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CHAPTER 1

Introduction 
to Generative AI
Generative AI (artificial intelligence) is a loaded phrase these days. 

Investors are throwing their money at it, execs are throwing it at each 

other, and at some point, a manager is probably going to ask you “can we 

do generative AI too?” or you’re going to get tempted and hack together 

an LLM-powered bot at 2 a.m. This chapter introduces you, a software 

engineer, to the booming world of AI, by cutting through all the hype and 

demystifying AI. I start from the most popular architectures right now and 

then throughout the book to various models, both open and closed source. 

I aim to explain these models from the lens of a software engineer as 

opposed to a data scientist or machine learning scientist. This means the 

aim is to understand and explain just enough about the foundation models 

so you can customize and build AI-powered applications, leveraging these 

models. In particular I’ll focus on diffusion models (you know all those 

cool AI images you’ve seen on your socials?) and transformer models 

(think ChatGPT, LLama, music-gen, etc.).

https://doi.org/10.1007/979-8-8688-0205-8_1
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�What Is Generative AI?
Generative AI is essentially a kind of unsupervised or semi-unsupervised 

machine learning that allows people to create various types of rich content, 

like images, text, video, speech, and even music.

With unsupervised learning, a model is able to determine patterns in 

the data it is fed, often patterns the human eye would simply miss, without 

needing any kind of labelling. These models leverage neural networks 

(similar to the networks in our brains) to learn patterns and generate the 

rich content you’ve been seeing all over the Internet.

Semi-supervised learning is a combination of supervised and 

unsupervised learning. This means making use of a small number of 

labelled data (supervised learning) during the training or fine-tuning steps, 

combined with a large set of unlabeled data (unsupervised learning).

The ability to make use of unsupervised learning on massive 

amounts of unlabeled data (such as articles, books, images, etc.) is what 

supercharged companies’ abilities to create massive foundational models 

such as GPT-4, Stable Diffusion, Llama Bark, etc. Without this style of 

machine learning, labelling what is essentially all of human knowledge 

(i.e., the Internet) would have been virtually impossible!

Okay, now that you have a high level intro into generative AI, let’s talk 

a little bit about different architectures, in particular the two most popular: 

transformers and diffusion models.

�Model Types
In this section, we’ll explore two main types of architectures: transformers 

and diffusion models. While there are a range of architectures, I want to 

talk to you through the ones the foundation models used in this book are 

based on. Also, keep in mind, this section is not a deep dive, more of a 

Chapter 1  Introduction to Generative AI
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summary, just enough so you know what you’re using, when you build 

applications on top of these models. This means you won’t be learning the 

math (but I do recommend you read the papers, research, and understand 

the math; it’s fascinating!)

First up is transformers and then diffusion.

�Transformers Explained
Transformers are currently dominating the natural language processing 

(NLP) space. Most of your favorite models are transformers, for example, 

GPT-4, Llama, Falcon, etc. Let’s look into transformers and why this 

architecture becomes so popular. To do that, we need to go through a tiny 

history lesson.

Once upon a time, there were two main architectures: recurrent neural 

networks (RNNs) and Long Short-Term Memory (LSTM) networks (a type 

of RNN), specifically designed to handle sequential data (e.g., text). Let’s 

discuss RNNs and then LSTMs.

�RNNs

RNNs maintain a memory of previous inputs in their internal structure to 

process sequences of inputs.

Imagine reading a book and trying to predict the next word in a 

sentence. If you’re reading word by word without remembering the 

previous context, it’s tough. But if you recall the earlier part of the 

sentence, it becomes easier. RNNs do something similar: they remember 

the “history” to make sense of the current input.

Chapter 1  Introduction to Generative AI
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Let’s take a quick look at the basic workflow of an RNN in Figure 1-1.

	 1.	 Input: At each step, the RNN takes in an input (e.g., 

a word in a sentence). (Xn)

	 2.	 Hidden State Update: This input, combined with the 

previous hidden state (hn) (memory), is used to update 

the hidden state. This new state might carry forward 

crucial information and forget irrelevant details.

	 3.	 Output: Based on the updated hidden state, the 

RNN might produce an output (e.g., predicting 

the next word in a sequence). The output is a 
combination of Xn and hn.

	 4.	 Move to Next Step: The process repeats for the next 

element in the sequence.

Figure 1-1.  RNN architecture

While these basic RNNs are excellent for modelling sequential data like 

text or time series data, they have the fatal flaw of struggling to remember 

distant past information. In other words, they have a short-term memory. 

This tendency to forget is called the vanishing gradient problem.

This brings us to LSTMs, designed specifically for long-term memory.

Chapter 1  Introduction to Generative AI
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�LSTMs

The short-term memory problem is addressed by using LSTMs, which 

have a more complicated structure but function more similarly to how a 

human might read a book or hold a conversation.

In the previous RNN, you can see that the network is able to remember 

previous information because we pass the previous hidden state (h) into 

the current cell. Continuing on from this observation, you can also see 

how hidden states from further back cells become diluted; essentially the 

information in those states vanishes.

One of the core observations in Figure 1-2 is the top horizontal line, 

which transfers the vector straight through the cell and through the entire 

network. This means that information can flow through the sequence, 

essentially unchanged, meaning this network has the capability to 

remember information from further behind in the sequence. Kind of like 

a sushi train, food keeps passing along, and you can remove, modify, or 

leave the sushi as is.

Figure 1-2.  LSTM cell

Chapter 1  Introduction to Generative AI
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But you also don’t want to just pass information along with no 

modifications. The way that humans understand and process information 

is based on our ability to place more or less emphasis on different parts of 

a sentence or paragraph, based on context or prior knowledge.

To reproduce this kind of behavior, LSTMs use