraction

X f (Xi )

X f T arget

+ d−
3 − d+

3 = 1

Variable Bounds
Defined in Table 4.4
Bounds on deviation variables

d−
i , d+

i ≥ 0 and d−
i ∗ d+

i = 0, i = 1,2, 3



126 4 A Platform for Decision Support in the Design of Engineered …

Minimize
We minimize the deviation function

Z =
3

∑

i=1

Wi
(

d−
i + d+

i

);
3

∑

i=1

Wi = 1

The results obtained after exercising the cDSP 1 are provided in Refs. [14, 17] and
are not repeated here. We understand from the results that a low ferrite grain size and
low pearlite interlamellar spacing enhance the product’s end mechanical properties.
From the results obtained, we also learn the influence of high ferrite, high pearlite,
and banded microstructures after cooling on end mechanical properties [14, 17]. The
second cDSP is formulated next, with the results from the first cDSP as target goals.
The second cDSP is as follows:

Given

(1) Target values for microstructure after cooling (the best combination identified
from the first cDSP)

(2) Well-established empirical and theoretical correlations, RSMs, and complete
information flow from the end of rolling to the end product mechanical
properties (more description see Refs. [14, 17])

(3) System variables and their ranges for cDSP 2 (Table 4.5)

Find
System Variables
X1, Cooling Rate (CR)
X2, Austenite Grain Size (AGS)

X3, the carbon concentration ([C])
X4, the manganese concentration ([Mn])
Deviation Variables
d−

i , d+
i , i = 1, 2, 3

Satisfy
System Constraints

Table 4.5 System variables
and ranges for cDSP [2]

Sr. No System variables Ranges

1 X1, Cooling rate (CR) 11–100 K/min

2 X2, Austenite grain size (AGS ) 30–100 µ m

3 X3, the carbon concentration ([C]) 0.18–0.3%

4 X4, the manganese concentration
([Mn])

0.7–1.5%
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• Minimum ferrite grain size constraint
• Maximum ferrite grain size constraint
• Minimum pearlite interlamellar spacing constraint
• Maximum interlamellar spacing constraint
• Minimum ferrite phase fraction constraint (manage banding)
• Maximum ferrite phase fraction constraint (manage banding)
• Minimum manganese concentration constraint (manage banding)
• Maximum manganese concentration constraint (manage banding)
• Maximum carbon equivalent constraint (manage banding)

System Goals
Goal 1:

• Minimize Ferrite Grain Size (Achieve Target)

DαT arget

Dα(Xi )
+ d+

1 − d−
1 = 1

Goal 2:

• Minimize Pearlite Interlamellar Spacing (Achieve Target)

SoT arget

So(Xi )
+ d+

2 − d−
2 = 1

Goal 3:

• Maximize Ferrite Fraction (Achieve Target)

X f (Xi )

X f T arget

+ d−
3 − d+

3 = 1

Variable Bounds
Defined in Table 4.5
Bounds on deviation variables

d−
i , d+

i ≥ 0 and d−
i ∗ d+

i = 0, i = 1,2, 3

Minimize
We minimize the deviation function
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Z =
3

∑

i=1

Wi
(

d−
i + d+

i

);
3

∑

i=1

Wi = 1

The results obtained after exercising the cDSP 2 are provided in Refs. [14, 17] and
thus are not repeated here. The connection between cDSP 1 and cDSP 2 is that the
output, i.e., thefinal values of the systemvariables, of cDSP 1 comprises the input, i.e.,
the targets of the system goals, of cDSP 2. This connection represents the information
workflow linking two cDSPs, whichmaps to the earlier Step 2 for editing the original
cDSP template. The editing and associated consistency checking processes on the
platform are shown in Fig. 4.11. The template editor can instantiate two new cDSP
templates on the canvas, as highlighted by two red rectanglesmarked as “End Product
cDSP” and “Cooling cDSP” representing cDSP 1 and cDSP 2, respectively. These
two cDSP templates’ instantiation is the same as the one illustrated in Fig. 4.11.
It is noted that many modules of the original cDSP template are reused due to the
modularization during the instantiation process of the two new cDSP templates. The
link between two cDSP templates is captured by instantiating an Interface marked
as “Exchange” highlighted in the circle. Configuration of the Interface is performed
in the right window, where information in terms of an interface type, strength, and
information flow is specified. According to the interaction between the two cDSP
templates, the information flow is weak (one-way), sequential, and flows from cDSP
1 to cDSP 2. The content of the flow is the values of the five system variables of
cDSP 1. Before executing the edited decision templates, the Editor needs to check
any inconsistency due to editing. The consistency checking process is shown in the
panel at the bottom of Fig. 4.11. Consistency rules can be dynamically defined and
added into the reasoner for reasoning. The newly edited cDSP templates would be
ready for execution, storage, and reuse if no rule is violated.

4.9 Variant Design

The Template Implementer makes parametric modifications to the already devel-
oped decision templates in a variant design and executes the templates for different
scenarios. In this chapter, we showcase a variant design by executing the cDSP
template of the original design for different scenarios identified by assigning weights
to the deviations associated with each goal. We also illustrate the efficacy of the
ternary plots in PDSIDES to support the Template Implementer in exploring the solu-
tion space of variant designs to make appropriate design decisions. For the problem
formulated in the original cDSP, the Template Implementer is interested in accom-
plishing the following goals: maximizing ferrite fraction (to manage banding), maxi-
mizing tensile strength, maximizing yield strength, andminimizing impact transition
temperature. To visualize the goals in the ternary space, the Template Editormust first
edit the original cDSP template to remove the goal on impact transition temperature
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Fig. 4.11 Editing the HRRS design decision template in PDSIDES [2]

and assign it as a constraint with a minimum and maximum value. This is because it
is known that the impact transition temperature is directly influenced by changes in
weights to other goals and hence need not be considered as an explicit goal. Thus,
the variant design cDSP has three goals: maximizing ferrite fraction, tensile strength,
and yield strength. Having developed the variant design cDSP, the next step for the
template implementer is to identify the design scenarios for execution.

On the platform, the identification of design scenarios is facilitated by the panel
shown in Fig. 4.12. The template implementer can specify several weight combi-
nations (each combination stands for one scenario) for goal deviations using the
table on the top. Then, PDSIDES will calculate the result concerning each of the
weight combinations. In this example, 19 different scenarios are identified (the reader
is referred for further information on identifying scenarios to [12]). The template
implementer exercises the original cDSP template in variant design scenarios, and
the results obtained are sent to MATLAB (at the back-end of PDSIDES) to plot the
ternary plots shown in the bottom panel of Fig. 4.12. The template implementer iden-
tifies the regions (weight combinations) that satisfy the requirements from the ternary
plots. More information on the creation of the ternary plots and their evaluation is
available in [12].

The ternary plot regarding the ferrite fraction is presented in Fig. 4.13. The require-
ment for the template implementer is to maximize ferrite fraction to a value of 0.8,
while the maximum value achieved on exercising the cDSP is 0.7116 identified
by the light blue dashed line in the red contour region of Fig. 4.13. Any weight
combination of goals in this region achieves a high ferrite fraction. Similarly, the
high pearlite fraction region is identified by the blue region in Fig. 4.13. The highly
banded ferrite-pearlite microstructure region is identified in the boundary between
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Fig. 4.12 Exercising the HRRS design decision template in PDSIDES [2]

these two regions. The same method is extended to identify the regions that satisfy
tensile strength, yield strength, and impact transition temperature requirements.

In Fig. 4.14, we showcase the ternary plot for tensile strength. The requirement
for the designer is to maximize tensile strength to a value of 780MPa. The maximum
achieved on exercising the cDSP is 662MPa and a satisfactory region is identified by
the green dashed line in the red contour region of Fig. 4.14. Any weight combination
in this region satisfies this requirement.

In Fig. 4.15, we present the ternary plot for yield strength. The requirement for
the designer is to achieve a maximum tensile strength of approximately 330 MPa.
The maximum value achieved on exercising the cDSP is 284 MPa and a satisfactory
value is identified by the dark blue dashed lines in the red contour region of Fig. 4.15.
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Fig. 4.13 Ternary plot for ferrite fraction

Fig. 4.14 Ternary plot for tensile strength

In Fig. 4.16, we illustrate the ternary space for achieving the impact transition
temperature (ITT) when weights are changed for the three goals.

The requirement for the designer is to achieve a minimum impact transition
temperature. The minimum value achieved is−42 ◦C, a sastifactory region is identi-
fied by the red dashed line in the dark blue contour region of Fig. 4.16. Themaximum
ITT achieved is 99 ◦C and is identified by the red contour region.
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Fig. 4.15 Ternary plot for yield strength

Fig. 4.16 Ternary plot for ITT

Since the template implementer’s interest is to identify a common region that
satisfies all goals, a superposed ternary plot having all the goals is shown in Fig. 4.17.
Several solution weight points from the superposed ternary plot (A, B, C, D, E, F, G)
are identified and analyzed. The results associated with these solution weight points
are summarized in Table 4.6.
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Fig. 4.17 Superposed ternary plot

Table 4.6 Identified solution points after exploration

Sol. Pt CR
K/min

AGS
(µm)

C
(%)

Mn
(%)

Xf YS
MPa

TS
MPa

ITT
◦C

A 16.5 99.9 0.18 0.7 0.71 232 487.7 -26

B 99.9 30 0.29 1.5 0.32 248 662 99

C 22.8 30 0.18 1.5 0.7 284 526 3.5

D 11 30 0.18 1.5 0.71 283 519 0

E 11 30 0.18 1.5 0.71 283 519 0

F 11 30 0.18 0.7 0.7 244 513 -42

G 62 30 0.19 1.5 0.65 281 547 15

Analyzing Fig. 4.17 andTable 4.6 indicates that the light-yellow region satisfies all
requirements for managing banding (high ferrite), maximizing yield strength, maxi-
mizing tensile strength, and minimizing I T T in the best possible manner. However,
the requirements for high tensile strength and high yield strength are compromised
to satisfy the requirements of managing banding and minimizing I T T . It is also
observed that a high ferrite region supports maximizing yield strength and mini-
mizing I T T . However,maximizing the tensile strength is supported by a high pearlite
fraction. Point F out of these multiple solutions listed in Table 4.6 is chosen as the
solution as F satisfies all the requirements in the best possible manner.

By reusing the knowledge archived in the original HRRS design cDSP template
for execution and utilizing the ternary plot for post-solution analysis, the template



134 4 A Platform for Decision Support in the Design of Engineered …

implementer explores the solution space of variant designs and makes appropriate
design decisions.

4.10 Validation of PDSIDES

4.10.1 Empirical Structural Validation

Empirical structural validation involves accepting the appropriateness of the example
problem used to verify the performance of the PDSIDES for original, adaptive,
and variant designs. In this chapter, the gear manufacturing-process design problem
focused on rod rolling—a complex system design that calls for a series of decisions
to be made—is introduced. Decisions to be made at each manufacturing unit are
formulated as cDSPs and linked as a decision network. In original design addressed
in Sect. 4.7, the template creator (domain expert) formulates in PDSIDES, the cDSP
for the problem boundary framed within the hot rod rolling process chain problem by
taking into account the complete information flow acrossmodels thereby establishing
relationships. Using the formulated cDSP the ability of the PDSIDES platform to be
used to carry out original design is demonstrated. In adaptive design addressed in
Sect. 4.8, the template editor (senior designer) modifies the existing original design
cDSP template to satisfy new requirements. These requirements can be easily satis-
fied by editing the existing formulated original design cDSP template in PDSIDES.
The editing involves two major steps: Step 1, decompose the original cDSP template
into two separate cDSP templates, and Step 2, link the two separate cDSP templates
using an Interface. Two cDSPs are formulated from the original design cDSP to
demonstrate adaptive design. The cDSPs are interlinked via an interface of design
variables that are shared. Using the cDSPs formulated, the ability of the PDSIDES
platform to carry out adaptive design is demonstrated.

4.10.2 Empirical Performance Validity

Empirical performance validation consists of accepting the usefulness of the outcome
with respect to the initial purpose and accepting that the achieved usefulness is related
to using PDSIDES for original, adaptive and variant designs. In PDSIDES, decision-
related knowledge is modeled as modular, computational templates based on the
DSP constructs using ontology to facilitate execution and reuse. The advantages of
PDSIDES are that it provides the functionality to capture knowledge when Template
Creators create decision templates in original design, maintain consistency when
Template Editor modify decision templates in adaptive design and provide a package
of documented knowledgewhenTemplate Implementers executes decision templates
in variant design.
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4.11 Role of Chapter 4 and Remarks
on the Knowledge-Based Platform PDSIDES

Engineering system design is fundamentally a decision-making process and knowl-
edgeplays a critical role in facilitatingdecision-making. In this chapter, aKnowledge-
Based Platform for Decision Support in the Design of Engineering Systems is
presented and validated using a steel manufacturing-process chain problem. In
PDSIDES, decision-related knowledge is modeled with modular, computational
templates based on the DSP constructs using ontology to facilitate execution and
reuse. In order to provide users of different knowledge levels with a proper decision
support, we define three types of users, namely, Template Creators, Template Editors,
and Template Implementers, who perform original design, adaptive design, and
variant design respectively. The unique advantage of PDSIDES is that it provides the
functionality to capture knowledgewhenTemplateCreators create decision templates
in original design, maintain consistency when a Template Editor modifies decision
templates in adaptive design and provides a package of documented knowledgewhen
Template Implementers execute decision templates in variant design.

Distributed information control is not yet considered in the current version of
PDSIDES. Future research opportunities lie in enabling the negotiation of collabora-
tive decisions that are controlled by different stakeholders. For example, in theHRRS
design example process designers at different stages such as rolling, and cooling
may not be willing to sharing the full information in their own decision-making
process, and then the negotiation of a collaborative decision is needed. Providing
the functionality for negotiating collaborative decisions would be valuable for the
application of PDSIDES in a supply chain environment, where the decision-makers
are distributed. All these can be addressed by enabling the PDSIDES platform in the
cloud (Cloud-based PDSIDES) [23].

4.12 Where We Are and What Comes Next?

In this chapter, we present the design and implementation of the PDSIDES platform.
In the design part, we define three user types and their specific working scenarios.
We also define the knowledge-based decision support modes for different users and
working scenarios. In the implementation part, we introduce PDSIDES’ architec-
ture, components, programing language, and GUI portal. In the following chapters
(Chaps. 5 and 6), we add more functionalities to PDSIDES to provide knowledge-
based support in the meta-design of decision workflows and robust design space
exploration under uncertainty.
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Chapter 5
Knowledge-Based Meta-Design
of Decision Workflows

Utilizing an enterprise’s capital related to the knowledge of the design processes
has become crucial to improving the enterprise’s agility and ability to respond to
market shifts or changes. The complexity and uncertainty of design processes raise
the challenge of capturing tacit knowledge and aid in designing design processes.
This chapter involves capturing, representing, and documenting knowledge related to
hierarchical decision workflows in the meta-design of complex engineered systems.
The ontology is developed in the context of the Decision Support Problem Technique
(DSPT), considering the requirements of guiding assistance in designing design
workflows and integrating the problem, product, and process information in a design
decision-making process. The meta-design of a heat exchanger in a small thermal
system is presented as an example to illustrate the effectiveness of the knowledge
model. A summary of this chapter is presented in Table 5.1. The mapping of the
sections to the components (topics) discussed in this chapter is presented in Row 2
of Table 5.1.

5.1 Frame of Reference

Ontology is defined as a specification of a conceptualization, which can provide a
shared vocabulary for representing domain-specific knowledge [1]. Ontology has a
tremendous potential impact on engineering system designs [2], with the expected
benefits of employing ontologies being [3–5]:

• Flexibility—knowledge is defined in terms of an ontology instead of “hardcoding”
within the platform

• Intelligent behavior—knowledge can be derived from the factual knowledge
explicitly represented in the ontologies

• Semantic interoperability—semantics of the (possibly several) languages used by
the platform’s external parties can be defined by a set of inter-related ontologies
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Z. Ming et al., Architecting A Knowledge-Based Platform for Design Engineering 4.0,
https://doi.org/10.1007/978-3-030-90521-7_5

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90521-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-90521-7_5


140 5 Knowledge-Based Meta-Design of Decision Workflows

Table 5.1 Summary interpretation of the problem investigated in this chapter

Elements What?

Components Requirement of modeling meta-design of decision workflows (Sect. 5.2),
ontology development (Sect. 5.3), testing the performance of the ontology
(Sect. 5.4)

Connectors Meta-design and ontology

Form How?

Component roles Identify and capture the knowledge used for meta-design of design
processes

Properties Requirements of developing the meta-design ontology

Relationship The PEI-X diagram

Rationale Why?

Motivation To build a knowledge based for decision-based meta-design and provide
knowledge support to assist designers in process design

Assumptions Any design process can be represented using phases, events, and
information

Interpretation Understanding how meta-design related knowledge is represented using
ontology

• Expressiveness—context information is represented using a formal representation
language, which automatically checks the consistency of the models.

Based on the different classifications of the knowledge in design, ontologies are
categorized into “domain” and “task” ontology [6]. The former is concerned with the
“design target”, i.e., the product-related knowledge such as the product ontology for
PLM, service ontology for product and service family design, and device ontology.
Process-related knowledge is represented by “task” ontologies, which focus on the
semantic process modeling for a problem-solving method and manufacturing oper-
ation, e.g., Process Specification Language (PSL), from the National Institute of
Standards and Technology (NIST) [7], and TOVE (Toronto Virtual Enterprise) for
business and enterprise [8]. Several ontologies for design process knowledge have
been developed, taking into account various design views and functions.However, the
knowledge representation related to the decision-making process needs to be further
studied and compared with the business processes and generic engineering design
activities. For example, in [8–12], different ontologies are proposed to improve the
analysis, operation, and management of business processes, while in [7, 13–15], a
generic set of design activities is identified, and the corresponding ontologies are
developed to achieve a shared understanding and consistency of these activities. In
contrast, the defined decision support ontologies mainly focus on the description of
the decision-making itself while ignoring the significant tacit knowledge of orga-
nizing the decision-making activities from the perspective of system design that
involves the partitioning and planning of the appropriate decision support problems.
Consequently, the previous knowledge of decision-making activities is challenging
to reuse in designing new complex engineering systems.
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Some studies begin to explore the integration of design information by defining
the top-level ontology (upper ontology or foundation ontology) or select an avail-
able upper ontology, e.g., Basic Formal Ontology (BFO), General Formal Ontology
(GFO), or Standard Upper Merged Ontology (SUMO). For instance, Kitamura and
Mizoguchi [6] define a systematized functional ontology for the knowledgemodeling
of artifacts in the conceptual design phase, Štorga et al. [16] design an ontology based
on SUMO, which achieves a general design description for product development. In
this paper,we focus on defining a domain-independent ontology to capture, represent,
and document knowledge in meta-design process hierarchies from the perspective
of DBD.

5.2 Requirements for Meta-Design Process Hierarchies
Model

From theDBDperspective,meta-design is ameta-level process in designing systems,
including partitioning the design problem, decomposing the design processes into
a set of decisions, and planning the decision-making sequence [17]. In the context
of DSPT, a meta-design outputs an SPs word formulation and an initial plan, i.e.,
an initial solution network in the form of DSPT Palette entities. In the proposed
platform PDSIDES, themeta-design process is modeled computationally to facilitate
designers formulating a hierarchy of decision workflows and solving the DSPs. In
keepingwith the feature of design systems/processes hierarchy, aswell as considering
the needs of designers as users of PDSIDES in using the DSPT to designing decision
workflows, we identify the requirements for the computational model of meta-design
process hierarchies as follows:

• Decision-Centric Process Design

DBD is a mindset emphasizing the principal function of designers in design is to
make decisions. In the context of DBD, design involves a series of decision activi-
ties, with some of them made sequentially while others concurrently. Those design
decisions represent a form of communication with the features in terms of being
domain-dependent anddomain-independent.By focusingon the decisions, the design
processes can be described in a common “language” used by teams from various
disciplines while designing the design processes. Design decisions involve some
characteristics associated with the design of engineering systems that are summa-
rized in [17] and are equally applicable to different design processes in the life
cycle.
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• Flexible Decomposition and Reconfiguration

Engineering systems, e.g., ships and airplanes, are often too complex to be handled
in their entirety, and it is necessary to decompose these systems into smaller inter-
related subsystems. This hierarchical system feature determines the multileveled
and multidimensional designing of engineering systems [18]. Multilevel design
refers to designing decision workflows on a physical level, i.e., define the “parent”
system/process for other subsystems/subprocesses. In contrast, multidimensional
design involves designing decision workflows and a timeline, i.e., defining a stage
in the process as an action-specific activity. It requires a decomposable and solv-
able model to capture the complexity of the engineered systems using the available
computational power.

Furthermore, the model also needs to support dynamic decomposition as the
design evolves.Meanwhile, reducing the number of iterations and reusing the existing
processes, e.g., adaptive design and variant design, are also critical requirements
for designing process. Therefore, a flexible and reconfigurable design process is
necessary.

• Information Separation and Synthesis

The DSPT is a concrete implementation of the decision-based design philosophy.
In DSPT, the design is regarded as an information transformation process, which
converts the information of the product needs into knowledge about the product
[17]. Therefore, the purpose of decision workflows is information transformation.
Currently, traditional tools, e.g., FIPER,ModelCenter, and iSIGHT, capture the infor-
mation of the design processes to integrate the specific product information, which
lacks supporting meta-design in PLM frameworks [19]. Thus, it is hard to reuse
the definitions of different design processes to design a new product. In [20], a
method for resolving this issue of reusability by using domain-independent process
templates is proposed. Process templates support information transformations and
embody the interactions among these transformations. The template-based method
depends on developing reusable templates via separating procedural and declarative
information [21]. Procedural information is the information about the transforma-
tion process, while declarative information refers to the information associated with
product status. Additionally, it is equally necessary to consider the activity synthesis,
as designers need to generate various ideas, which are analyzed and synthesized into
forms that may represent acceptable solutions to the problem.

• Information Interaction

Meta-design involves information interactions at different levels and dimensions.
From the perspective of the PDSIDES users, it is necessary to express informa-
tion about design decisions in a standard format to facilitate designers’ interac-
tions [22]. From the perspective of the PDSIDES platform, the design information
model based on the DSPT involves the interactions of the model associated with the
design processes. Model interactions include the interactions among the various
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subsystems/subprocesses and between the “parent” system/process and subsys-
tems/subprocesses. Furthermore, due to the system’s characteristics discussed above,
the interaction among product, process, and problem must also be considered.

• Knowledge Reuse

With the progress of design processes, the freedom to make decisions is reduced, and
the qualitative ratio of hard and soft information increases [23]. This means that the
degree of partitioning and planning in a meta-design needed to proceed as the design
increases. For example, in DSPT, the reuse of cross-domain design information is
established by increasing the ratio of hard to soft information, especially in the early
design stages. Designers can reuse existing knowledge to influence idea generation
for design problem solutions and understanding how these ideas were evaluated or
even reusing the problem-solving methods.

• Visualization

Designing decision workflows require the development process of the model to be
visualized. The model of meta-design process hierarchies is identified as a complex
systemwith the characteristic of interactions among the “parent” system/process and
the subsystems/subprocesses. Designers will have intuitive awareness and under-
standing of their design problem through hierarchical structural visualization of the
computational model. This will increase the efficiency of model editing.

5.3 Ontology Development for Designing Decision
Workflows

Based on the requirements identified, in this section we present an ontology for the
computational model of the meta-design process hierarchy. In a computer environ-
ment, the ontology is accomplished by supporting the designer’s partition activities,
i.e., dividing the functions, structures, and processes, splitting the system into several
system layers, i.e., subsystems, sub-subsystems, etc. In the meta-design process hier-
archy, decomposition and reconfiguration are accomplished via the template-based
approach, with its effectiveness demonstrated in [24]. Information separation and
synthesis are facilitated via the interaction of information flow among different enti-
ties. The information expression related to designing of decision workflows in a stan-
dardized format is also required. Therefore, the execution of the process templates is
facilitated by employing a standard and computer-interpretable modeling language
underlying the ontology, namely OWL [1]. The latter supports parsing through
other applications, such as Java function calls, while visualization is achieved via a
graph-based editing tool in Protégé [25].
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(1) Identification of Concepts and Relations for PEI-X Ontology

Domain concepts are often described by a vocabulary of terms. DSPT Palette enti-
ties have identified a set of terms for modeling the process template, including
Phase, Event, Decision, Task, System, Information, and Knowledge
[22]. These terms are adopted and reused here by adapting concepts and explicitly
defining them as Classes based on the information model. In an ontology, the
semantic relationships among concepts are captured using Slots. The definitions
for the top-level concepts of the PEI-X ontology and related properties are:

• Class Process_Template

Design processes are carried out through various design activities, from the initial
requirements to the final product. The Class Process_Template is a general repre-
sentation of design activity workflows, which convert product information from one
stage to another. Within each Process_Template, a network of transformations oper-
ates and converts product design information via solving the problems associated
with design decision-making.

The concept of the Class Process_Template is shown in Fig. 5.1. This class
integrates all the template modules and represents the information structure of a
meta-design process in different stages. It represents a standard, scalable hierarchical
building blockwhere the solid box stands for the information integration unit with the
associated instances of classesSPs_Entity,Sys_Entity,GeneralDesign_Knowledge,
and DSP_Template plugged in (the dashed box is shown in Fig. 5.1). A hierarchy
is built by assembling a series of different SPs_Entity via the Class Interface that
has been defined in [26]. The data and object Slots for corresponding Class
Process_Template in PEI-X ontology are described in Table 5.2.

• Class SPs_Entity

The Class SPs_Entity is a general representation of SPs that consists of a series
of sub-classes: Phase, Event, Decision, and Task based on the definitions of the
DSPT Palette entity classes [22]. A Phase represents pieces of a partitioned process,

Fig. 5.1 Concept of Class Process_Template
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Table 5.2 Slots of Process_Template

Slot name Definition

templateType Symbol. Specifies the type of a Process_Template (e.g., “Process”, “Phase”,
“Event”, “Decision”, “Task”)

designFor Specifies the instance of design object that has a certain System in SPs_Entity

has_SPs Specifies the instance of associated SPs_Entity

use_Knowledge Specifies the instance of associated GeneralDesign_ Knowledge

e.g., “Designing for Concept” and “Designing for Manufacture”, an Event occurs
within a phase, and Task and Decision are employed to model phases and events.
Phases and events are accomplished by performing tasks and making decisions.
By instantiating those sub-classes, designers use them to model the timeline for
designing a specific system. Different SPs entities correspond to the different levels
of the design problem. The support for human designers using the DSP Technique
is provided through solutions to Support Problems, especially Decision Support
Problems. The concept of the Class SPs_Entity is shown in Fig. 5.2, representing
a standard building block where the solid box (or shell) is the information processing
unit with the associated instances of Class Information as input and output and
lines represent the associated vertical and lateral dependencies.

The data and object Slots for corresponding Class SPs_Entity in PEI-X
ontology are illustrated in Table 5.3.

• Class Sys_Entity

The Class Sys_Entity is a general representation of a core design object and its
related properties. To ensure the concepts’ consistency and standardization, here, we
employ the revised version of the Core Product Model (CPM) presented by NIST
[27], which is conceived as a representation of product development information. The
diagram of the Class Sys_Entity is shown in Fig. 5.3, where the Class Sys_Entity
involves five sub-classes: System, Property, Requirement, Behavior, and Specifica-
tion. The key object class in the Sys_Entity is a System representing a distinct entity
in a product, and its sub-entity is a ClassComponent and ClassPart. All the latter

Fig. 5.2 Concept of Class
SPs_Entity [28]
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Table 5.3 Slots of
SPs_Entity

Slot name Definition

Input Specifies the input Information
instance of a SPs_Entity

Output Specifies the output Information
instance of a SPs_Entity

L-Dependency Specifies the instance of lateral
Interface

V-Dependency_Root Specifies the instance of vertical
parent Interface

V-Dependency_Leaf Specifies the instance of vertical
subsystem Interface

Fig. 5.3 Diagram of Class Sys_Entity [28]

entities can be inter-related through the System Slots. A Property is an abstract class
from which the Classes Function, Form, Geometry, and Material are special-
ized. The function represents one aspect of the system’s entity output, while the
Form of the system entity can be viewed as the proposed design solution for the
design problem specified by the function. Geometry is the spatial description of the
system entity, and Material is the description of the internal composition of the
system entity. According to the features of the material properties, the ClassMate-
rial comprises the sub-classes:Gas, Liquid, Solid, andMixture. A Requirement is a
specific element of the specification of a system entity that governs some aspect of its
function, form, geometry, or material according to the customer’s needs. A Behavior
represents how the artifact implements its corresponding function. A Specification
describes the collection of information related to the designof a systementity deriving
from the customers’ needs and the engineering requirements.
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The data and object Slots for corresponding Class Sys_Entity in PEI-X
ontology are illustrated in Table 5.4.

• Class GeneralDesign_Knowledge

The Class GeneralDesign_Knowledge represents hard information derived from
a previous design process and can be reused in a new design process. There are
several types of design knowledge, such as the formula for calculations and designer
experience, e.g., preference for weight, which will support the solutions for different
design activities. The amount of knowledge will be rich as the number of process
template instances increases. The data and object Slots for the corresponding
ClassGeneralDesign_Knowledge in a PEI-X ontology are illustrated in Table 5.5.

Table 5.4 Slots of Sys_Entity [28]

Slot name Definition

Image String. Specifies the image of an instance

has_Behavior Specifies the Behavior instance of a Sys_Entity

has_Form Specifies the Form instance of a Sys_Entity

has_Geometry Specifies the Geometry instance of a Sys_Entity

has_Material Specifies the Material instance of a Sys_Entity

has_EngineeringInformation Specifies the engineering Information instance

has_Requirement Specifies the Requirement instance of a Sys_Entity

has_Specification Specifies the Specification instance of a Sys_Entity

application String. Specifies the application of a certain Behavior
instance

constructional_Features String. Specifies the constructional features of a certain
Behavior instance

performance_Features String. Specifies the performance features of a certain
Behavior instance

formType Specifies the instance of Form

use_Knowledge Specifies the instance of associated
GeneralDesign_Knowledge

density-ρ: kg/m3 String. Specifies the density value ofMaterial that is applied
to System

enthalpy-H: J/mol String. Specifies the enthalpy value of Material that is
applied to System

heatCapacity-C: J/(kg K) String. Specifies the heat capacity value of Material that is
applied to System

tensileStrength-S: kN/m2 String. Specifies the tensile strength value ofMaterial that is
applied to System

thermalConductivity-k: W/(m·K) String. Specifies the thermal conductivity value ofMaterial
that is applied to System

cost-USD/lb String. Specifies the cost price value of Material that is
applied to System
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Table 5.5 Slots of GeneralDesign_Knowledge [28]

Slot name Definition

expression String. Specifies the expression of a GeneralDesign_ Knowledge

input Specifies the input instance of an Information

output Specifies the output instance of an Information

Table 5.6 Slots of information [28]

Slot name Definition

informationType Symbol. Specifies the type of Information (e.g., “Concept”, “Quantity”,
“Function”)

subInformation Specifies the sub-information of a certain Information

attributeOf Specifies the attributes of a certain Information based on the instance of
associated Class (e.g., “Form”, “Material”, “System”, “Requirement”,
“Specification” “GeneralDesign_Knowledge”, “CO: Function”, “CO:
Quantity”, “CO: Response”, “CO: Behavior”)

applyTo Specifies the application of Information to a certain SPs_Entity

• Class Information

TheClass Information represents one of the transmission entities, i.e., information,
energy, and matter, to achieve the connections among the entities presented above
(SPs_Entity, Sys_Entity, and GeneralDesign_Knowledge). All those entities have a
common feature requiring some inputs and providing some outputs. The purpose of
the information transmission entity is to capture these inputs and outputs. The data
and object Slots for corresponding Class Information in a PEI-X ontology are
illustrated in Table 5.6.

• Reuse the existing classes

In the earlier works of the ontology-based representation of a DSP template,
Classes Interface [26],CO: cDSP_Template and its related sub-classes (see cDSP
ontology in [29]), as well as class SO: sDSP_Template and its related sub-classes
(see sDSP ontology in [30]) have been reused in the PEI-X ontology.

(2) Build Meta-Design Process Hierarchies Using PEI-X Ontology

Thedefinitionof Classes and associatedSlots are implementedbyusingProtégé
developed by Stanford University. This tool provides an environment for creating
and editing ontologies as well as populating Instances based on ontologies. The
building procedure and design scenarios for process templates are listed below.
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Fig. 5.4 Building Procedure for the Process Templates Hierarchy [28]

• Building Procedure for Process Templates

Thedefinitionof Classes and associatedSlots are implementedbyusingProtégé
tool [31] that provides an environment for creating and editing ontologies as well
as populating Instances based on ontologies. After the development of the
ontology, it is essential to create and populate instances. In an ontological environ-
ment, most of the populated instances can be reused in future designs. In the PEI-X
ontology, as a graphical tool for visual editing of the Instance and relationships
among Instances, the Protégé GraphWidget [25] is used to build the hierarchical
design activities in the process templates. To successfully reuse these instances, here
we define five types of design scenarios to create process template instances based
on their own design goals, namely “Process”, “Phase”, “Event”, “Decision”, and
“Task”. The building procedure is shown in Fig. 5.4.

Step 1. Create Process_Template Instances. Based on the design scenarios,
select the relevant blue box marked “Phase”, “Event”, “Decision”, and “Task” from
the left panel (represents Classes), and drag them to the right canvas (represents
Instances), and then edit the generated Instances. The number of SPs_Entity
Instance is determined by specific design problem information.

Step 2. Create SPs_Entity Instances. Based on the Process_Template
Instance created in Step 1, double-click the box of SPs_Entity Instance and
edit the generated Instances.

Step 3. Create Sys_Entity Instances. Based on the Process_Template
Instance created from Step 1, create the System Instance and its associated
Sys_Entity Instances, then edit the generated Instances.

Step 4. Create DSP_Template Instances. Based on the Process_Template
Instances created in Step 1, create the appropriate DSP templates (e.g., CO:
cDSPTemplateInstance and/or SO: sDSPTemplateInstance) for the solution
and edit the generated Instances.

Step 5. Create Information Instances and embed them into each
Process_Template Instance. Based on the Instances created in Steps
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1–4, create the corresponding Information Instances for each associated
Instances based on the relations, and edit the generated Instances.

Step 6. Create GeneralDesign_Knowledge Instances and embed them into
each Process_Template Instances. Based on the Process_Template Instance
and Information Instances created in Step 1 and Step 5, create the GeneralDe-
sign_Knowledge Instances and edit the generated Instances.

Step 7. Create InterfaceInstances and link each SPs_EntityInstance and
Information Instance. Drag the yellow circle marked “Interface” and diamond
marked “Information” from the left panel to the right canvas, and edit the gener-
ated Instances. The number of Interface Instances is determined by the
number of dependencies among the SPs_Entity in a problem. Link the SPs_Entity
Instances by specifying Slots “Process_1” and “Process_2” and “Lateral-
Dependency”, “Vertical-Dependency_Root” or “Vertical-Dependency_Leaf”. Link
the Information Instances and SPs_Entity Instances by specifying
Slots “input” and “output”. The Interface Instances implement the infor-
mation flows between SPs_Entity Instances by instancing Slots “Informa-
tionFlow: 1–2” or “InformationFlow: 2–1”. After these Slots are specified, the
links are automatically shown on the canvas.

Step 8. Run the model to solve the problemwith the DSIDES software and embed
the results into the corresponding Slots. This is done with Java function calls in
Protégé, with further details on the process described in [29].

• Design Scenarios of Process Templates

After the ontology development, it is essential to create and populate instances. In
an ontological environment, most of the populated instances can be reused in future
designs. While to successfully reuse these instances, various design scenarios for the
creation of process template instances are defined, the main types of scenarios for
process templates can be summarized as follows:

DS1: Design Process Template—this type of design scenario includes (a)
creating an instance of process template and populating its slots, (b) adding a new
system object instance, (c) adding the new necessary knowledge and related informa-
tion for the design phase, (d) populating slots for a particular system instance based
on existing knowledge and information, and (e) creating the phase support problem
entities and linking them using instantiated interfaces.

DS2: Phase Process Template—this type of design scenario includes (a) creating
an instance of process template and populating its slots, (b) creating the event support
problem entities in the appropriate phase, (c) adding the necessary knowledge and
related information for the design event, (d) enriching the existing design process
templates based on the results of the phase, and (e) linking each of event entities
using instantiated interfaces.

DS3: Event Process Template—this type of design scenario includes (a) creating
an instance of a process template and populating its slots, (b) creating the deci-
sion/task support problem entities in the appropriate event, (c) adding the necessary
knowledge and related information and its attributes for the design decision and task,
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(d) enriching the existing phase process templates based on the results of the event,
and (e) linking each of decision/task entities using instantiated interfaces.

DS4: Decision Process Template—this type of design scenario includes (a)
creating an instance of process template and populating its slots, (b) creating the
DSP template for solving an appropriate decision support problem, and populating
its corresponding slots based on the current information, (c) creating the task support
problementities in the decision, (d) adding the necessary knowledge and related infor-
mation and its attributes for the design tasks, (e) enriching the existing event process
templates based on the results of the decision, and (f) linking each decision/task
entity using instantiated interfaces.

DS5: Task Process Template—this type of design scenario includes (a) creating
an instance of a process template and populating its slots, (b) adding the necessary
knowledge and related information for the design task, (c) populating corresponding
slots based on the existing information and knowledge, (d) enriching the existing
event/decision process templates based on the results of the task, and (e) linking
each of the task entities using instantiated interfaces.

5.4 Test Example: Design of Shell and Tube Heat
Exchanger

In this section, we illustrate the validity of the PEI-X ontology through an example
of a heat exchanger design.

5.4.1 Design of Shell and Tube Heat Exchanger for Thermal
System

The small-scale power plant thermal system is widely used in farm irrigation. It
produces electricity by using direct mechanical power or running small generators.
The primary components of the small thermal system include a turbine to produce
power, a pump to pressurize the flow to the turbine, a condenser, and a heat exchanger
[32]. In the thermal system design, a decision-based approach is used to deal with
design problems by formulating a DSP model with cycle efficiency issues [32], the
choice of energy collector issues [33], and heat exchanger design issues [34]. In this
section, our focus is on the meta-design process of the heat exchanger for a thermal
system.

The heat exchanger is a heat transfer device transferring internal thermal energy
between two or more available fluids at different temperatures [35]. Heat exchangers
are classified intomany types, each having its construction and performance features,
which determine the corresponding application. The shell and tube type is the most
commonly used heat exchanger,which has frequent applications in power generation,
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Fig. 5.5 Shell and tube heat exchanger (one pass tube-side) [28]

the chemical industry, and the process industry [32]. As shown in Fig. 5.5, the major
components of a Shell and Tube Heat Exchanger (STHE) are a tube, baffles, shell,
and tube sheets.

The design methodology of a heat exchanger is covered in detail by Hewitt and
Barbosa [36], with the two most common heat exchanger design problems being
sizing and rating. The sizing problem involves selecting exchanger construction
type, tube and shell material, flow arrangement, and physical sizes of an exchanger
tomeet the specified heat transfer and pressure drop requirements. The rating problem
involves performance evaluation, such as the transfer efficiency and pressure drop.
The design of an STHE design process involves the following primary design consid-
erations: (1) thermodynamic design to ensure the required performance of the heat
exchanger and to satisfy the requirements of pressure drop for each stream, (2)
mechanical design to provide the mechanical integrity required by the design codes
and operating conditions, i.e., TEMA Standards, ANSI/API Standard 660, and (3)
cost and manufacturing considerations. Most of these factors are interdependent and
must be considered simultaneously to achieve the appropriate exchanger design.

5.4.2 Using DSPT Palette Entities for the Shell and Tube
Heat Exchanger Design

As shown in Fig. 5.6, the top-level design process of STHE is partitioned into three
major design phases, i.e., Designing for Concept, Designing for Manufacture, and
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Fig. 5.6 A model of the designing for concept phase [28]

Designing for Maintenance, and the input and output information, i.e., Customer
Needs and Total Life Cycle Design Knowledge. In theDesigning for Concept Phase,
designers convert information relevant to the customers’ needs and engineering
requirements for a product into specific knowledge used in designing for manu-
facture and maintenance, e.g., Detailed Solution for STHE Design Specification. In
the process of designing for manufacturing, designers seek solutions ensuring the
product can be manufactured cost-effectively.

In a computer environment, e.g., platform PDSIDES, the lower-level process
models can be displayed via the action of clicking on and opening an icon. For
example, we opened the Phase icon for Designing for Concept in Fig. 5.6, where
the events constituting this phase are visible. The first event of this phase is the
Development of Design Requirements (E0) and results in a document. This document
involving general design information forms the Conceptual Design Event (E1) input,
which feeds forward a basic concept while initiating a feedback loop to E0. The
information relevant to Basic Concept and the General Design Knowledge provides
the necessary inputs for the Preliminary Design Event (E2) and Embodiment Design
Event (E3). E2 provides a top-level specification, i.e., Preliminary Solutions, and E3

provides a general specification, i.e., Embodiment Solutions.
Clicking on the icon of Conceptual Design Event, the detailed model of this

event is given in Fig. 5.7. The primary goal of this event is to establish the Basic
Concept (BC). Therefore, Concept Alternatives, e.g., Tubular Heat Exchanger and
Plate Heat Exchanger, must be generated using General Design Knowledge. Then,
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Fig. 5.7 A model of the conceptual design event [28]

a Preliminary Selection Decision is made to identify the Suitable Concepts, e.g.,
Coiled Tube, Double Pipe, Shell, and Tube, set for further development, and a
Selection Decision is solved to identify the Basic Concept (e.g., Shell and Tube
Heat Exchanger). Influencing Attributes based on the considerations of technical
performance, economic and environment, etc., are needed for both the Preliminary
Selection Decision and the Selection Decision. The Goals and Constraints extracted
from the Design Requirements (DRs) are also needed to solve the problem of Selec-
tion Decision. The tasks of Determine Influencing Attributes, Extract Goals and
Constraints from the Design Requirements, and the generation of concepts can be
performed sequentially or concurrently.

Once the Basic Concept is known from the Conceptual Design Event, designers
can start the Preliminary Design Event. A process model of the Preliminary Design
Event is shown in Fig. 5.8. Here, the basic concept needs to be refined based on
the necessary knowledge. The subsystems and their related information must be
determined, e.g., Material Concepts and Mechanical Concepts, Thermal Analysis.
Based on the information, an STHE Design Synthesis needs to be performed. Thus,
material selection and dimensions for STHE have to be determined.
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Fig. 5.8 A model of the preliminary design event [28]

5.4.3 Design Scenarios for Shell and Tube Heat Exchanger
Process Templates

According to the process model for STHE design utilizing the DSPT Palette, the
specified design scenarios of process templates will be illustrated by building a
meta-design process hierarchies model via the PEI-X ontology.

DS1: STHE Design Process Template

The purpose of the design process template is to represent and document the infor-
mation that characterizes the customers’ needs into specific specification knowledge
of a product object in the design timeline. For this example, the customers’ needs
are to design a heat exchanger for the small-scale power plant thermal systems,
whose object is to achieve a minimum heat transfer area, minimum pressure drop,
maximum effectiveness, and minimum cost. To meet the demands, the phase support
problems for the designing involve three-phase instances in Class SPs_Entity, i.e.,
P1- “Designing for Concept”, P2- “Designing for Manufacture” and P3- “Designing
for Maintenance”, which are denoted with a blue box in the hierarchy graph, as
shown in Fig. 5.9.

In Fig. 5.9, the interactions of information flow between phase entities are
shown via the round yellow entities, i.e., “Interface-#1” and “Interface-#2”. For
example, the phase entities “P1” and “P2” are connected by the vertical type instance
“Interface-#1”, where the information flows “Design Solution of Concept Phase” and
“Improvement for Concept Phase Solution” are defined, respectively.

The design process hierarchy is instantiated as a “STHE_Design” process
template, presented in window “➀” shown in Fig. 5.10. There are four plug-in
instances of Class Process_Template, with the details of the plug-in instance
explained in Sect. 5.3.
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Fig. 5.9 Process hierarchies for design process template [28]

Fig. 5.10 Specification of the model for design process template [28]

As one of the primary instances, the Class Sys_Entity embedded in the
Instance “STHE_Design” is presented in window “➁”. Based on the result of
the concept phase process, the main specification information of the product has
been instantiated and populated in the corresponding Slots of Instance “Shell
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and Tube Heat Exchanger”. Such as the behavior alternatives of a heat exchanger are
chosen as theInstance “Shell andTube” type by the conceptual design event using
a preliminary selection decision support problem template and selection decision
support problem template. The engineering information of the Instance “Shell
and Tube Heat Exchanger” is identified by the preliminary design event using a
selection-compromise coupled decision support problem template, e.g., tube exterior
surface area (Ao), pressure drop (�P), heat transfer effectiveness (ε).

By separating design activities and their interfaces, information related to the
problem, product, and process in the STHE design enables designers to utilize
existing knowledge, and the design processes can be composed and reconfigured
easily. The representation and document of decision workflows for STHE design can
also be achieved by designing meta-design process hierarchies. Due to the consis-
tent structure of the process templates [37] and the consistent maintenance of DSP
templates [29, 30], designers can create, update, and reuse decision workflows.

DS2: STHE Concept Phase Process Template

The purpose of the phase process template is to partition the design problem into
an event support problem and adding the new necessary knowledge and related
information for the design event. In the design of STHE and according to some
general design knowledge that is embedded in the phase instance “Heat Exchanger
Design Methodology”, the phase process of the heat exchanger can be divided into
four events: E0- “Development of Design Requirements”, E1- “Conceptual Design
Event”, E2- “Preliminary Design Event”, and E3- “Embodiment Design Event”.
Each event has its corresponding input and output information.

In Fig. 5.11, the phase process hierarchies are instantiated as the
“STHE_ConceptPhase” process template, which is presented in window “➀” of
Fig. 5.12. There are four plug-in instances of Class SPs_Entity, “Conceptual

Fig. 5.11 Process hierarchies for phase process template [28]
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Fig. 5.12 Specification of the model for phase process template [28]

Design Event: E1” is presented in window “➁” and the design object of “Conceptual
Design Event, where E1” is selecting the best concept to meet the customer needs
from the generation of concept alternatives via formulating the appropriate decision
support problems based on the necessary knowledge and related information and its
attributes.

In Fig. 5.12, the information instance of “Concept Alternatives” is presented in
window “➂”, and three interfaces between the two events are defined as “Interface-
1#2”, “Interface-1#3”, and “Interface-1#4”. “Interface-1#2” is presented in window
“➃”, which is the connection to “Development of Design Requirements Event” and
“Conceptual Design Event”, and the identification of interaction of information flows
between the two events. “Interface-1#1” and “Interface-1#5” are used to represent
the relationship between the root and child process nodes, i.e., the vertical depen-
dency of parent/subsystem and information flows, where “Interface-1#5” also shows
a feedback loop.

A significant amount of new necessary knowledge and related information for the
design event is added in the design of phase processes, such as selecting the best
concept in the process of E1, the “likely-to-succeed” concept alternatives need to
be generated, which have been associated with the behavior of the Class System.
Various types of heat exchangers, e.g., coiled tube, double pipe, shell, and tube, will
be populated in the behavior slots of the Class System. Meanwhile, the knowledge
of the E1 process, e.g., heat exchanger selection criteria, will be populated.
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Fig. 5.13 Process hierarchies for preliminary design event process template [28]

DS3: STHE Event Process Template

The event process template is aimed to partition the design problem into a decision
support problem and task support problem and plan their execution sequences.More-
over, the event process template adds the necessary knowledge, related information,
and attributes for the design decision and task. In Fig. 5.13, we illustrate the process
hierarchy of a preliminary design event for STHE design. This event explores a
satisfactory solution as a feasible alternative, and the solution needs to meet specific
design goals and constraints, which are accomplished by formulating and solving a
selection-compromise coupled DSP. The event consists mainly of three tasks and one
decision: “T1_2#1”, “T1_2#2”, “T1_2#3” and D3- “Design Synthesis”, analyzed as
follows:

(1) The objective of “T1_2#1” is to generate the design concepts and related
attributes for STHE by the support of knowledge, such as, according to the
knowledge of thermal design for STHE, the design of STHE needs three types
of concepts, i.e., material concepts, mechanical concepts, and thermodynamic
concepts (window “➀” in Fig. 5.14). Each type of concept information has
its corresponding sub-information, which will support the implementation of
the decision-making activity, such as, the information about material concepts
has three types of sub-information, i.e., “Fluid in Tube”, “Fluid in Shell” and
“Material for Tube”, which are presented in window “➁”, “➂”, and “➃”,
respectively. The related material attributes are presented in windows “➄”
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Fig. 5.14 Instance relationships for information of material concepts [28]

and “➅”, and the values of properties of the material can be populated based
on the REFPROP [38] by using the Java function.

(2) “T1_2#2” is employed to refine the goals and constraints for the decision-
making activity in the design synthesis. As shown in Fig. 4.8, the output of this
task includes six goals, sixteen constraints, and six bounds. This information
is used to formulate the DSP.

(3) The object of “T1_2#3” is extracting variables based on the results of
“T1_2#1”. Hence, the system variables are determined by the material and
mechanical concepts, e.g., tube and shell fluid, tube material, tube pitch orien-
tation, and the number of tubes. To formulate the DSP, the deviation variables
also need to be defined in this task.

(4) The object of “Design Synthesis: D3” is executing the selection-compromise
coupled DSP based on the information results from the tasks mentioned above.
The information flows among them are represented via the “Interface-1_2#5”,
“Interface-1_2#6”, and “Interface-1_2#7”.

DS4: STHE Decision Process Template

The decision process template is primary in the design of meta-design process hier-
archies. Here, the focus is on the order of information for formulating and solving the
DSP, involving the identification of input information for the DSP formulation and
the documentation of the result by the “Task: Post Solution”, as shown in Fig. 5.15.
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Fig. 5.15 Process hierarchies for design synthesis decision process template [28]

The order of information for the DSP formulation of design synthesis is shown
in Fig. 5.16. The related information is populated into the Slots of DSP template,
with the detailed description presented in [29].

DS5: STHE Task Process Template

The task process template is a fundamental activity in designingmeta-design process
hierarchies, focusing on the information order, namely, identifying input and output
information. For example, in the thermal analysis process of “T1_2#1”, the overheat
transfer coefficient must be calculated to formulate the goal of heat transfer area (as
shown in [34]). The formula of overall heat transfer coefficient (U) is

U = Nt

1
ho

+ ro
Mk

ln
(
ro
ri

)
+ ro

hi ri

where hi and ho are convective heat transfer coefficient for inner and outer fluid,
respectively,Nt is the number of tubes, Mk the thermal conductivity of tube material,
ri and ro are the tube inner and outer radius, respectively.

The relationship of the information within the previous equation is shown in
Fig. 5.17, where the information flows between the calculated sub-task and parent
task “T1_2#1” is represented by “Interface-1_2#1#1”.
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Fig. 5.16 DSP formulation for design synthesis process of STHE design [28]
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Fig. 5.16 (continued)

Fig. 5.17 Process Hierarchies for the Calculate Task Process Template [28]
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5.5 Empirical Structural Validity

Empirical structural validation is to build confidence in the appropriateness of the
test example problems chosen for illustrating and verifying the performance of the
framework and methods. Using the design process template to design meta-design
process hierarchies involves deciding how the process templates are instantiated,
either as a top-downdesign decomposition or as a bottom-updesign evolution.Hence,
the decomposition approach of the process node needs to be considered during the
designing of process templates. In [39], a method is presented for determining how
the process node is designed as a top-down design decomposition node or a bottom-
up design evolution node. In this section we focus on the following points: (1) The
type of design scenarios formeta-design process hierarchies. In practical engineering
design, different scenarios may be designed sequentially or concurrently based on
o specific requirements. (2) Another critical focus is the purpose of various design
scenarios. The scenario of the design process template concerns the product informa-
tion, e.g., design specification, with the satisfaction of customers’ needs and design
requirements. The partition and planning of the design problems are the critical
points in the design scenario of the phase and event process templates. In contrast,
the design scenarios for decision and task process templates focus on formulating
and solving a specific design problem. (3) Identifying the information interaction
flows between the two process entities, represented by the interface instance.

5.6 Where We Are and What Comes Next?

In this chapter we develop an ontology for representing the knowledge related to
meta-design of decision workflows, which serves as the foundation for providing
knowledge support in designing of decision-based design processes on the PDSIDES
platform. The next chapter develops ontologies for representing knowledge related
to design space exploration and uncertainty management in designing decision
workflows.
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Chapter 6
Knowledge-Based Robust Design Space
Exploration

Understanding and predicting process behavior in complex engineering systems
design is important, primarily when incomplete and inaccurate models with unequal
fidelity are employed. Indeed, this case requires designers to have the ability to make
robust,modifiable, and flexible design decisions, especially in the early design stages.
To address this need, in this chapter, we propose ontologies for robust design and a
template-based ontological method that facilitates decision workflows, ensuring the
proper design information combination meets various goals and requirements in a
process chain. This is managed by utilizing (1) procedural knowledge—we define
the arrangement of activities required to systematically explore the design space for a
given uncertainty type, (2) declarative knowledge—we utilize the process templates
to capture and document reusable information of a robust design and develop a
frame-based ontology to formally represent tacit knowledge. The efficiency of our
method is demonstrated using a hot rod rolling process design example that analyzes
and synthesizes the microstructure-mechanical (rod module) and the processing-
microstructure (cooling module) simulation models. A summary of this chapter is
presented in Table 6.1. The mapping of the sections to the components (topics)
discussed in this chapter is presented in Row 2 of Table 6.1.

6.1 Frame of Reference

Modeling a design process in a computational environment is treated as a template
that can facilitate the executability and reusability of the domain-related informa-
tion by separating the declarative knowledge, i.e., problem-specific information,
from the procedural knowledge, i.e., process-specific information [1–3]. A template-
based approach for modeling various design decisions and uniform representation
of specific mathematical models is presented and validated in different application
cases [1, 4, 5], and it provides modular support for human judgment in system
design by means of the structured decision information content. An Extensible
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Table 6.1 Summary interpretation of the problem investigated in this chapter

Elements What?

Components Ontology for systematic design space exploration (Sect. 6.2), ontology for
designing robust decision workflows (Sect. 6.3)

Connectors Design process and ontology

Form How?

Component roles Identify, capture, and represent the knowledge for robust design space
exploration.

Properties Requirements for developing the Design Space Exploration ontology and
the Robust Design Process Ontology.

Relationship The PEI-X diagram and the design space exploration procedure

Rationale Why?

Motivation To build a knowledge base for robust design space exploration.

Assumptions There are four types of uncertainties in engineering design, the cDSP
construct is used for formulating decisions in design

Interpretation Understanding how robust design space exploration-related knowledge is
represented using ontology

Markup Language (XML) procedure has also been used to create decision templates,
providing a standard and easy-to-use tool to capture information [2]. Nevertheless,
the consistency and inherent structure of the way in which the reusable information is
used necessitates the formalization and representation of knowledge in the decision-
making process. As specifications of conceptualization, ontologies afford standard
terms or vocabulary, including their relationships, enabling formal representation of
domain-specific knowledge [6], and facilitating the creation and reuse of decision
templates.

Ontologies are used in several application domains ranging from knowledge
management, knowledge exchange, to semantic retrieval and information integration
[7]. The broad application is due to its unique expressiveness, semantic interoper-
ability, intelligent behavior, and flexibility [8]. Indeed, ontologies can capture and
archive design information in a generic way and encapsulate the concepts related to
an area that is ultimately shared and reused between teams and software agents in
a distributed design environment [9]. For example, Rockwell et al. [10] suggest a
Decision Support Ontology (DSO) to support collaborative designs during informa-
tion exchange in decision-making processes. Noor et al. [11] highlight ontology’s
beneficial value for activity identification under uncertainty.

In the semantic community, there is continuing research on extending the ontolo-
gies’ ability to formally represent uncertain knowledge and support reasoningwithout
accurate data [12–14]. Conceptually, current methods augment and supplement
the ontology modeling language—Web Ontology Language (OWL) with uncer-
tainty and annotate it by employing Bayesian networks, i.e., probabilistic networks
capable of expressing and assessing probabilistic knowledge [12, 15]. For instance,
during a product family design, a feature preference probability models a customer’s
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preference uncertainty toward specific product features, exploiting customer pref-
erence survey data. The customer’s preference uncertainty impact and propaga-
tion are quantitatively evaluated via the ontology-based Bayesian network [16].
Furthermore, Costa et al. [17] suggest an ontology reference model as part of
the Evaluation of Technologies for the Uncertainty Representation Working Group
(ETURWG), belonging to the uncertainty representation and reasoning evaluation
framework (URREF). Finally, the PR-OWL (ProbabilisticWeb Ontology Language)
is a Bayesian ontology language utilized as a supporting tool for this type of
application [14].

However, some practical limitations have also been realized with regards to indus-
trial implementation, especially in terms of robust design for model-based complex
engineered systems, the attention paid to representing and capturing process-related
knowledge that refers to uncertainty management is still inadequate. Sim et al. [18]
propose an ontology appropriate for generic engineering design purposes that inte-
grates the uncertainty and ambiguity into the activity of defining. Singh et al. [19]
suggest a decision support ontology that enhances a supply chain’s resilience utilizing
the uncertainty of disruption. In the context of DSPT, most previous work related
to decision-making knowledge representation has been focused on the information
under the case of certainty in design, nevertheless, uncertainty is a more commonly
encountered during the engineering design process.

6.2 Ontology-Based Representation of Systematic Design
Space Exploration

In this section, we develop an ontology to represent the Design Space Exploration
(DSE) template. First, we identify the requirements for modeling the knowledge
related to DSE. Second, we discuss the structure of a DSE template for addressing
the requirements. Third, we develop an ontology based on the structure of the DSE
template. Finally, we use a hot rod rolling design example to test the ontology’s
utility.

6.2.1 Requirements for Design Space Exploration

Inmodel-based engineered systems,managing the uncertainty and complexity during
the DSE processes is important. Kang et al. [20] highlight that a DSE framework is
effective if it involves: (1) an appropriate representation for the design space, (2) an
effective exploration method, and (3) an analysis process utilizing machine-assisted
methods. Chong and Chen [21] suggest an architecture for guiding designers in the
DSE processes within the conceptual design space. In our work, the exploration
process is extended to the subsequent design stages, where the design space can be
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quantified. To further ensure the validity of the design, we identify the following
requirements:

• Support Decision—Centric Robust Design

Decision-Based Design (DBD) bridges the gap between a model and a physical
world [22], emphasizing the crucial role of human designers during the decision-
making process in a computer design environment. It is widely accepted that a
design is considered a decision-making procedure involving a set of rational deci-
sions satisfying the designer’s preferences [23, 24]. Therefore, to achieve robust
decision-making under the conditions of complexity and uncertainty, human
designers typically exploit a specific set of methods that helps them to determine
potential robust strategies. As one embodiment of DBD, DSP provides domain-
specific mathematical models constructed as structured templates that formulate
a suitable design space representation.

• Support Understanding and Predicting of Process Behavior

Supporting the various decision-making requirements necessitates the design
space exploration processes to afford various aggregation levels. These levels
include analyzing, evaluating, synthesizing, and defining (each task to be
performed) at several levels of detail employing techniques that guide a task
sequence from one abstraction level to the next lower level. For this purpose,
Computer-Aided Engineering (CAE) tools enhance efficiency and facilitate
task accomplishment. Therefore, considering realizing model-based engineered
systems [25, 26], applying methods, processes, and tools to explore the design
space requires an environment integrating the related information and affording
enhanced communications to facilitate human designers in understanding and
predicting the process behavior in DSE.

• Interaction and Visualization Support

Realizing model-based engineered systems in a computer environment is impos-
sible without the information flows facilitating interaction among models. Given
the complex features of engineered systems, the design process hierarchy should
manage and organize the information flows to facilitate horizontal and vertical
integration. Thus, integrating information flows across several design process
dimensions and stages is essential. Additionally, visualization is also crucial in
supporting a robust decision-making process in the design space.

6.2.2 Design Space Exploration Procedure

In this section, we propose a design space exploration procedure that supports robust
decision-centric designs by identifying design alternatives and generating satisficing
solutions for the examined design problem. The suggested procedure is inspired
by RCEM [27] and CEF [28]. The DSE frame is a logical sequence of activities
achieving a particular objective (Fig. 6.1).
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Fig. 6.1 Design Space Exploration Procedure [29]

Step 0: Data Input/Output—Input A and Output H

The DSE procedure starts with the designer setting the requirements by either
providing data entry from a static problem statement or dynamic data, e.g., sensor
data. The DSE ends by determining the design solution regions or points, which
satisfy the requirements set and support the designer in making comprehensive deci-
sions. Determining the design requires the consideration of stakeholders’ conflicting
desires. This is because to effectively deploy a product, both the consumers’ and
producers’ needs should be incorporated in the decision-making process which
facilitates the conceptualization of design alternatives and constraints [30].

Step 1: Pre-Process—Processor B

Through meta-design [31], partitioning a problem and planning the decisions
processes employing generic discipline-independent modeling are presented in the
DSPT. For example, a PEI-X (Phase-Event-Information - X) diagram models the
design processes from an event-based time viewpoint. To ensure whether appro-
priate Support Problems are available to be solved via computer-based design and
analysis of design space, the problem’s complexity be further refined, i.e., clarify
the design by setting the decisions and relevant tasks. The information associated
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with the design space, i.e., bounds, goals, constraints, and variables, is obtained from
several sources to afford to model a specific problem.

Step 2: Problem Modeling—Processor C, D, and E

Determining the initial design space and providing a combination of design infor-
mation as inputs for the cDSP model requires the designer to model the problem
using mathematical formulations by performing three task processes (Processor
C, D, and E). The first process involves identifying essential design parameters
of the problem. These parameters are classified as control factors, x, that a designer
controls, noise factors, z, that a designer cannot control, and responses,y, thatmeasure
the goal’s performance. Additionally, the range of these parameters is also identi-
fied. Then, the functional relationship f between factors and responses, y = f (x),
is defined. Processor C exploits the available empirical and theoretical mathemat-
ical models relying on existing natural laws or experimental/modeling knowledge. If
somemodels are unavailable or it is required to developmodels to reduce the problem
size, designers have to develop surrogate/reduced-order models for the problem. To
address these concerns, [32] statistical techniques are needed, e.g., statistical design
of experiments and response surfacemethods, and ameta-model (model of themodel)
is developed by approximating the computer analysis codes to obtain an insight into
the functional relationship between y and x. In Fig. 6.2, we illustrate a generic
response surface modeling procedure that generates the prediction function, g(x),
approximating the true response surface function f (x) using support tools and base
steps.

Fig. 6.2 Generic procedure for response surface modeling [29]
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In the development processes of surrogatemodels, some candidate parameters and
boundaries (i.e., factors, responses, and ranges) are defined as the inputs based on the
existing knowledge. They characterize the design space for the identified problem
as well as factor levels used in simulations for Design of Experiments (DoE). The
SimulationProgram as a “slot” for inserting Finite ElementAnalysis (FEA) and other
simulation programs is used to run the experiments designed. Dataset generation for
the response surface models involves two stages of sequential experimentation for
building computer analysis approximations: screening and model building. For more
details, the reader is referred to [33]. Finally, the Point Generator and Experiments
Analyzer are used to design and evaluate the critical experiments and their results
[27].

Step 3: Compromise DSP—Processor F

DSE’s core step is the compromise Decision Support Problem (cDSP) that synthe-
sizes information to design with multiple goals under uncertainty [34]. From the
specific problem, the generated design information combination is input toProcessor
F that can handle multiple objectives, bounds, and constraints, minimize the devi-
ation function and determine the design variable values satisfying the conflicting
goals. Selecting the deviation function type between the Preemptive Formulation Z=
[ f1(d
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i , d+
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i )] and Archimedean Formulation Z = ∑
Wi (d

−
i + d+

i ),
depends on whether a designer has sufficient information and knowledge to indicate
the priority of the different objectives. Different design scenarios, defined by the
design preference, Pi, associated with the design goals, Gi, and their weights, Wi,
are established to explore the solution space through several executions of the cDSP
model. To solve the cDSP, the computational tool DSIDES is used, which incorpo-
rates an Adaptive Linear Programming (ALP) algorithm [35] and a user-specified
input file consisting of a data file that defines the design space size and FORTRAN
routines to monitor the solution process.

Step 4: Post-Solution Analysis—Processor G

The notion of a multi-objective approach based on the cDSP formulation originates
in an understanding of the problem defined by different performance criteria, which
is appropriate in design under various uncertainties because it offers a “satisficing
range” solution rather than an “optimizing point” solution. Rather than determining
the optimum single-point solution (optimization philosophy), the satisficing philos-
ophy pursues flexibility and modifiability during each design solution phase, espe-
cially in the early design phases. By defining the deviation functions, the designer can
design the weight combination during post-solution analysis that guarantees a “satis-
ficing range” of solutions and trade-off themultiple conflicting objectives. In Fig. 6.3,
the desired solution is implemented by utilizing the design preferences to analyze
the sensitivity of the weights of the goals. Different design scenarios are established
and grouped based on the designer’s requirements in the “scenarios experiments”.
The aim is to exercise these scenarios and explore the design space. The results are
then visualized and analyzed through ternary plots and comparison charts to bring
insight for decision-makers.
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Fig. 6.3 Procedure for design preference exploration [29]

Regarding the comparison chart, the goal deviation change trend in the various
design scenarios is a graphics display. Considering the ternary plot, the values inside
the color contours represent the deviation linked with each system goal or the actual
goal values per scenario. The color bar next to the triangles refers to the value changes.
Basedon the sensitivity analysis, several solutionpoints satisfying themultiple design
objectives from the feasible design space are identified and suggested as the design
values or operating set points.

In the exploration processes, the designer obtains the deviation response in various
design scenarios and determines a “satisficing range” solution meeting all the system
goals by superimposing the plots into one ternary plot. If a region meets all goals
simultaneously, the designer can alter the weight range to satisfy all the goals from
the superimposed plot and then determine the solution values that include the goals
and system variables. Another case is the inexistence of common regions [36]. In
such a situation, it is essential to modify the target value of system goals assigned
in the cDSP to lower the deviations and thereby enhance the overlap possible, or
even reformulate the constraints/goals to adjust the feasible design space. Both cases
are further analyzed in the following sections. Once the weight sensitivity analysis
is completed, solution points belonging to the satisficing range are recommended
to the designers, who have to trade-off the conflicting goals and choose a single
solution point as input to the next stage according to their empirical knowledge and
preference.
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6.2.3 Design Space Adjustment

Considering the interdependencies among the different design events within a design
process, the design space exploration processes must afford robustness and modi-
fiability to mitigate the design errors due to other design stages, e.g., processing
error. The constraints/goals of the cDSP model are functions of the system variables,
namely, f(xi) and g(xi), which can get response according to the minimization of
deviation variables under different design scenarios. Therefore, the design variables,
goals, and constraints must be analyzed concerning feasibility robustness. In this
section, we consider four possible scenarios in the design space (Fig. 6.4) that the
designer can explore to identify a common satisficing region based on the design
space requirements of the problem.

In Fig. 6.4, Scenario I, II, and III adjust target values associated with goals or
ranges of the variables, goals, and constraints in the initial design space, respec-
tively. In practice, the modifications are generally based on the designer’s empirical
knowledge and the corresponding comparison of the initial design results. Hence, a

Fig. 6.4 Four possible scenarios for the design space adjustment [29]



176 6 Knowledge-Based Robust Design Space Exploration

detailed response analysis can increase the designer’s confidence during decision-
making. Regarding Scenario III, the additional design space capacity that depends
on the constraints is determined by identifying the active constraints adjustments
[37], reducing the risk of boundary solution with zero tolerance to become infeasible
during variations. Hence, analyzing the constraint sensitivity affords the determina-
tion of the constraints that require modification by adding extra capacity. Regarding
Scenario IV, in addition to the system goals, the designer considers new constraints
or system variables requirements during his/her decision. Incorporating these “addi-
tional requirements” changes the design space, allowing the designer to make a
confident design decision. Scenario IV that occurs in the design process of a multi-
staged steel manufacturing procedure [28] is analyzed in Sect. 6.2.5. The appearance
of those four scenarios depends on the specific design problem and the settings of
the initial design space.

6.2.4 Ontology for Process of Design Space Exploration

We further satisfy the DSE requirements by developing a frame-based ontology
for the DSE process template that supports information management of informa-
tion reusability and enhances a designer’s understanding of the process behavior. In
this section, we define the slots and classes that establish a frame-based ontology and
present the exploration processes that exploit the ontology by preserving the DSE
process template model.

(1) Modular Process Template for Design Space Exploration

Modular-based design methods within a computational environment improve design
flexibility and enhance design efficiency. Thus, we develop a modular-based process
template model appropriate for design space exploration that manages reusability
and executability. The DSE process template primarily includes three sub-templates:
Problem Model (PM), compromise Decision Support Problem (cDSP), and Post-
Solution Analysis (PSA). The PM sub-template involves two modules: Theoret-
ical and Empirical Model and Surrogate Model, while PSA involves five modules:
Weight Sensitivity Analysis (WSA), Constraint Sensitivity Analysis (CSA), Addi-
tional Requirement Analysis (ARA), SSE_Experiment (Solution Space Exploration
Experiment), and Deviation Response. The cDSP’s template modules are presented
in detail in [4].

Figure 6.5 is the DSE process template similar to a printed board assembly that
has some electronic components. The elements (modules), such as the empirical and
theoretical models, and the deviation response, are denoted by “chips”, while the
process of Sect. 6.2.2 is the “breadboard”. Given the modular structure, the DSE
procedure template involves three reusability scenarios:
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Fig. 6.5 The DSE process template [29]

(1) Reusing the “breadboard”.Thedesign space explorationprocess corresponding
to the “breadboard” is reused by populating certain information on the board.

(2) Reusing the “chips”. Specific information, such as the Surrogate Model, refer-
ring to the “chips,” is reused in any problem variation for the exploration
process template.

(3) Reusing the assembly. An instantiated DSE process template with certain
information linked to the “chips” is reused, with some “chips”, e.g.,
SEE_Experiment, being modified and others unchanged.

The modular DSE process template allows capturing and reusing the DSE’s infor-
mation, increasing the designer’s decision-making confidence and providing insight
to make comprehensive decisions, especially in the early design stages.

(2) Class and Slot Definition

The main ontology structure in the DSE process template comprises the “chips”
embedded in the “breadboard”. The concepts within the DSE process template are
defined as Classes, such as PSA_Template, PM_Template, and DSE_Template,
while additional associated Classes, such as Factor, Response, and ResponseSur-
face, capture DSE’s reusability information that also increases the integrity and the
semantic richness of the DSE process template ontology. Table 6.2 presents the
detailed definitions of Classes.
Slots are used to capture the semantic relationships between Classes. Two

types of Slots exist: data and objects. The former links classes to end data, e.g.,
weightRange links theWS_Analysis to capture a weight range value, while the latter
type links classes to themselves or other classes, e.g., hasWSA links PSA_Template
toWS_Analysis. Tables 6.2 and 6.3 define the ontology’s data and object slots based
on the exploration processes and the DSE process template structure. Slots that reuse
other ontologies, i.e., image, value, and name,will not be described here (Table 6.4).
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Table 6.2 DSE process template ontology classes [29]

Class Definition

TernaryPlot A class representing the visualizing information of the desired
and sensitive regions of the solution space

SolutionPoint A class representing a point’s value in the specific satisficing
range solution

Preference A class representing the value of preference corresponding to
the associated system goal in a specific design scenario

FactorLevel A class representing the value of a factor level identified by
the designers

FactorValue A class representing the value of a specific factor
corresponding to the associated factor level

DesignScenario A class representing a set of preference values corresponding
to the associated design weight

VariableResponse A class representing the achieved value of the associated
system variable in a specific design scenario

ConstraintResponse A class representing the achieved value of the associated
constraint in a specific design scenario, including “Active
Constraint” and “Inactivate Constraint”

GoalDesponse A class representing the achieved value of the associated
system goal in a specific design scenario

GoalWeight A class representing the designers’ interest in the associated
system goal

Factor A class representing input variables corresponding to a
specific process

Response A class representing a mathematical model for performance
measurement

ResponseSurface A module integrating all the related information of a
surrogate model using the response surface methodology

DeviationResponse A module representing a set of goal deviations corresponding
to the associated design scenario

SSE_Experiment A module representing a set of design scenarios
corresponding to the associated goal weight

AR_Analysis A module integrating all the related information for the
additional requirement analysis that defines a typical range
solution

CS_Analysis A module integrating all the related information of the
constraint analysis to define extra capacity for the design
space

WS_Analysis A module integrating all the related information of weight
analysis to calculate a range solution satisficing all system
goals

SurrogateModel A module integrating all the related information of the
surrogate model and the experimental design

(continued)
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Table 6.2 (continued)

Class Definition

TheoreticalEmpiricalModel A module integrating all the related information of a
mathematical model for the initial design space

PSA_Template A sub-template integrating all the associated modules and
representing the information structure of solution space
exploration

PM_Template A sub-template integrating all the associated modules and
representing the information structure for a specific problem

DSE_Template A formulation integrating all the associated template modules
and representing the DSE’s process information structure

Table 6.3 DSE process template ontology data slots [29]

Class Definition Type

validationRSM The response surface model verification results String

typesOfFittingModel The fitting model types representing a regression meta-model Symbol

modelMatrix The model matrix (path) representing the treatment
combinations corresponding to the DoE types

String

simulationPrograms The code execution (path) employed to run the simulation
programs of the designed experiments

String

weightRange The weight’s range value for an associated goal satisfying all
the system goals

Interval

deviationValue A set of response values acting as a normalized treatment to
generate the ternary plot

Float

acceptableValue A value of the minimum requirements target that can be
accepted or approved

Float

preferenceValue A set of preference values for a specific design scenario and
experiment of the solution space exploration

Float

achievedValue A value achieved in response to the result of minimizing the
deviation function

Float

extraCapactiy A standard deviation value added to the active constraints with
zero or limited capacity

Float

resluts_of_SSE A set of values (system variables and goals) employed for
solution points satisfying all the design requirements and goals

Float

dataPoint A set of goal deviation values associated with a specific system
goal that it employed to generate the ternary plot

Float

factorVaule The value of a specific factor corresponding to the associated
factor level that is employed in the DoE simulations

Float

lowest_SSE The value of the lowest sum of squares error (highest R2) used
to fit the response regression model

Float
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Table 6.4 DSE process template ontology object slots [29]

Class Definition Type

preferenceValue Determines the Preference occurrence of the
DesignScenario

Instance

toScenario Determines the DesignScenario occurrence Instance

associatedWeight Determines the GoalWeight occurrence of the
Preference

Instance

associatedConstraint Determines the Constraint occurrence of the
AR_Analysis and ConstraintResponse

Instance

associatedGoal Determines the Goal occurrence of the TernaryPlot,
GoalDeviation, GoalWeight, and SolutionPoint

Instance

associatedVariable Determines the Variable occurrence of the AR_Analysis
and SolutionPoint

Instance

constraintResponse Determines the ConstraintResponse occurrence of the
CS_Analysis

Instance

hasARA Determines the AR_Analysis occurrence of the
PSA_Template

Instance

hasCSA Determines the CS_Analysis occurrence of the
PSA_Template

Instance

hasWSA Determines the WS_Analysis occurrence of the
PSA_Template

Instance

toFactorLevel Determines the FactorLevel occurrence of the
FactorValue

Instance

associatedFactor Determines the Factor occurrence of the FactorValue Instance

functionOf Determines the Factor occurrence of the Response Instance

hasResponse Determines the Response occurrence of the
ResponseSurface

Instance

hasFactor Determines the Factor occurrence of the
ResponseSurface

Instance

hasTEM Determines the TheoreticalEmpiricalModel occurrence
of the PM_Template

Instance

hasSM Determines the SurrogateModel occurrence of the
PM_Template

Instance

is_Solved Determines the cDSP_Template occurrence of the
DSE_Template

Instance

hasPSA Determines the PSA_Template occurrence of the
DSE_Template

Instance

hasPM Determines the PM_Template occurrence of the
DSE_Template

Instance
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Create Process_Template InstanceCreate DSE_Template
Instance

Create PM_Template
Instance

Create cDSP_Template
Instance

Create PSA_Template
Instance

Create WeightSensitivityAnalysis Instance

Create ConstraintSensitivityAnalysis Instance
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Create color TernaryPlot Instance by using the results of associated 
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Populate Slots by reusing the  Instances of Information and 
GeneralDesign_Knowledge

Create predictive Factor and Response Instances and embed  
them into RSM Instance based on the developed DoE

reuse

reuse

Design Event

Fig. 6.6 DSE process template instantiation process [29]

(3) Exploration Instantiation Employing DSE Process Template Ontology

According to the procedure for DSE defined in Sect. 6.2.2, DSE process template
comprises the PSA, cDSP, and PM templates, as illustrated in Fig. 6.6. Before initial-
izing the DSE process template, the designer needs to determine the corresponding
design event defined in the PEI-X diagram process, and regulate the examined design
problem’s relevant knowledge and design information. In this section, we focus
on creating and populating the PM and the PSA template, with the corresponding
instantiation process listed below.

• Create PM_Template Instance. Exploit the input instances of the Classes
Information and GeneralDesign_ Knowledge determined in the design event to
create and populate the TheoreticalEmpiricalModel Instance. If some existing
TEM instances are unavailable, a SurrogateModel Instance is created, i.e.,
create the predictive Factor and Response Instances and embed them into the
RSM (Response Surface Model) Instance based on the developed DoE. The
newly created template instance of the surrogatemodel is stored as newknowledge
for subsequent reuse.

• Create PSA_Template Instance. The PSA template involves weight and
constraint sensitivities, and additional requirement analysismodels that depend on
the problem examined and are populated into the PSA template instance Slots.
The WSA Instance is an essential module supporting the designer to deter-
mine the anticipated solution region. TheWSA input Slotmodule is the experi-
ment of the solution space exploration (SSE_Experiment), and the output Slots
are the TernaryPlot and DeviationResponse sub-modules, affording insight for
the designer during the decision-making process. The DesignScenario Instance
is created based on the populated slots Preference of the GoalWeight Instances
and is embedded into each SSE_Experiment Instance at the initial stages of the
post-solution analysis. The cDSP template results are captured by the instances of
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theClassesGoalResponse,VariableResponse, andConstraintResponse.Mean-
while, these various types of response instances are populated into theDeviation-
Response Instance. The Instance of color TernaryPlot per system goal is
created exploiting the associated goal deviation response results, which is popu-
lated into the WSA module, and then based on these ternary plots, a common
region satisfying all the system goals is established, forming the superimposed
ternary plot.

In some special problem cases, e.g., if the initial design solution space has no
common region, the designer must perform a detailed post-solution analysis to
increase understanding of the design response and the confidence in prediction.
Therefore, the CSA and ARA module Instances are established to capture the
information reusability in the design space adjustment for a satisfying range. In
the CSA module, the extra capacity of the design space is identified to adjust the
active constraints. While, in the ARA module, the variables/constraints are further
analyzed as an extra system goals requirement. Additionally, the Instance of
TernaryPlot per variable/constraint is created by employing the associated vari-
able/constraint deviation response results. All information from the ARA, CSA,
and WSA modules embedded into the PSA template instance contribute to deter-
mining the desired solutions from which some specific SolutionPoint Instances
are chosen to support the designer in identifying the design set points. Based on
the scenarios defined in Sect. 6.2.3, the different instance versions can document
the modified information based on the deviation response. For example, considering
the target requirements to be accepted or approved, the acceptable value is modified
based on the designer’s experience, knowledge, or preference to obtain a satisficing
common region. The adjusted acceptable value is captured by the various Ternary-
Plot Instance versions embedded into the corresponding ARA, CSA, and WSA
modules.

6.2.5 Test Example: Designing of Hot Rod Rolling Process
Chain

In this section, we illustrate the DSE process template ontology utility by consid-
ering the design problem of an automotive gear manufacturing process: a complex
system design requiring several decisions to be made. Manufacturing automotive
gears involves several processing stages. This section primarily focuses on the hot
rod rolling (HRR) process stage.

(1) Designing the Hot Rod Rolling Process Chain

The design problem of an HRR process chain is presented in Chap. 4. In this section,
we frame a boundary within the problem as determined byNellippallil et al. [28], and
illustrate the information reusability during the design space exploration procedures
employing the DSE process template. We demonstrate how a designer can capture,
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represent, and document reusable information of the hot rod rolling problem and
thereby support designers making decisions considering robustness in their design.

(2) Populating a Basic DSE Process Template Instance

Based on theDSEprocedure of Sect. 6.2.2 and theDSEprocess template instantiation
approach, we create a primary DSE process template instance and illustrate the
populated sub-templates for the problem model and the corresponding post-solution
analysis by exploiting the cooling module of the HRR problem.

• Creating and Populating the Process Template for the Problem Model

The problem model templates assist the designer in determining the initial design
space and providing a combination of the design information as inputs for the cDSP
model. In otherwords, the process designer initially determines the basic design space
features during the creation of the exploration processes (showcased in Fig. 6.7). For
the HRR process chain problem, the reader is referred to the embedded Instance
“ProblemModel-1” illustrated in window “➀” of Fig. 6.7. The problem module
inputs involve chemical compositions, e.g., manganese concentration after rolling
[Mn], carbon concentration [C], final austenite grain size after rolling (D), cooling
conditions, i.e., cooling rate (CR). The outputs are the end product’s mechanical
properties, i.e., hardness (HV ), tensile strength (T S), and yield strength (Y S) for the
rod, which dependend on the finalmicrostructure after cooling, e.g., the pearlite inter-
lamellar spacing (S0), the phase fractions of ferrite (X f ) and pearlite (1 − X f ), and

Fig. 6.7 PM template instances embedded in the DSE process template [29]
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the ferrite grain size after cooling (FGS, Dα), along with the composition variables
like manganese ([Mn]), phosphorous (P), nitrogen ([N]), and silicon ([Si]).

Within the boundary of the problem, the cooling and propertymodules inHRR are
addressed through two compromiseDecision Support Problem (cDSP)mathematical
constructs relying on the design set points of the steel manufacturing process. Thus,
the designer creates two theoretical and empirical model (TEM) modules providing
a combination of design information as inputs for the cDSP models, i.e., “TEM-
1” and “TEM-2”. As presented in Fig. 6.7, the design information comprising the
module includes: “system goal,” “constraint,” “system variable,” “design parameter,”
and “existing knowledge” about the available functional relationships. For further
details on these instances, the reader is referred to [28]. For example, the “TSM-
1” embedded in the Instance “ProblemModel-1” is shown in window “➁” of
Fig. 6.7.

The HRR problem examined here requires predicting the transformations of
the austenite phase. Depending on the cooling criteria, the transformation phase
during cooling converts austenite to various steel phases, i.e., allotriomorphic ferrite,
pearlite, widmanstätten ferrite, bainite, and martensite, etc. [39]. It is essential to
predict these transformation phases to manage the banding phenomena occurring in
themicrostructure. To develop surrogatemodels for the different steel transformation
phases, a meta-modeling approach is employed (window “➂” in Fig. 6.7). In this
case, it is assumed that the austenite transformations only occur in the ferrite and
pearlite phases.

Window“➀” of Fig. 6.8 presents a three-level fractional factorial design to develop
the response surface models for the austenite transformation to pearlite and ferrite
through the embedded Instance of “RSM-1”. For the experimental design, four
factors are identified to develop the responses of the transformation stages due to
the massive influence on the austenite transformation and the formation of banded
microstructures [40]. For the simulations, we also identify the factor values that
correspond to the appropriate factor levels (window “➁” of Fig. 6.8). The simulation
runs on programs that attain the input–output correlations so that the cDSP is formu-
lated based on the specific problem. For instance, for the problem of [36], the finite
element simulation software ABAQUS is used, in which a finite element model for
the hot rod rolling is created to predict the oval to round geometry conversion during
rolling. In this experiment, the experimental runs predicting the steel phases exploit
the “STRUCTURE” program based on the data and tools available in [39]. The input
and output datasets are utilized to estimate the parameter values of the meta-model
based on least squares. Usually, a regression meta-model is one of the three types: (1)
main effects model (first-order polynomial), (2) main and interaction effects (first-
order polynomial augmented with two-factor interactions), (3) quadratic model with
quantitative factors (second-order polynomial including purely quadratic). In Fig. 6.8
window “➂”, the regression model created for fraction pearlite X p with the lowest
sum of squares, an error R2 value of 0.99 is given, and it is generated by fitting a
second-order polynomial function.
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Fig. 6.8 Instance of the RSM model [29]

• Creating and Populating Templates for Post-Solution Analysis

According to the design information combination generated from the specific
problem model, we formulate two cDSP templates that are utilized to determine
the design variable values, which satisfy a set of conflicting goals, i.e., maximizing
YS and TS for the end mechanical properties of the rod and minimizing Dα and S0
for the microstructure space after cooling. For further details on the cDSP formula-
tions, the reader is referred to [28], while the description on creating and populating
the cDSP template is presented in [4]. In this section, we focus on preserving flexi-
bility in identifying design solutions under uncertainty and on the process where a
designer must explore several design preferences to guarantee a “satisficing range”
solution and trade-off the multiple conflicting objectives. The sensitivity analysis
and deviation response information during the exploration process is extracted from
the Slots of the PSA_Template.

In Fig. 6.9, we present the weight sensitivity analysis to determine the desired
solutions satisfying high priority goals. In this figure, the deviation function is an
Archimedean formulation affording the designer to explore as many scenarios as
possible by assigning several weight combinations to the associated system goals.
For this scenario, the process designer establishes four exploration experiment types,
which are captured by the Slots “Input” in the “WeightSensitivityAnalysis-1”
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Fig. 6.9 Scenarios for the solution space exploration trials [29]

(window “➀” in Fig. 6.8) of the “cDSP_Template-1”. The latter is used to define
the microstructure factors after rolling and the operating set points for cooling that
satisfy the system goals Dα , X f , and S0 as defined by the system variables CR, D,
[C], and [Mn].

As illustrated in Fig. 6.9, the design scenarios 1–4 in “Experiment-1” consider
the case where the designer’s interest is either achieving the target of one of the
system goals (S1, S2, and S3) or giving equal preference to all the goals considered
(S4). The design scenarios 5–7 in “Experiment-2” consider two goals given equal
preference,while the third goal is not given anypreference.Thedesign scenarios 8–13
in “Experiment-3” refer to the casewhere the designer has a greater preference for one
goal, less preference for the second goal, and no preference for the third goal. Design
scenarios 14–19 in “Experiment-4” consider all the goals are given preferences with
two of them having the same preference. The design scenario’s preference value
per goal weight is presented in window “➁” of Fig. 6.10. The cDSP template is
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Fig. 6.10 Instance of weight sensitivity analysis for cooling module [29]

used on various design scenarios exploiting the DSIDES tool. The cDSP models are
executed to minimize the deviation function and produce the corresponding system
variable values. Then, window “➂” of Fig. 6.10 presents the system’s goal deviation
variables representing the degree that a value is away from the target. Based on
those deviation variables, ternary plots are used to visualize and explore the solution
space, e.g., the solution space for “G1” (minimizing the ferrite grain size Dα) is
illustrated in Fig. 6.10. From the latter figure, the designer identifies the minimum
Dα value by employing the current cDSP template configuration information of
10.06 μm satisfying the acceptable value from the existing empirical knowledge
of 15 μm. The contour region determined by the red dashed lines comply with the
“G1” design requirements. The similar ternary plots for all systemgoals are generated
in the Slots “Output” of Instance “WeightSensitivityAnalysis-1”. According
to those design datasets, all goals are superimposed in a single plot to determine a
common region (pink area in window “➀” of Fig. 6.10), meeting all goals and
adding confidence to the designer’s decision-making process.Meanwhile, the weight
ranges linked with the joint region are also determined, and any weight combination
that sums to one guarantees the desired solution. A bar chart compares the goal
deviation within different design scenarios to enhance a designer’s understanding of
the solution space. In this bar chart, a shorter bar indicates that a solution deviation
from the target is low. Thus, a better design point/solution is found. Observing and
analyzing the pink area (superimposed region), we predict five solution points in the
following design scenarios: S6, S10, S11, S16, and S18. Thus, the designer must
consider the design trade-offs based on specific requirements and choose the final
design among the five solution points.

To enhance the reader’s understanding of this process, seven points are selected to
compare good and bad solutions considering different scenarios from the common
region identified, its boundary, andoutside it (Fig. 6.11). Thedesignpoint information
is populated in the Slots “Results_SSE” (results of solution space exploration)
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Fig. 6.11 PSA template for cooling module instance [29]

of Instance “PostSolutionAnalysis-1”. The detailed results are presented in Table
4.8.

For Table 6.5, solution points A, B, and C satisfy the associated goals, i.e.,
minimum ferrite grain size (Dα), maximum ferrite fractions (X f ), and minimum
pearlite interlamellar spacing (S0), respectively. Compared to the other design points
E, F, andG, point D that lies in the joint region and correspond to the design scenarios
S16 and satisfy all the conflicting goals in the best possible manner. Thus, point D

Table 6.5 Results on the selected points [29]

Sol
Pt

Dα X f S0
μm

CR
K/min

D
μm

[C]
%

[Mn]
%

A 12.5 0.684 0.149 11 30 0.19 1.02

B 10.06 0.681 0.176 99.9 30 0.18 0.7

C 19.9 0.714 0.182 11 74.2 0.18 0.7

D 10.74 0.681 0.151 44.4 30 0.18 0.94

E 10.33 0.673 0.151 70.3 30 0.18 0.93

F 10.33 0.673 0.151 70.1 30 0.18 0.93

G 11.05 0.687 0.151 33.06 30 0.18 0.95
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is the recommended solution. Then, this information passes to the following cDSP
models formulated for subsequent manufacturing operations, affording a horizontal
manufacturing process chain integration.

(3) Populating a Special DSE Process Template Instance

We create a primary DSE process template instance by employing the PM and the
PSA templates to populate the design space exploration reusability information for
the cooling module in HRR. For that scenario, a common region exists, satisfying all
goals simultaneously during the post-solution analysis. Thus, the process designer
confidently identifies the design set points from the desired solution space tomeet the
target microstructure requirements. However, the case where a common region does
not exist is also possible. This scenario is discussed in this section by instantiating a
particular DSE process template.

In the HRR problem, the module after the microstructure correlation calcula-
tion (cooling module) predicts the mechanical properties, with the corresponding
system goals for the rod (end product) are hardness (HV ), tensile strength (T S),
and yield strength (Y S). The theoretical and empirical models of the property
module (TEM-2 Instance) are populated in the PM template instance, allowing
the designers/users to define the design elements, e.g., variables, constraints,
and goals, along with the mathematical models considered in the cDSP model
(cDSP_Template-2 Instance) used to solve the property module. Similar to the
exploration processes presented in the previous section, the basic PSA template
module “WeightSensitivityAnalysis-2” Instance is established, and its output
Slots are created according to the cDSP_Template-2 Instance results which
are obtained by performing the solution space exploration scenarios. Based on the
ternary plots of each system goal, i.e., the rod’s mechanical properties, created by
utilizing the associated goal deviation response results, a superimposed ternary plot
is created to assist the designer in determining the desired solution region, which
satisfies the requirements (Fig. 6.12).

In Fig. 6.12, the contour region identified by the blue dashed lines satisfies
the system goal-1 of maximizing yield strength, and the maximum yield strength
achieved is 320.6 MPa when the weight assigned to yield strength goal is 1.0. The
pink contour region determined by the orange and green dashed lines simultane-
ously satisfies the system goals to maximize the hardness and tensile strength, which
are achieved when the associated goals weight tend to one. The maximum tensile
strength value is 750 MPa, and the hardness is 170. However, if the designer adjusts
the acceptable target values, a common region satisfying all system goals does not
exist. In this case, to make a design decision, the process designer must consider
additional requirements to adjust the initial design space and exploit the associated
information.When included in the solution space exploration scheme and the system
goals, the information linked with the system variables and constraints will/could
provide the designer with information that can be exploited to make a design deci-
sion in such cases. In the following section, the same case is explained for the HRR
problem.
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Fig. 6.12 Superimposed
ternary plot [29]

In the HRR problem, there are other design requirements affecting themechanical
properties, i.e., the banded microstructure after cooling and the material’s impact
toughness. To measure the impact on toughness, the transition temperature (I T T ) is
used to represent the boundary between brittle and ductile failure subjected to impact
loads, and pose a constraint on the initial design space. Meanwhile, we study the
bandedmicrostructure management after cooling by considering the pearlite fraction
(S0) and ferrite fraction (X f ) after cooling, which are defined as a system goal in
the previous process stage (i.e., cooling module) and system variables in the “TEM-
2” instance, respectively. In the mechanical properties module that considers post-
solution analysis, the Slot of additional requirement analysis must be populated
after the “WeightSensitivityAnalysis-2”. The “AdditionalRequirementAnalysis-2”
Instance is established based on the deviations of the constraint (impact transition
temperature) and the system variable (ferrite fraction) of the problem examined.
Window “➁” in Figs. 6.10 presents the solution space ternary plots considering the
constraint in I T T and the system variable (ferrite fraction (X f )) with respect to the
weight change linked to the system goals defined by hardness (HV ), tensile strength
(T S), and yield strength (Y S).

The red dashed lines identify where the impact transition temperature is minimum
in the constraint solution space, while the red dashed line refers to zero ITT. In the
variable solution space, white and gray dashed lines define the contour regions of
higher pearlite and ferrite fractions, with the intermediate region defining the highly
banded microstructure that has both pearlite and ferrite. By comparing plots, we
find that the value increases (65–100 °C) as the pearlite fraction increases, which is
unacceptable in practical designs. Therefore, we add a green dashed line referring
to ITT of 65 °C. Here, we aim to achieve a maximum value of ferrite fraction and
a minimum value of ferrite grain size and ultimately afford microstructure banding.
These additional system goals and requirements are presented in the superimposed
ternary plot (window “➀” of Fig. 6.10) to assist designers during the trade-off choices
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while aiming for a satisficing decision. The pink contour region having a high ferrite
fraction is determined in a compromised manner. The pink contour region meets
the impact transition temperature and yield strength requirements and compromises
the hardness and tensile strength requirements. To further illustrate this process,
some particular design points are selected (window “➀” of Fig. 6.10). Finally, the
recommended solution of interest is point B, as it has the maximum yield strength
and the highest ferrite fraction.

6.3 Ontology-Based Uncertainty Management in Designing
Robust Decision Workflows

6.3.1 Requirements for Uncertainty Management in Decision
Workflows

Leveraging knowledge related to the design process is essential to improve an enter-
prise’s agility, and thus strategic methods to effectively manage an enterprise’s intel-
lectual capital have drawn significant attention [41]. The design processes of complex
engineered systems are in their majority ad-hoc structure, exploiting previous design
experience [2]. Hence, the quality of a system design process greatly influences
design and cost efficiency [29]. According to Simon [42], “design process strategies
can affect not only the efficiency with which resources for designing are used but
also the nature of the final design as well”. Hence, designing the design processes,
i.e., meta-design, is crucial in a systems-based design strategy employed to design
complex systems, especially for multiscale systems with high degrees of uncertainty
and nonlinearity [43].

Various uncertainties in design coexist, and from a model-based complex engi-
neered systems realization perspective, a computational environment enabling the
systemmodel to integrate the vital design information is necessary tomanage various
uncertainties by applying existing processes, methods, and tools [8]. Thus, given
the semantic ontology interoperability in the computer environment, in Sect. 6.4,
we present a template-based ontological method to characterize and encapsulate the
uncertain knowledge in the engineering design on the foundation ofDecision Support
Problem Technique (DSPT) introduced below. The developed ontology is aimed for
a robust decision process enabling human designers to understand and predict the
process activities during the decision-making.

Considering DSPT, a robust decision-making process involves a specific set of
methods that shall help human designers identify potential robust strategies under
the conditions of complexity and uncertainty. A decision-centric meta-design of a
complex system design needs the decision process information flows to be effi-
ciently combined and organized, affording a human designer to accommodate uncer-
tainty and make a robust design decision. Standard design process models, e.g.,
IDEF0, BPMN, and EPC are not adequate to describe the information related to
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uncertainty existing in a process chain. Inspired by this, Phadke [44] develops a
P-Diagram based on a semantic graphical representation scheme representing the
process/product’s quality features that are valuable to describe a robust design task.
From the DBD perspective, the PEI-X diagram can visualize hierarchical decision
processes, providing a basis to graphically represent the robust design information
amid decision-making actions. Nevertheless, it is not trivial to utilize the PEI-X
and P-Diagram to express the activities linked to robust design and the uncertainty
impact on the decision-making processes. Therefore, it is necessary to use a hierar-
chical process model with a stronger semantically graphical expression to explicitly
depict the value of the parameters interlinked with individual subsystems and the
propagation characteristics of the uncertainty in the model and the process chain.

6.3.2 Procedure for Designing Robust Decision Workflows

In this section,wepropose a domain-independentmethod to help designers define and
create computational and reusable decision workflows, which involve experimental
designs, statistical analysis, and decision-making. The suggested method has the
following stages:

STEP 1: Identifying the uncertainty types

It is clarified and verified in several research studies that early design phase variations
significantly impact the performance and quality of the subsequent design. Hence,
while effectively managing the design uncertainties, the most crucial part is identi-
fying their types that require determining whether the uncertainty can be quantified.
Thus, while specifying the design problem, the primary task is to distinguish the
design parameters between numeric and attribute types. Four attribute types exist
defining the simulation model parameters: control factors, noise factors, response,
and fixed parameters. The numeric parametersmust be defined as intervals or discrete
values, as the system uncertainty involves the attribute types. To afford the designers
completing this work, we define a graphical expression to design the robust design
hierarchies, utilizing strong semantics representing each element’s features in the
robust design model layer. In Table 6.6, we present the revised graphical expres-
sion of [45] that captures three semantic information items of the model entity,
data attribute, and composite pattern. This graphical representation facilitates identi-
fying the uncertainty management types and represents the robust design hierarchy,
increasing the understanding of the relationships among simulation model elements
and uncertainty propagation.

To quantify the uncertainty sources, we define three variations based on a system’s
parameter distribution probability: namely, mean (μ), deviation (�x), and vari-
ance (σ 2). Acquiring these quantifiable variation values will determine the system’s
response estimation that will be managed using two methods:
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Table 6.6 Graphical expression for the hierarchies in robust decision workflows

Entity Symbols Semantics

hexagon box uncertain model

pentagon box certain model

rhombus box control factors, noise factors, the response, and
the fixed-parameter

Arrow Line Symbols Semantics

double dotted line ranged & uncertain

double solid line ranged & certain

single dotted line discrete & uncertain

single solid line discrete & certain

Composite Pattern Symbols Semantics

arrow out of the box to the bottom output response

arrow out of the box to the right determined variable

arrow from the top into the box goal/required response

arrow from the left into the box given value/parameter

• Input Parameter Uncertainty (IPU). The system model handles the uncertainty
imposed by the input parameters variability, i.e., control and noise factors. This
method guarantees that the solutions are insensitive to the input parameter vari-
ation. The corresponding robust design for this type of uncertainty management
type is Type I (for noise factors) or Type II (for control factors).

• Model Parameter Uncertainty (MPU): Handling the uncertainty imposed by the
unparameterizable variability in the system model. The corresponding robust
design is Type III, and it is used to identify a ranged set of solutions that are
relatively insensitive to the variability within the system model.

Due to the limited systemknowledge, some simplifications and assumptions of the
simulation require the uncertainty propagate in a chain of models. This uncertainty
type is unquantifiable and is managed by employing theModel Structure Uncertainty
(MSU) method. MSU belongs to Type IV robust design and includes two other
uncertainty management types. Several types of robust design will be performed in
Step 3.
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STEP 2: Designing the hierarchical decision workflows

The robust design problem is structurally modeled using the graphical expression
defined in Step 1,with themajority of the information describing the specific problem
being organized in a displayable manner. A further issue that needs to be solved is
exploiting this information to solve the design problem through a reasonable process.
ConsideringDSPT, various computational task sequences related to decision-making
are organized within the decision workflows. The process granularity of the different
levels is partitioned and planned to form the decision workflows meta-design hier-
archy.Based on the identified uncertaintymanagementmethods and the robust design
types, we define the hierarchical decision workflows to provide executable processes
for obtaining solutions satisfying the design requirement in the given design space.
To increase the effectiveness and efficiency of the meta-design of decision work-
flows, we model a graphical decision-making procedure based on the PEI-X process
language format. Subject to the functional goals, the decision workflows comprise
five process templates types: “Design”, “Phase”, “Event”, “Decision”, and “Task”
[41]. The iteration of the specific activities is applied in each executable process
template through the embedded computable module. The generated information is
exploited to manage the uncertainty in Step 1.

STEP 3: Executing the sequential computability routines

Step 2 is to partition and plan the executable design activities. To obtain a solution
that meets the design requirements, the sequential computable routines embedded
in the process template must be executed. Defining the computable routines in the
decision workflows is related to the design goals. Ref. [29] describes some of the
goals related to the design space exploration, e.g., the design preferences exploring
in the Post-Solution Analysis (PSA) module and the response surface modeling in
the Design of Experiments module. In this section, we focus on other computable
routines associated with the three types of uncertainty management identified in Step
1, namely:

• The computable routines for the IPU management. The response’s mean and
variance formulations defined in [46] are utilized in the robust designs Type I and
Type II for the IPUmanagement. Solutions satisfying a set of performance require-
ment targets are determined by considering the system’s performance deviation
resulting from the variation in control and noise factors. The Design Capability
Indices (DCI) must be calculated in the robust design Type III because the design
variables have adjustable ranges rather than a single value. Hence, the solutions
satisfy a ranged set of performance requirements [47].

• The computable routines for the MPU management. In the robust design Type
III, the premise of the above design scenario is that the simulation model is
certain. However, if the simulation model is identified in Step 1 as uncertain, the
Error Margin Index (EMI) must be calculated relying on the variability interval
formulation in the system response. Choi et al. [48] suggest a method estimating
the lower/upper response.
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• The computable routines for the MSU management. All the previous computable
routines may appear in the robust design Type IV due to the uncertainty type
identification for each model in the simulation models chain. A designer must
evaluate discrete points using the simulation model to identify the adjustable
ranges for the given design space while considering uncertainty propagation. The
most crucial phase of the evolution process is searching the feasible region for
the interdependent space between two models based on the hyper-dimensional
EMI (HD-EMI) and employing the discrete points created from the maximum,
minimum, and mean response functions. For a detailed calculation developed in
the IDEM, the reader is referred to [49].

6.3.3 Ontology for Designing Robust Design Decision
Workflows

According to the uncertainty management requirements of Sect. 6.3.1, we define a
modular template to achieve the goals of reusability and executability during the
robust design decision process. Furthermore, we develop a frame-based ontology
relying on the module elements embedded in the robust design template that enhance
the designer’s understanding of the process behavior. Then the ontology-based
template instantiation procedure is elaborated to maintain the robust decision work-
flows’ design approach. However, instead of employing visual tools to display the
ontology structure, such as OWL-VisMod, the meta-design visualization in robust
decision workflows exploits a graph-based editing tool in Protégé [50].

(1) The Modular Template for the Robust Design

In a computational environment, amodular-based design approach affords a designer
the opportunity to construct executable and reconfigurable process templates that can
implement flexible configurations for the different uncertainty management types
identified by the suggested method presented in Sect. 6.3.2. Hence, we develop a
modular-based template to enhance the executability and reusability capabilities that
are useful for a robust design process.

In Fig. 6.13, we illustrate that the robust design template is visualized as a struc-
ture similar to a printed board assembly with electronic components, in which the
elements are represented by “chips,” and the procedure to achieve the robust decision
workflows design is the “breadboard”. The three reuse scenarios of [41] and several
templates and modules from [29, 41] are reused to capture the decision process
information and the related problem model. The Process Template that integrates
the decision workflows meta-design is reused in the form of an assembly, and the
Process Template involving specific information of the “chips”, e.g., the Support
Problems or the cDSP template, is utilized to populate the related property Slots
of the robust template. For example, the parameter information of the control or
noise factors, the related responses, and fixed parameters of the simulation mode
are captured and documented by the Response Surface Model module developed in
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Fig. 6.13 The modular template for the robust design [51]

the design space exploration ontology. In this section, we define other new modules
related to uncertaintymanagement:ResponseFunction,Variation, andUncertainty,
with the corresponding functions presented in detail in Sect. 6.3.2.

(2) Defining Classes and Slots

We develop a frame-based ontology that is appropriate for the robust design deci-
sion process template using Protégé 3.5. The ontology can capture and document
the reusability information in the robust design and support the integrated uncer-
tainty management in the design process. The robust design decision ontology
comprises the Classes and Slots, and by mapping to the robust design template,
the “chips” in the “breadboard” determine the main ontology Classes. Mean-
while, some sub-classes are also identified, increasing the semantic richness
and integrity of the robust design template ontology. Here, the focus is on defining
Classes: Uncertainty, Variation, and ResponseFunction, and the semantic rela-
tionships captured using Slots among those Classes. Two Slots types exist:
data and object slots. The former link the classes to the end data, while the latter links
classes to other classes. Detailed definitions of Classes and Slots are presented
in Tables 6.7, 6.8 and 6.9. It should be noted that some Classes and Slots that are
reused from previously developed ontologies [4, 29, 41], such as Process_Template,
hasParameter, name, value, etc., are not described again.

(3) Instantiation Procedure of the Robust Decision Process Template

Based on the design method for a robust decision workflow introduced in Sect. 6.3.2,
the robust design template comprises the following modules and templates: Process
Template, Uncertainty, Variation, and Response Surface Model, as presented in
Fig. 6.14. In the robust design template instantiation process, a crucial aspect is
creating a PEI-X process template managing a proper granularity solving the defined
design problem under uncertainty. The method to create and populate the prop-
erty slots in the process template is described in [41]. This work highlights the
robust decision workflows design and achieves uncertainty management by reusing
the Instances Information created in the Process_Template. In the suggested
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Table 6.7 Classes of the robust design process ontology [51]

Class Definition

Robust_Template A formulation integrating all the associated modules and
representing the robust design information structure

Uncertainty A class representing the different management types under
the various source of the uncertainty types

ResponseFunction A class representing the system’s performance functional
relationship response under uncertainty

Variation A class representing the quantitative degree of the factors’
variation in the uncertainty

InputParameterUncertainty A sub-class of “Uncertainty” representing the robust design
information management due to uncertainty from the system
input parameters (i.e., “control factors” and “noise factors”)

ModelParameterUncertainty A sub-class of “Uncertainty” representing the robust design
information management due to uncertainty from the system
simulation model parameters (i.e., the unparameterizable
variability of the model)

ModelStructureUncertainty A sub-class of “Uncertainty” representing the robust design
information management due to uncertainty from the system
model structure formulation (i.e., the approximations and
simplifications in a model)

MeanResponseFunction A sub-class of “ResponseFunction” representing the
response’s mean function under different uncertainty types

VarianceResponseFunction A sub-class of “ResponseFunction” representing the
response’s variance function

LowerResponseBoundFunction A sub-class of “ResponseFunction” representing the
response’s lower deviation function

UpperResponseBoundFunction A sub-class of “ResponseFunction” representing the
response’s upper deviation function

Mean A sub-class of “Variation” representing the factors’ given
mean value (including noise and control factors)

Variance A sub-class of “Variation” representing the factors’ given
variance value (including noise and control factors)

Deviation A sub-class of “Variation” representing the control factors’
given variance value

ontology, the instantiation procedure for the robust decision workflows involves
three major phases:

• Creating the Robust_Template Instance and the related modules, i.e., Uncer-
tainty, Variation, and ResponseFunction. Based on the parameter features of the
defined design problem, i.e., the parameters variation in the simulation model, the
designer chooses and edits the relevant composite pattern, arrow lines, and boxes
to illustrate the graphical hierarchies of the simulation model by employing the
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Table 6.8. Object slots of the robust design process ontology [51]

Class Definition Type

robustDesignType Specifies the robust design type Instance

hasSM Specifies the Robust_Template surrogate
model instance

Instance

hasTEM Specifies the Robust_Template theoretical,
empirical model instance

Instance

hasCFs Specifies Robust_Template the control factor
instance

Instance

hasNFs Specifies the Robust_Template noise factor
instance

Instance

hasUncertainty Specifies the Robust_Template uncertainty
instance type

Instance

hasMeanResponseFunction Specifies the MeanResponseFunction
instance of the InputParameterUncertainty
and the ModelParameterUncertainty

Instance

hasVarianceResponseFunction Specifies the VarianceResponseFunction
instance of the InputParameterUncertainty
and the ModelParameterUncertainty

Instance

hasUpperResponseBoundFunction Specifies the UpperResponseBoundFunction
instance of the InputParameterUncertainty
and the ModelParameterUncertainty

Instance

hasLowerResponseBoundFunction Specifies the LowerResponseBoundFunction
instance of the InputParameterUncertainty
and the ModelParameterUncertainty

Instance

MeanOfCF Specifies the control factor’s Mean instance Instance

MeanOfNF Specifies the noise factor Mean instance Instance

VarianceOfCF Specifies the control factor Variance instance Instance

VarianceOfNF Specifies the noise factor Variance instance Instance

deviationOfCF Specifies the control factor Deviation instance Instance

designSpace Specifies the generated discrete points for the
defined design variables instance in the design
space

Instance

interdependentSpace Specifies the generated discrete points for the
defined design variables instance in the
interdependent space

Instance

graphical expression defined in Step 1. This identifies the robust design types and
the involved uncertainty management.

• Creating the Process_Template Instance and the related modules, i.e., Inter-
face, GeneralDesign_Knowledge, Information, cDSP_Template, Sys_Entity, and
SPs_Entity. According to the identified robust design type, the designer selects
and edits the relevant interface, information, and process entity to illustrate the
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Table 6.9 Data slots of the robust design process ontology [51]

Class Definition Type

lowerRequirementLimit The lower requirement limit value for the system
performance design requirement

Float

upperRequirementLimit The upper requirement limit value for the system
performance design requirement

Float

targetForDCI The design capability index target value Float

targetForEMI The error margin index target value Float

targetForHD-EMI The hyper-dimensional error margin index target value to
estimate interdependent space

Float

valueOfHD-EMI The hyper-dimensional error margin index value to estimate
design space

Float

CL(1-α) The confidence level value to predict the interval estimation
with the Student t-distribution

Float

numOfPredictors The predictors’ cardinality in an approximate model to
predict the interval estimation with the Student t-distribution

Integer

numOfSamples The samples cardinality to predict the interval estimation
with the Student t-distribution

Integer

decisionCriterion The decision preference to indicate the location of the
system response

String

Fig. 6.14 Instantiation procedure of the robust design template [51]

graphical hierarchical decision workflows that primarily involves partitioning and
planning the support problems.

Running the executable modules embedded in the defined decision workflows
and populating the property Slots in the Robust_Template Instance by reusing
the created Information Instance. In the Process_Template Instance, the
executable computing modules, e.g., solving the cDSP-DCI/EMI model, calculating



200 6 Knowledge-Based Robust Design Space Exploration

the functions of DCI/EMI, and developing the response surface model, will be
embedded in the process templates at different levels in the format of knowledge.
By invoking and instantiating these modules, reusing and populating the generated
information into the Uncertainty Slots property is possible. Additionally, in the
robust design template reusing and populating ResponseFunction, i.e., determining
the information instances of the response function by instantiating the designing of
experiments or reusing empirical models, is also possible.

6.3.4 Test Example: Design of Hot Rod Rolling System

In this section, the utility of the robust decision process ontology is tested using a hot
rod rolling (HRR) design example. This example involves integrated design of mate-
rial, product, and associated manufacturing processes, requiring several hierarchical
decisions to manage the uncertainties involved. The designer (decision-maker) aims
to identify the processing paths and material structures that satisfy specific product
and manufacturing process-level requirements and performances [52]. In [53, 54],
the authors present model-based methods to realize engineered materials, products,
and the associatedmanufacturing processes to link thematerial processing-structure–
property-performance domains. In this work, we explain the robust decision process
chain of hot rod rolling simulationmodels, and represent and capture the robust design
uncertainty knowledge for the simulation models using the developed ontology.

(1) Design Problem of an HRR System

In a steel manufacturing process, rods and bars involve serial unit operations like
continuous casting, reheating, rolling, and cooling. To integrate horizontal and
vertical information flows for the HRR process chain problem, it is necessary to
model the material behaviors at different scales and within different unit operations
[55]. Developing steels with high-quality performance and a range of properties is
vital for manufacturing designers. The steel products’ mechanical properties and
performance can be improved by manipulating the material processing and tailoring
the microstructure of the steel material generated [29]. Nevertheless, this strategy
involves a highly complex decision process chain. The designer has to deal with
the constraints and bounds, conflicting goals, system variables, and process parame-
ters, etc., because of a large amount of information for the sequential manufacturing
process and material processing flows.

Traditional plant trials are usually expensive and time-consuming, and therefore,
simulation-supported trials exploit the computational modeling at various scales to
obtain the desired mechanical performance and properties for the steel products.
The HRR simulation model chain adopts the method proposed by Nellippallil et al.
[52, 55], who define the forward information flows of the hot rolling and cooling
manufacturing stages, which are part of the hot rod rolling process. The quality of
the end product rod is measured employing the identified mechanical property space,
i.e., hardness (HV ), tensile strength (TS), and yield strength (YS) that depend on the
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final microstructure after cooling. The rod’s properties are related to the pearlite (Xp)
and ferrite (Xf ) fractions, the chemical composition of the material (e.g., silicon [Si],
nitrogen [N], manganese [Mn], etc.), the pearlite interlamellar spacing (So) and the
ferrite grain size after the austenite to ferrite and pearlite (FGS, Dα) transformation.
Thus, the microstructure space is developed during the HRR process cooling state,
where the inputs involve the chemical composition after the rolling stage process,
the cooling rate (CR), and the final austenite grain size (AGS, D). The integrated hot
rolling and cooling design process complete HRR’s forward material workflow and
establishes the material system’s process-structure–property-performance hierarchy.

Several authors have highlighted the challenges related to the simulation-based
multiscale material design [54, 56] that are related to (1) uncertain material models
(including responses, parameters, input factors, etc.) due to lack or simplifica-
tion/idealization of complete knowledge and (2) the uncertainty propagation due to
Olson’s relationship of processing-structure–property-performance or hierarchical
information dependence in a multiscale model chain. To determine a solution having
satisfactory robustness for the specific design requirements, integrating the hori-
zontal and vertical HRR design simulation model chain of the problem affords the
designer the opportunity to perform a robust decision-based design exploration of
the manufacturing process chain. Hence, uncertainty management while designing a
robust decisionworkflow is essential. Thismanagement process requires the designer
to determine the necessary sequence of activities for the systematic design space
exploration under uncertainty, ensuring the proper combination of the robust design
information that meets the various constraints and the conflicting goals. To highlight
uncertainty management during designing decision workflows, we demonstrate how
a designer can capture, represent, and document the reusable information in the HRR
problem and thus assist designers to explore the design space by exploiting the robust
decision process template.

(2) Robust Decision Process for the Processing-Microstructure Simulation
Models

In theHRR’s cooling stage, the process designermust initially determine the basic
features of the problem model before creating the processes to solve and explore
the problem. Hence, the robust design template allows the designer to define the
problem’s initial robust design space, such as the process/productmodel, fixedparam-
eters, response, and factors (noise, control, and signal factors). Fig. 6.15 presents a
robust template instance for the cooling module as created based on Sect. 6.3.2 Step
1, displaying a graphical expression to design the robust design hierarchies. Further-
more, the integrated uncertaintymanagement information and the related robust deci-
sion processes should also be captured and documented to assist the process designer
in finding a robust solution. For the HRR cooling module, the Robust_Template
Instance “HRR_RD_CoolingModule” is established and populates the corre-
sponding Slots instances. In this work, we highlight the same by employing
Fig. 6.15, where the designer adopts the empirical models to process amicrostructure
simulation chain [57], with the responses of pearlite interlamellar spacing So, ferrite
grain size Dα , and ferrite fraction Xf defined as the control factors’ function (inputs
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Fig. 6.15 Instance of the robust design template for cooling module in HRR process [51]

of microstructure space) and some related fixed parameters. Details are presented
in the Instance of PEI-X process template “HRR_RD_Event_ CoolingModule”
embedded in the robust design template.

Figure 6.16 shows that the hierarchical decision workflows are established based
on Step 2 of the method presented in Sect. 6.3.2. Adopting the definition of the
various process templates types of [41], the “HRR_RD_Event_CoolingModule”
Instance is an “Event” process template. The primary function of an event
process template is partitioning the design problem into some decision and asso-
ciated task support problems, then constructing their execution sequences. An
additional function is populating the design object, the design decision, task
information, and the necessary knowledge to be reused in the design activities.
For the cooling module case, the event instance inputs comprise the embedded
“HRR_RD_Cooling_DesignRequirement” and “HRR_RD_Cooling_Design Space”
Instances, and “HRR_RD_Cooling_Solution” is the output. The event support
instance problem is split into three related tasks and one decision activity; namely,
Instances “T2#1: ClarifyingTask”, “T2#2: EstimatingUncertainty”, “D1#1:
compromiseDSP”, and “T2#3: ExploringSolutionSpace” are created and populated.
The reader is referred to [29] and [4] for further details on the procedure and slots
per template instance. The information flows among those support problem entities
which are represented through theInstances interface, e.g., “Interface: E1-T1#1”,
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Fig. 6.16 Instance of the hierarchical decision workflow embedded in the robust template for
cooling module [51]

“Interface: 1#1–2”, etc., with a detailed description of the process template interface
presented in [5].

The various activity modules in the process template aim to identify process-
related attributes,with Table 6.10 presenting the primary informationwithin the event
process template instance. For example, the information instance considering the
design space and requirements are populated to encapsulate anddocument the cooling
module problem statement in the HRR process along with the relevant target and
upper requirement limit (URL) for the signal factors. This information is essential for
the designer to determine the basic problem/process model elements in “Task1#1”,
which is essential to instantiate the robust design template presented earlier. It is
also essential to identify the management uncertainty type based on this information
and calculate the related uncertainty in the follow-up tasks. Here, the “Task1#2”
Instance follows the robust design Type II and the DCI is calculated to measure
the system’s robustness and performance by utilizing the variable response and the
mean response functions.

We determine the uncertainty management module in the robust design template
based on the previous attribute information and tasks. For instance, we populate
the input parameter uncertainty management instances per response in the cooling
module’s product/process model. Window “➀” in Fig. 6.17 illustrates that the
“HRR_RD_Cooling_Xf ” Instance is developed, while the variance response
function instances and control factor deviation are shown in window “➁” and “➂”,
respectively. These template modules capture the necessary information of a specific
design problem through the Slots for a robust design.
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Table 6.10 Main attribute content of the information embedded in the event process template for
cooling module [51]

Information Main attribute content

HRR_PM_Solution
space

● System constraints: DC I So , DC I Dα , DC I X f

● System goals: So, Dα , Xf
● System variables: D, CR

HRR_PM_Design
requirement

● Achieving the lower value of the Microstructure Space (So, Pearlite
Interlamellar Spacing, Dα , Ferrite Grain Size, and Xf , Ferrite Fraction)
● URL, Xf = 0.75; URL, Dα = 30 μm; URL, So = 0.2 μm
● DCItarget, Xf = 10; DCItarget, Dα = 10; DCItarget, So = 10

HRR_PM_Design
space

● x1, Cooling Rate
(CR)
● x2, Austenite Grain
Size (D)

● x1 = [11, 100]
(K/min)
● x2 = [30, 100]
(μm)

● �x1 = ± 10 (K/min)
● �x2 = ± 10 (μm)

Information2#1 ● Factor (control factors: CR, D; signal factors: Xf , Dα , So)
● Response
● Variation (deviation: �x)
● Fixed parameter ([C], [Mn], εr )
● Response model

Information2#2 ● The Type of Robust Design (Type II)
● Response Functions (mean response function and response variation
unction)
● The DCI for each response

Information2#3 ● The results of robust cDSP model with different design preference

Information2#4 ● The satisfying robust solution

Fig. 6.17 Instances of the Uncertainty Management (IPU) embedded in the robust template for
cooling module [51]

Uncertainty management aims to assist the designer in determining the optimum
robust design information combination, which meets the various constraints and
conflicting goals. Therefore, the cDSP template for microstructure space (“D1#1
Instance: compromise DSP”) is formulated with DCI goals that capture the
microstructure requirements under uncertainty [4] and [57]. Based on the results
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Fig. 6.18 Task instance of the solution space exploration for cooling module [51]

of the cDSP-DCI model, the designer can explore the solution space with different
design preferences in the task Instance “T1#3: ExploringSolution Space”
presented inFig. 6.17. Theweight sensitivity analysiswithin the solution space explo-
ration instance is illustrated in Fig. 6.18. The superimposed ternary plot (microstruc-
ture solution space) and the solution spaces of interest determine the robust solution
regions while considering multiple conflicting goals. For the cooling module, the
designer determines a region with DC I So ≥ 150, DC I Dα

≥ 9.5, andDC I X f
≥ 7,

based on the requirements of each decision criterion and goal. To further analyze and
assist decision-making, we choose from the region identified three solution points
(A, B, C) within the optimum region satisfying all the robust design goals. Ref. [8]
introduces the details of the solution space exploration template.

(3) Robust Decision Process for the Microstructure-Mechanical Simulation
Models

We create a robust design template appropriate for the HRR cooling by exploiting
the uncertainty management and the embedded PEI-X process templates combined
with reusing the robust decision workflows information. For this scenario, empir-
ical models are utilized to define the employed response functions. The empirical
models are commonly response surface models developed through the design of the
involving experiment, in some sense, the response model uncertainties. Neverthe-
less, the process designer has adequate confidence to ignore this uncertainty impact
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Fig. 6.19 Instance of the robust template for rod module in HRR process [51]

and only consider the control factors variations (IPU). Another scenario involves the
uncertainty derived from the response model by instantiating the HRR’s rod module
robust design template in the process chain (Fig. 6.19).

In the HRR problem examined here, next to the microstructure correlation calcu-
lation (cooling module) is the rod module that predicts the mechanical properties of
hardness (HV), tensile strength (TS), and yield strength (YS). Table 6.11 presents
the design requirements for the rod module, from which the essential robust design
elements such as fixed parameters, responses, signal factors, and control factors are
populated. The difference from the previous case is that the process/product model
Instance “HRR_RD_Model_Rod” is established in the robust design template
instance by considering the response function uncertainty. The designer organizes
these robust design elements using a graphical hierarchy scheme and identifies the
robust design type according to each element’s attribute information. Type II and
Type III robust design types exist for the rod module case due to uncertainty of input
and model parameters (i.e., IPU and MPU). Additionally, the hierarchical decision
workflows are established to address the corresponding robust design, where the
designer can reuse the cooling module’s PEI-X process template.

The “HRR_RD_MPU_Rod_YS” Instance manages the model parameter
uncertainty for the response yield strength (YS). During the uncertainty task estima-
tion through this instance, the related sequential computability routines based on Step
3 are executed to create and populate the detailed information attributes. Figure 6.20
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Table 6.11 Main information embedded in the robust design template for rod module [51]

Item Main Information

Design requirement ● Achieving the larger value of the mechanical property space (YS, Yield
Strength; TS, Tensile Strength; HV, Hardness)
● LRLYS = 200 MPa; LRLTS = 450 MPa; LRLHV = 130
● EMItarget, YS = 3; DCItarget, TS = 8; DCItarget, HV = 8

Control factors ● x1, Ferrite Grain
Size (Dα)
● x2, Ferrite Fraction
(Xf )
● x3, Pearlite
Interlamellar Spacing
(So)
● x4, Manganese
concentration after
ooling ([Mn])

● x1 = [5, 25] (μm)
● x2 = [0.1, 1]
● x3 = [0.15, 0.25]
(μm)
x4 = [0.7, 1.5] (%)

● �x1 = ± 3 (μm)
● �x2 = ± 0.1
● �x3 = ± 0.01 (μm)
● �x4 = ± 0.01

cDSP-EMI/DCI ● System variables: Dα , Xf , So, [Mn]
● System goals: Maximize EMI for YS, Maximize DCI for TS,
Maximize DCI for HV
● System constraints: EMIY S ≥ 1, DC I T S ≥ 1,DC I HV ≥ 1

Fig. 6.20 Instance of the Uncertainty Management (MPU) embedded in the robust template for
cooling module [51]
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depicts themodel response (YS) variation in terms of themaximum/minimumpredic-
tion intervals functions (i.e., lower/upper uncertainty bound function) and the mean
response function. Utilizing these mathematical functions, the designer can estimate
the lower and upper response deviations and then calculate the EMI based on the
decision criterion. For the rod module simulation model case, the EMI/DCI decision
criterion is “Larger is Better”, highlighting that the mean responses, i.e., YS, TS, and
HV, must be further away from the lower requirement limit (LRL) defined and close
to the EMI/DCI defined target. The cDSP’s formulation objective for the EMI/DCI
is finding the control factors’ mean value (x1~x4) satisfying the given bounds and
performance goals.

Solving the cDSP-EMI/DCI model under various design preferences enables the
designer to obtain the systemgoals values under the identified uncertainties: DC I HV ,

DC I T S , and EMIY S . To attain high DCI and EMI values for the YS, TS, and HV
model response, the designer must define satisfying robust solution regions for the
several conflicting goals. Figure 6.21 identifies in the task instance of the solu-
tion space a joint robust solution region (light-yellow region) with DC I HV ≥ 7,
DC I T S ≥ 6, and EMIY S ≥ 1.5 that complies with the robust design require-
ments related to the conflicting mechanical property goals. To assist the designer’s

Fig. 6.21 Task instance of the solution space exploration for rod module [51]
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decision-making process, we investigate three solution points (A, B, C). Point A is
the most robust region for YSmanaging a high EMI but is not appealing regarding TS
and HV posing low DCIs. Similarly, point B has a high DC I T S affording the most
robust TS region but presents the lowest YS with a very low EMI. In contrast, point
C lying inside the satisfying robust solution regions attains the highest DC I HV and
simultaneously poses the most robust HV goal region satisfying the robust design
requirements of the remaining goals. Therefore, point C is the optimum choice for
the subsequent manufacturing operations.

6.4 Empirical Structural Validity

Empirical structural validation is to build confidence in the appropriateness of the
test example problems chosen for illustrating and verifying the performance of the
framework and methods. Model-based realization of complex engineered systems
involves managing information associated withmodels that are typically incomplete,
inaccurate, and not of equal fidelity. Designing such systems, therefore, demands the
designers to carry out rapid and systematic exploration of design space to identify
solutions that are relatively insensitive to the associated uncertainties. It is always
essential but difficult to represent and capture the uncertainty knowledge, some prac-
tical limitations have also been realized with regard to industrial implementations,
especially in the context of knowledge-intensive complex engineered systems. In
view of DBD, system design involves a sequence of decision-making, that is decision
workflows, which require a combination of analytical models and away to synthesize
the information generated by decision models. Therefore, a template-based ontolog-
ical method for design space exploration and uncertainty management is introduced
that supports the designing of decisionworkflows to ensure decision-makingwith the
features of robustness, feasibility, and comprehensiveness, taking into account the
goals of enhancing the design automation and intelligence in designing of decision
workflows.

6.5 Where We Are and What Comes Next?

In this chapter, we develop two ontologies for representing the knowledge related to
design space exploration and uncertainty management which serve as the foundation
for supporting knowledge-based design space exploration on the PDSIDES platform.
In the next chapter, we will introduce the Cloud-Based PDSIDES (CB-PDSIDES).
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Chapter 7
Extending PDSIDES to CB-PDSIDES:
New Opportunities in Design
Engineering 4.0

In this chapter, we revisit the problem, summarize the approach to address the
problem, review the validation strategy, and identify the main benefits and contri-
butions of this monograph. Based on the summary of this monograph, we spec-
ulate about the opportunities for improving PDSIDES by proposing a framework
for a Cloud-Based Platform for Decision Support in the Design of engineered
Systems (CB-PDSIDES) and identify several challenges and research questions for
the realization of CB-PDSIDES. Finally, we end the monograph with some closing
comments. Table 7.1 is a summary of the topics discussed in previous chapters.
A detailed summary of the monograph in terms of problem, approach, validation,
benefits/contributions is presented in Sect. 7.1.

7.1 Summary of Monograph

Problem: A design revolution is underway, where the focus is to adopt a
“human-cyber-physical view of the systems realization ecosystem” to accommodate
customers’ personalizeddemands as a result of the technological advances of Industry
4.0 and develop proper fulfillment capabilities to respond to dynamic markets in the
new era. This revolution is called “Design Engineering 4.0”. The human dimension
of Design Engineering 4.0 not only emphasize the importance of the experience of
customers at the front-end, but also the experience of all the stakeholders involved
in the product realization process at the back-end, especially designers who are the
decision-makers in the design of products. From a Decision-Based Design perspec-
tive,webelieve that the experience of designers can be augmented by supporting them
to make rapid, informed, satisficing, robust, and visualized decisions in the age of
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Industry 4.0. Accordingly, this monograph is anchored in architecting a knowledge-
based platform for providing decision support with the aforementioned characteris-
tics in the design of engineered systems. Major challenges in establishing the archi-
tecture of such a platform are: (1) the management of multidisciplinary, domain-
dependent and -independent, heterogeneous knowledge and its reuse in supporting
different types of decisions, (2) the formulation of individual decisions and decision
workflows, (3) the exploration of a discrete and/or continuous multidimensional
solution space, (4) the management of different types of uncertainty from multiple
sources, and (5) the offer of user/activity specific decision support.

Approach: In this monograph, we describe a knowledge-based computational
platform, PDSIDES, to support human designers making decisions that have a major
effect on closing design freedom associated with the realization of complex engi-
neered systems. The architecture of PDSIDES is an integration of the constructs from
Decision-Based Design (e.g., cDSP, sDSP, and PEI-X, etc.) and Knowledge-Based
Engineering (i.e., templates and ontologies). The architecting process of PDSIDES
is described as follows. We view engineering design as a decision-making process
and use sDSP and cDSP as the constructs for formulating the two primary types of
decisions, namely, selection and compromise in design. These two constructs are the
building blocks for representing any complex design. Based on sDSP and cDSP, we
develop modular templates to enable the reusability and executability of decision-
related knowledge in a computational environment, and use ontologies to formally
represent the templates and the associated modules so as to facilitate knowledge
sharing and exchange. Based on the constructs including sDSP, cDSP, the coupling
of both, and the associated templates and ontologies, we implement a prototype of
PDSIDES that can support three types of users—template creators (experts), template
editors (senior designers), template implementers (novice designer), in different types
of activities including original design, adaptive design, and variant design. In order
to extend the functionalities of PDSIDES to support meta-design of decision work-
flows and robust design space exploration, we create an ontology based on the PEI-X
construct which is an icon-based object-oriented diagram for modeling the hierarchy
of the design process of complex systems. Both the partitioning and the integra-
tion characteristics of the complex workflow hierarchy are captured using the PEI-X
diagram. In order to manage the uncertainty pertaining to decision workflows in
PDSIDES, we create an ontology for robust design solution space exploration which
represents the knowledge related to a formal procedure for identification of satisficing
solutions that are relatively insensitive to variations.

Validation: The architecture of the knowledge-based platform for decision
support in the design of engineered systems is validated using the validation-square
approach that consists of both theoretical and empirical validation. Theoretical vali-
dation is carried out by justifying the structural correctness of the architecture and its
generality. Empirical validation is carried out using several examples including light
switch covermaterial selection, pressure vessel design, hot rod rolling system design,
and heat exchanger design problems. Specific example problems are used to test the
utility of the components as well as the overall performance of the platform. Since
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the constructs used to establish PDSIDES such as cDSP, sDSP, PEI-X, and ontolo-
gies are domain-independent, PDSIDES has the generality to support decisions in
other design problems beyond the examples considered in this monograph. Applica-
tions of PDSIDES can extend to other industries such as energy (e.g., the design of
power grids), healthcare (e.g., the design of a hospital system), supply chains (e.g.,
the design of a supply network), sports (e.g., the design of an American football
helmet), etc., where design plays a critical role and decision support is needed.

Main benefits/Contributions: The main benefits/contributions from the mono-
graph are anchored in the theory fundamentals and tools for architecting a knowledge-
based platform for decision support in the realization of complex engineered systems.
The theory fundamentals and tools include constructs for formulating design deci-
sions, knowledge modeling schemes, diagrams for designing decision workflows,
and some analytical methods for robust design space exploration under uncertainty.
With these theory fundamentals and tools being organized and integrated into a
computational platform, designers in the Industry 4.0 era will be able to make more
rapid, informed, satisficing, robust, and visualized decisions in the design of engi-
neered systems and the associated design processes. To the best of our knowledge,
this is the first monograph that provides a systematic architecture for knowledge-
based decision support in the design of engineered systems. This monograph will
serve as an important guide for both students as well as practitioners who are inter-
ested in architecting computational platforms for decision support in the design of
complex engineered systems.

The relationship of research efforts with the constructs of the architecture and
connection between chapters of the monograph are shown in Fig. 7.1. The ontolo-
gies for multi-attribute selection decisions, multi-objective compromise decisions,

Fig. 7.1 Relationship of research efforts with the constructs of the architecture and connections
among chapters of the monograph
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and hierarchical coupled decisions are developed in Chap. 3. The three ontologies
provide the knowledge representation schemes for the knowledge base of platform
PDSIDES developed in Chap. 4. In Chap. 5, we extend the ontology to represent
the knowledge of decision workflows based on the PEI-X diagram and enable the
functionality of PDSIDES to support meta-design of decision workflows. The idea of
representing phase and event-based procedural knowledge is extended fromChaps. 5
and 6 for representing robust design space exploration processes. The issues of uncer-
tainty management and robust decision-making are addressed using PDSIDES in
Chap. 6. Based on the current functionalities of PDSIDES, our focus in this chapter
is on furthering the research vision by exploring opportunities for a service-oriented
architecture for decision support using the cloud.

Given the contributions that have beenmade in the previous chapters of the mono-
graph, we speculate about the opportunities for improving PDSIDES by proposing
a framework for a Cloud-Based Platform for Decision Support in the Design of
engineered Systems (CB-PDSIDES), which will be discussed in Sect. 7.2.

7.2 Cloud-Based Decision Support: Framework and Open
Questions

Cloud-Based Design and Manufacturing (CBDM) is listed as one of the key features
of Industry 4.0 by Thames and Schaefer [1] where they attempt to define the drivers
of Industry 4.0 and the resulting innovations. According to Thames and Schaefer
[1], CBDM refers to a service-oriented networked product development model in
which service consumers are enabled to configure, select, and utilize customized
product realization services ranging from computer-aided engineering software to
reconfigurable manufacturing systems. The core of CBDM is the Service-Oriented
Architecture (SOA) that enables the integration of heterogeneous design and manu-
facturing resources through services and provides interoperability between different
platforms of service consumers and providers. The benefits of SOA include ubiqui-
ties access to design andmanufacturing Resources, on-demand scalability andmulti-
tenancy, increased resource utilization, reduced capital cost and complexity, reduced
maintenance cost accelerated time-to-market, attractive pay-as-you-go pricing, and
democratization of innovation, etc. In the context ofCBDM,wepropose aSOA-based
conceptual framework CB-PDSIDES which integrates PDSIDES with the cloud for
future exploration, as shown in Fig. 7.2.

In CB-PDSIDES, decision-related knowledge is servitized and deployed in a
service pool in the cloud, including declarative knowledge service (which is domain-
dependent and used for specifying the required information such as alternatives,
attributes, constraints, and goals, etc. to make a decision in a specific domain or
problem), procedural knowledge service (which is domain-independent and provides
the constructs such as the sDSP template and cDSP template for formulating deci-
sions), and integrated knowledge services (which is the combination of declarative
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Fig. 7.2 A conceptual framework of CB-PDSIDES

and procedural knowledge and represents the “best-practice” of solving a design
problem such as a hot rod rolling process design problem or a heat exchanger design
problem). These services are uploaded to the cloud by service providers and form
the available assets which can be customized by service customers to support their
decisions in particular design problems. Service customers select and configure the
services from the service pool and compose service packages according to the feature
of their problems. For example, a service customer who wants to design a hot rod
rolling systemmay select an existing instance from the integrated knowledge service
category and then reconfigure it or select some entities from the declarative and proce-
dural knowledge service category then compose these entities into an integrated
service package for solving the problem. CB-PDSIDES provide the computing envi-
ronment (in the air) for the service packages to execute and generate results for
supporting customers’ decisions.

7.2.1 Architecture of Cloud-Based PDSIDES

In Fig. 7.3, we show the architecture of CB-PDSIDES. The computing architec-
ture for CB-PDSIDES follows the architecture of cloud-based design and manufac-
turing systems proposed byWu and co-authors [2]. The architecture of CB-PDSIDES
includes five layers {Nellippallil, 2019 #462}: (i) user layer, (ii) web portal layer,
(iii) logic layer, (iv) virtual layer, and (v) physical layer.

Since CB-PDSIDES is deployed in the cloud, users can access CB-PDSIDES
via PCs and smartphones over the internet. The web portal layer of CB-PDSIDES
includes the user interaction GUI for accessing the design templates available. The
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Fig. 7.3 Computing architecture of CB-PDSIDES [3]

user interaction GUI includes: the template searching and browsing GUI, designed
for locating the required DSP templates and presenting them, the template creating
and editing GUI designed based on the DSP template structures for instantiation
and modification of the DSP templates, the template execution and analysis GUI
designed for executing DSP templates and performing post-solution analysis. The
GUI is allowed to communicate with the logic layer of CB-PDSIDES by a request-
responsemodeusing theHyperTextTransfer Protocol (HTTP).The logic layer ofCB-
PDSIDES includes fivemain parts, namely, Response Server, KnowledgeBase, JESS
Reasoner, DSIDES, and a link to the commercial software MATLAB. The Response
Server is the central “brain” that integrates the other four parts for responding to
requests. TheResponseServer itself hasfive components: a search engine, an instance
interpreter, a consistency checker, a problem solver, and a results analyzer. The
instance interpreter is for interpreting the data collected from the Template Creators
(or Editors) and formatting it into DSP Template instances according to the DSP
ontologies. The generated template instances and module instances are stored in the
Knowledge Base. The search engine is connected to the Knowledge Base to provide
ontological semantic-based knowledge retrieval. Consistency checking is facilitated
through a consistency checker together with the JESS Reasoner—the Rule Engine
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for the JavaTM Platform provides rule-based intelligence inference. The problem
solver is connected to DSIDES for solving the DSPs. DSIDES (Decision Support
in the Design of Engineering Systems) is a tailored computational environment that
supports the execution of the decision support problem templates.DSIDES is invoked
when a template executer executes a DSP template. The result analyzer is included
to help users, especially Template Implementers analyze the results produced by
the problem solver, DSIDES. MATLAB and its features are used to carry out data
visualization through ternary plots and scatter plots. These plots are used for visual-
izing the DSP results and further carrying out solution space exploration. Therefore,
MATLAB and its features are linked to CB-PDSIDES for solution space visualiza-
tion, solution space exploration, and post-processing. The virtual and physical layers
in CB-PDSIDES support data storage and retrieval for multiple users connected via
the cloud, thereby establishing a networked collaborative environment. As noted
by Wu and co-authors [2], through virtualization, the computing resources of CB-
PDSIDES like the DSP templates, solvers, post-processing resources, data storage,
etc., are separated from physical computing hardware and reallocated dynamically to
the different applications based on the needs of users. Through this unified computing
architecture ofCB-PDSIDES,we are able to supportmultiple tenants through a single
instance of the platformPDSIDES; defined asmulti-tenancy [2]. These features of the
computing architecture of cloud-based PDSIDES differentiate it from the other web-
based services. Since CB-PDSIDES is a highly flexible SOA-based platform, there
are some challenges for the realization of it. In the following sub-sections, we discuss
these challenges and propose some open questions worthy of future exploration.

7.2.2 Service Modeling

The first big challenge is to “servitize” the declarative/procedural/integrated knowl-
edge in CB-PDSIDES, so that everything in the cloud is a piece of service that
can satisfy a particular kind of need. Decision-related knowledge (i.e., declara-
tive/procedural/integrated knowledge) has different structures and it is difficult to
describe them in a unified standard way to facilitate management. We note that the
Web Services Description Language (WSDL) [4], which is an interface definition
language for describing the functionality of a web service, may be an alternative
language to model the services in CB-PDSIDES. WSDL consists of two parts, an
abstract part that describes the operational behavior of theweb service, and a concrete
part that describes how and where to access a service implementation. The limitation
of WSDL is anchored in that and it only tells what messages go in and come out
from a service but does not provide the terms for describing the semantics of the
service which results in the difficulty of achieving transparency and trustworthiness
(especially when the service is used to support decisions). Other challenges related
to service modeling include (but are not limited to) the classification and granularity
partitioning of the services. There is a need for CB-PDSIDES to support the flexible
classification of services to facilitate searching. A service may belong to multiple
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Fig. 7.4 Classification of the services of CB-PDSIDES based on knowledge types

categories. For example, a constraint that is considered in the design of a pressure
vessel can be classified as declarative knowledge from a knowledge type perspec-
tive, and can also be classified into mechanical products from a product perspective.
The classification of the services based on knowledge types is shown in Fig. 7.4,
which captures certain service properties from a knowledge type perspective, e.g.,
service input, service output, running environment, sub-services, etc. In addition to
this, some domain-specific classification schemes need to be implemented in CB-
PDSIDES, so that more domain properties can be captured and more service indexes
can be established to enable flexible searching. Granularity partition means that the
level to which a service is partitioned into components. Granularity partition has
impacts on the customizability of a service (which will be discussed in Sect. 7.2.2).

Key questions worthy of further investigation in this thrust are summarized as
follows:

• What is a description scheme for modeling the services in CB-PDSIDES so that
semantic richness, transparency, and trustworthiness for decision support can be
achieved?

• How to provide flexible, multidimensional classification and visualization of
services in CB-PDSIDES to facilitate searching and navigation of the services?

• How can service granularity partition be controlled to enable flexible customiza-
tion?
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7.2.3 Service Customization

The second big challenge we foresee in the realization of CB-PDSIDES is to enable
cloud-based mass service customization, so that designers can configure, select,
and utilize the decision support services according to their preferences. Providing
customized services is important for CB-PDSIDES to attract users with individu-
alized needs and help them succeed in dynamic and competitive market environ-
ments. The difficulty in enabling mass customization of decision support service is
anchored in the lack of customized service design methods for designing and eval-
uating the services offered to customers. One possibility is to borrow the idea of
product customization and extend product family design methods to service family
design. A product family is a set of products that share a common product plat-
form and differentiate from each other by some unique modules or components [5].
Similarly, a service family can be defined as a set of services which share a service
platform and differentiate each other with unique modules or components [6]. A
service module consists of a set of components certain services. In CB-PDSIDES
where the services are related to decision support, in order to design a service family,
it is necessary to identify the common modules that form the service platform, and
unique modules that certain services must possess, and variant modules that are
optional for specific services. A good design of a service family not only provides
the flexibility for mass customization, but also ensures cost-effectiveness (in terms of
computing resource consumption and maintenance). Essentially, this means making
a trade-off in the selection of a platform level, to determine the number of common
and variant modules, as shown in Fig. 7.5. If the platform level is high (i.e., the
commonality among services is high), then the cost of modules, as well as the inter-
faces for connecting them, is low, while customers’ preference loss is high because

Fig. 7.5 Trade-off in service platform level selection (revised from [6])
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of the lack of uniqueness in the service. On the hand low platform levels, with low
commonality among services, will increase the module and interface costs while
decreasing the customers’ preference loss.

Key questions worthy of further investigation in this area are summarized as
follows:

• How to model service families of design processes, decision workflows, and
individual decisions so that service customers can customize them based on
personalized needs?

• How tomanage the trade-off between commonality and flexibilitywhen designing
service families in CB-PDSIDES?

• What is a appropriate pricing method for the customized services considering
the problem that needs to be solved and the computational resources that need to
consume?

7.2.4 Intelligent Service Composition

The third big challenge is to enable the intelligent composition of service pack-
ages from module level to individual decision level, and from individual decision
level to decision workflow level, so that the service components can be scaled up to
fulfill customer requirements. Wu and coauthors [7] define service composition as a
process of composing services with different functions into a larger service to meet
user request when no single service can fulfill those requests. They further give an
example of service composition as: if the output parameters of Service A can be used
as the input parameters of Service B, then A and B can be connected as a new service
with input parameters that are the sameas the input parameters ofAandoutput param-
eters that are the same as the output parameters of B. In the context of CB-PDSIDES,
service composition is a necessary functionality because solving of complex system
design problems typically requires complex decision workflows which consist of a
set of decisions which require a set of modules, and no single service related to a
module or decision can solve the complexproblem independently. Typically, a service
composition process takes several steps including partitioning of the requirement into
sub-requirements, identification of services that are related to the sub-requirements,
connecting the related services as a chain or network which then forms a service
package, evaluation of the service package, and improving it through service recon-
figuration. We expect that there will be a huge number of services uploaded to the
service pool in the cloud by service providers and these services need to be formed
as packages and ready to deliver to service customers rapidly so as to improve user
experience. To realize this, there is a need for an intelligent service composition
function in CB-PDSIDES which deeply “understands” the requirements of service
customers and intelligently composes service packages for satisfying the require-
ments, and the quality of the service packages generated by intelligent composition
is as good as or better than the ones generated bymanual composition. In Fig. 7.6, we
show a conceptual process for intelligent service composition. Given the customer
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Fig. 7.6 Bottom-up intelligent composition of services in CB-PDSIDES

requirements, CB-PDSIDES “understands” that tomeet the requirements on an alter-
native(s) to formulate a decision workflow that consists of three coupled cDSPs, and
then intelligently compose a service package involving these three cDSPs and deliver
it to the customer. As shown in Fig. 7.6, the intelligent service composition process is
a two-level, bottom-up process. It initiates by searching all the related cDSP compo-
nents including constraints, goals, variables, parameters, etc., from the service pool,
then assembles the components using cDSP templates, and finally, the assembled
cDSPs templates are linked as a decision workflow.

Key questions worthy of further investigation in this area are summarized as
follows:

• How can machine learning techniques be applied to the intelligent composition
of decision support services that involve the composition of decision workflows
from cDSP/sDSP templates, and the composition of cDSP/sDSP templates from
template modules?

• How can compatibility be defined in service composition that facilitates consis-
tency checking after a service package is composed?

7.2.5 Smart Service Provider-Seeker Matching

The fourth big challenge that we see in CB-PDSIDES is to enable smart service
provider-seeker matching so that both service seekers’ and providers’ satisfaction
is maximized. A service provider who uploads some declarative, procedural, or
integrated knowledge toCB-PDSIDEShopes that their knowledge can be “best” used
to support decisions and create value. And a service seeker who searches services
in CB-PDSIDES hopes to find the “best” knowledge service for supporting their
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design decisions. It is important to build a provider-seeker matching mechanism
in CB-PDSIDES so that both sides are happy and the ecosystem can sustain and
grow. Mandhan and co-authors [8] propose to use the Gale-Shapley algorithm for
matching designers and 3D printing services providers. In their problem, both sides
(i.e., designers and manufacturers) consist of decision-makers who can determine to
whom the printing service is provided and fromwhom the printing service is selected,
and both try to maximize their utility when making decisions. A similar situation
happens in CB-PDSIDES as well. Both the knowledge service providers and seekers
are decision-makers who can make decisions on the services. The Gale–Shapley
algorithm is an alternative for building the matching mechanism in CB-PDSIDES,
as shown in Fig. 7.7. Service providers can be those template creators who create
decision templates and want to “sell” them in CB-PDSIDES. Service seekers can be
those who have problems and want to “buy” the decision templates in CB-PDSIDES
and implement them. The core difficulty is to set up the utility functions that measure
the “happiness” of service providers and seekers, respectively, and use them to order
the preferences over the candidate options. Since optimal decisions are sometimes
difficult to achieve in thematching, the pursue of satisficing or compromise decisions
may be appropriate for determining the matching mechanism.

Key questions worthy of further investigation in this area are summarized as
follows:

• How to quantify the “happiness” or utility of service providers and service seekers
when they make decisions about matching each other in CB-PDSIDES?

• What is a provider-seeker matching mechanism that maximizes the “happiness”
or utility of both the service providers and seekers simultaneously?

• How can a provider-seeker matching problem be formulated using the Compro-
mise Decision Support Problem construct so that satisficing solutions can be
identified which are acceptable to both the service providers and seekers?

Fig. 7.7 Smart service provider-seeker matching in CB-PDSIDES
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7.2.6 Mechanism for Design Collaboration (Co-Design)

The fifth major challenge that we envision is the capability to carry out “co-design”
in a secure fashion. Design engineering in the era of Industry 4.0 necessitates
co-design, which we define as the capability of a network of participants in the
value chain, including material scientists, systems designers, software developers,
and end customers, to come together and share material/product/manufacturing
process/market data, information, knowledge, and resources instantly and in an inte-
grated fashion, thereby to collaborate and facilitate a cost-effective co-creation of
value supporting open innovation. Using CB-PDSIDES, collaborating users from
different parts of the world should be able to use the cloud securely and systemat-
ically and: (a) develop and integrate digital models, (b) formulate co-design prob-
lems, (c) explore co-design solutions that meet end requirements, and (d) manage
uncertainty and explore robust solutions for the co-design problems. Knowledge-
based co-design guidance and decision support should also be available to the users.
Integrated knowledge, i.e., integration of declarative and procedural knowledge is
captured via designmethods and frameworks inCB-PDSIDES.Designmethods such
as goal-oriented inverse design and inductive design exploration methods incorpo-
rated in CB-PDSIDES facilitate the co-design of materials, products, and manu-
facturing processes meeting goals and requirements at multiple levels for different
stakeholders. Together with these methods, Secure Co-Design (SCD) frameworks
that use information theory and game theory protocols to identify co-design solutions
while preserving the confidentiality of the information shared between the partici-
pating design collaborators is a key requirement in CB-PDSIDES. SCD frameworks
enable secure collaborative designs among different stakeholders or designers so that
the system is jointly designed without leaking the privacy information of different
stakeholders. From the context of integratedmaterials and product design, this can be
viewed as a situation where product components are designed by one design group
and the corresponding materials are designed by material scientists who work as the
second group. The situation demands information and knowledge sharing that needs
to be managed. The issue of privacy and secure co-design collaborations are crit-
ical in this situation. CB-PDISIDES can offer cloud-based co-design through SCD
frameworks in which components are designed by one organization and materials
are designed by another organization. As an example, we can see this using the hot
rolling example addressed in Chap. 4. The cDSP for the rod (product) is formu-
lated by product designers who have specific mechanical property requirements for
the product. The predictions of these mechanical properties will be using specific
product-level simulation models that are proprietary. The microstructure require-
ments for the product at different stages are formulated using the cDSP construct by
material scientists. They will also have proprietary models for microstructure evolu-
tion which they may not be interested in sharing with the product design team. In
a similar sense, the product designers do not wish to share all the information in
the product-level cDSP with material scientists. However, using the cloud-based
co-design functionalities, both parties would like to jointly design the product and
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Fig. 7.8 Illustration of secure co-design using CB-PDSIDES

the material. The illustration of secure co-design using CB-PDSIDES is shown in
Fig. 7.8. This requires addressing additional challenges, such as:

• How to collaboratively author the workflow templates and check for consistency
among the collaborating stakeholders/agents

• How to model the individual decision-making strategies, their interactions, and
drive the collective system interaction to meet the overall requirements?

• How to facilitate privacy-preserving collaboration in integrated products and
materials design?

7.3 Broader Applications

CB-PDSIDES is developed as a platform for cloud-based design decision support
for multiple applications and problem requirements. CB-PDSIDES can be used to
formulate complex systems design problems by modeling the workflow of compro-
mise and selection decisions from a Decision-Based Design perspective. Further
solutions that satisfice multiple requirements can be explored. In Fig. 7.9, we show
broader applications where CB-PDSIDES is used. The applications are addressed
from a Cyber-Physical standpoint with the human in the loopHuman-Cyber-Physical
systems. We discuss each of these applications briefly in this section.

7.3.1 Applications to Cyber-Biophysical Systems

In the Cyber-Biophysical Systems domain, we explore the application of CB-
PDSIDES to integrate sensing, computational, and communications networks with
biology. Example problems such as head and neck injury-based design exploration
for vehicular crashworthiness [9, 10], design of a ventricular shunt for hydrocephalus
[11] are used to illustrate the efficacy of the platform for the design of cyber-
biophysical systems. In these example problems, we use the functionalities of CB-
PDSIDES to carry out cloud-based problem formulation and simulations (car crash
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Fig. 7.9 Broader applications of CB-PDSIDES

simulations and injury predictions for crashworthiness example, CSF flow rate simu-
lations for the shunt design example), the development of surrogatemodels capturing
the responses of interest (head injury criteria surrogatemodels and neck injury criteria
surrogate models for the vehicular crashworthiness example, shunt flow rate surro-
gate model (for the shunt design example, etc.), the formulation of robust design
problems, solution space exploration, and uncertainty management; see Fig. 7.10
[12, 13].

Fig. 7.10 CB-PDSIDES for Cyber-Biophysical Systems
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7.3.2 Applications to Cyber-Physical-Product/Material
Systems

From the context of the Integrated Computational Materials Engineering (ICME)
domain, we are interested in exploring the application of CB-PDSIDES to address
the integrated design of materials and products. This involves designing the material
to meet system-level requirements. An example is the design of American football
helmets. The CB-PDSIDES platform and associated design frameworks such as CEF
and GoID are used to design components (composite shell and foam liner) of an
American football helmet [14]. The goal is to design the products, sub-components,
andmaterials usingmulti-scale modeling efforts and systems-based robust co-design
techniques in an integrated fashion.

7.3.3 Applications to Cyber-Physical-Manufacturing Systems

In the context of Industry 4.0, we are interested in exploring the design of manufac-
turing systems by addressing the distributed and networked nature of manufacturing
processes and associated products. CB-PDSIDES will be used to facilitate seamless
data, information, and knowledge sharing among the different physical and cyber
components of the manufacturing system and the stakeholders. A computational
framework for designing the dynamic management of such networked manufac-
turing systems is proposed [15]. The integration of the framework and constructs
to CB-PDSIDES is envisioned to design cyber-physical-manufacturing systems that
are adaptable.

7.3.4 Applications to Cyber-Physical-Social Systems

CB-PDSIDES for automatedmicro-enterprise design and analysis to achieve sustain-
able rural development is addressed as an application of Cyber-Physical-Social
systems, described by Yadav and co-authors [16]. Yadav and co-authors [16] present
a computational framework incorporating three constructs that support this applica-
tion, namely, a Village Level Baseline Sustainability Index, a Dilemma Triangle,
and Village Level System Dynamics. Using these constructs, a dialog is facili-
tated among the stakeholders, namely, corporate social responsibility (CSR) investors
and social entrepreneurs. These stakeholders are geographically dispersed and an
increase in the number of stakeholders demands a need for effective communication
and collaboration in order to come up with sustainable solutions (micro-enterprises)
worthy of further investment. Using CB-PDSIDES, the stakeholders will be able to
direct attention to issues and challenges that are typically ignored or missed while
solving complex social problems.
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7.4 CB-PDSIDES for Design Engineering 4.0

Systems realization in the age of Industry 4.0 demands a new design paradigm
that embodies the distributed and networked aspects of systems. This paradigm,
defined as Design Engineering (DE) 4.0, requires a “human-cyber-physical view of
the systems realization ecosystem” to accommodate the drivers of Industry 4.0 (IoX)
and provide an open ecosystem for the realization of complex systems. CB-PDSIDES
for DE 4.0 address future research from the perspectives of human, business, system,
and cybernetics and are driven by IoX, see Fig. 7.11. Nellippallil and co-authors [3]
identify the core competencies needed for CB-PDSIDES users for realizing DE 4.0.
These competencies are:

• The capability to integrate models and simulation tools spanning different
processes and length scales (typically defined as vertical and horizontal integration
from the context of integrated design of materials, products, and manufacturing
processes),

• The capability to define computational workflows involving decision-making,
spanning multiple activities and users,

• The capability to define modular, reusable sub-workflows for specific processes,
• The capability to connect to external databases about materials, products, and

processes,
• The capability to provide knowledge-guided assistance for different types of users

in design-related decision-making,
• The capability to carry out collaborative, multidisciplinary design, and privacy

control,
• The capability tomanage complexity (reduce the cost of computation via surrogate

models/meta models),
• The capability to explore and visualize the design and solution space,
• The capability to carry out dynamic and cost-efficient reconfiguration and inte-

gration of design decision templates to explore different robust design strategies
(meta-design to deliver robust products).

The key areas for future research using CB-PDSIDES include [17]: (a)Design for
User Experience, (b) Design of Human-Cyber-Physical Systems, (c) Design with
Smart Sensing and Artificial Intelligence Technologies, and Design as Strategic
Engineering. From the human perspective, CB-PDSIDES will be used to support the
design for user experience not just for end customers in the value chain, but also for
multiple stakeholders involved across the product realization cycle. This results in
the Internet of People for DE 4.0. The primary challenge is to address the changing
user preferences and howdifferent platform users interact with the services, products,
and between themselves using CB-PDSIDES. From the business perspective, CB-
PDSIDES will be used to model the interactions and decisions between businesses
(B2B), between business and consumers (B2C), and between consumers (C2C).
This results in the Internet of Commerce for DE 4.0. From the cyber perspective,
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Fig. 7.11 CB-PDSIDES foundations for design engineering 4.0

the focus will be on incorporating the advancements in machine learning, artifi-
cial intelligence, and data-driven decision-making approaches into CB-PDSIDES to
facilitate informed decision-making under uncertainty. This results in the Internet
of Things for DE 4.0. From the systems perspective, the focus using CB-PDSIDES
will be to integrate the physical domain with the cyber domain keeping humans in
the loop, thereby implementing self-evolving human-cyber-physical systems of the
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future. This results in the Internet of Services for DE 4.0. We hypothesize that CB-
PDSIDES for DE 4.0 needs to address these drivers of Internet of People, Commerce,
Things, and Services and their respective associated challenges. The foundations of
CB-PDSIDES offer core functionalities that need to be leveraged and expanded to
address the DE 4.0 drives. The core functionalities include:

• KnowledgeManagement usingCB-PDISES forDE4.0.Decision-related knowl-
edge (including procedural, declarative, and integrated knowledge) associated
with the design of cyber-physical-social systems can be captured using decision
support problem templates. The decision support ontologies will allow the users
to search, share, and reuse the knowledge as systems evolve and requirements
change. More details on the decision support ontologies are available in Chaps. 3
and 4 of this monograph.

• Individual Decision Formulation using CB-PDSIDES for DE 4.0. Using CB-
PDSIDES and associated Decision Support Problem (DSP) constructs individual
decisions related to cyber, physical, social domains can be formulated by collab-
orating designers from different parts of the world. Co-design, that is, the ability
of designers/users to come together and share their information, knowledge, and
resources instantly and in an integrated manner, to collaborate to create new
products, processes, and services is facilitated. Using CB-PDSIDES designers
can provide instant feedback, and this will allow the individual decisions to be
flexible and adaptable to changes. Selection decisions that involve a choice among
a number of possibilities considering a number of measures of merit of attributes,
and compromise decisions that involve determining the “right” values of design
variables to describe the best satisficing solution with respect to constraints and
multiple goals, can be carried out via the cloud using the selectionDSP (sDSP) and
the compromise DSP (cDSP) constructs, respectively. More details on individual
decision formulation using DSP are available in Chap. 4 of this monograph.

• Decision Workflows Formulation using CB-PDSIDES for DE 4.0. Using CB-
PDSIDES and the PEI-X diagram, design decision workflows that are critical in
meta-design of design processes can be formulated. These decisionworkflows can
be used to represent design processes for complex cyber-physical-social systems.
They can be further analyzed by carrying out an exploration of design alternatives
before actual implementation. More details on decision workflows are available
in Chaps. 4 and 5 of this monograph.

• Solution Space Exploration using CB-PDSIDES for DE 4.0. Using CB-
PDSIDES, designers are able to explore the solution space by following a formal
procedure that centers on the cDSP construct. The procedure takes design require-
ments as input and gives satisficing design specification as output. Steps include
clarification of the design event, definition of the problem, identification of theo-
retical and empirical models that are available, development of surrogate models,
formulation of the cDSP, executing the cDSP and carrying out solution space
exploration, visualization, and trade-offs. The solution space exploration function-
ality ensures that the output design specification is acceptable to the designer. All
these functionalities are critical for realizing systems and addressing the drivers
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of DE 4.0. More details on solution space exploration are available in Chaps. 4, ,
5, and 6 of this monograph.

• Uncertainty Management using CB-PDSIDES for DE 4.0. Dynamically
managing uncertainty and complexity across process chains is one of the crit-
ical functionalities needed to address the business and cyber aspects of DE 4.0.
In CB-PDSIDES, designers are able to explore robust solutions for problems by
managing different sources of uncertainties. This is carried out using the robust
designmetrics, DesignCapability Indices (DCI), and ErrorMargin Indices (EMI),
respectively [18, 19]. Using these functionalities, designers are able to identify
satisficing solutions that are relatively insensitive to uncertainty. InCB-PDSIDES,
designers have access to robust concept exploration methods, such as the goal-
oriented inverse design (GoID) method, and robust concept exploration method
(RCEM) to carry out robust concept exploration of process chains by managing
uncertainty. More details on uncertainty management are available in Chap. 6 of
this monograph.

• User/Activity Specific Decision Support using CB-PDSIDES. To facilitate co-
design and achieve the vision of DE 4.0, there is a need to tailor decision support
by accommodating different types of users in a variety of activities. CB-PDSIDES
supports three types of users for customized decision support, namely, domain
experts or template creatorswho are responsible for creating decision templates in
original design activities, senior designers or template editorswho are responsible
for editing (or tailoring) existing decision templates in adaptive design activ-
ities, and novice designers or template implementors who are responsible for
executing existing decision templates in variant design activities. More details on
user/activity specific decision support are available in Chap. 4 of the monograph.

7.5 Closing Comments

The paradigm shift in the age of Industry 4.0 requires a “human-cyber-physical
view of the systems realization ecosystem”, and platformization for augmenting
the role of designers as decision-makers are believed to be critical for manufac-
turing enterprises to succeed in this revolution. In this monograph, we describe
how a knowledge-based platform for decision support in the design of engineered
systems is architected to respond to this paradigm shift. In Chap. 1, the definitions
of several background concepts (including Industry 4.0, Design Engineering 4.0,
and the Industrial Brain) are reviewed, and the motivation, requirements, and basic
architecture of the PDSIDES platform are discussed. Even though big data is one of
the key features of Industry 4.0 and Design Engineering 4.0, we believe what really
supports designers making design decisions is knowledge and there is a need for a
platform to make full use of knowledge to provide decision support. Such a platform
should have functionalities including knowledge management and reuse, formula-
tion of decisions and decision workflows, solution space exploration, uncertainty
management, and user/activity specific decision support, in order to meet dynamic
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needs. In Chap. 2, we review and discuss the constructs for enabling those func-
tionalities of PDSIDES. The constructs include the DSPs for formulating decisions,
the PEI-X for constructing decision workflows, the procedure and indicators for
managing uncertainty and making robust decisions, and ontologies for knowledge
management and reuse. In Chap. 3, we discuss the development of the key ontolo-
gies for building the knowledge base for PDSIDES. First, an ontology is developed
to represent the knowledge related to selection decisions, and its utility is tested
using a light switch cover plate material selection example. Second, an ontology
is developed to represent the knowledge related to compromise decisions and its
utility is tested using a pressure vessel geometry design example. Third, an ontology
is developed to represent the knowledge related to hierarchical coupled decisions
(including selection and/or compromise decisions) and its utility is tested using a
portal frame design example. These three ontologies form the core structure of a
knowledge base for PDSIDES to support decisions in design. In Chap. 4, a proto-
type of PDSIDES is developed, and three types of users and their specific activities
are defined. Template creators are expert designers who create decision templates
in original design, template editors are senior designers who tailor existing decision
templates in adaptive design, and template implementers are novice designers who
specify the parameters in decision templates and execute them in variant design. The
usefulness of the prototype of PDSIDES is tested using a hot rod rolling system
design example. In Chap. 5, the functionality of knowledge-based meta-design of
decision workflows is added to PDSIDES and the associated ontology is developed,
and a heat exchanger design example is used to test this functionality. In Chap. 6,
the functionality of knowledge-based robust design space exploration is added to
PDSIDES and the associated ontology is developed, and it is tested using the hot rod
rolling system design example. We believe the knowledge-based decision support
functionalities defined in this monograph will benefit enterprises who have interests
in the design of complex systems in the context of Industry 4.0.

Putting the knowledge-based functionalities into the cloud is the future direc-
tion for PDSIDES, that is to create the so-called “CB-PDSIDES” for delivering
cloud-based decision services. The key to CB-PDSIDES is the SOA architecture.
We identify several challenges for realizing such a SOA architecture in the context
of design decision support, including service modeling, service customization, intel-
ligent service composition, and smart service provider-seeker matching. We also
propose the related research questions for tackling each of these challenges. The
answers to these questions, we believe, will shape the future of decision support with
a “human-cyber-physical view of the systems realization ecosystem.”

As technology advances, we anticipate that autonomy will be shared between
cyber systems and humans in Human-Cyber-Physical systems. However, as the
decision-maker, a human still needs to decide when a “Human supports a Computer”
or when a “Computer supports a Human” as the system evolves over time. It is the
purview of the designer to select the transfer of autonomy from cyber-operators
to human operators and vice versa. In that sense, how to provide proper support
to designers to make such meta-level decisions is a new topic, that merits another
monograph. Stay tuned!
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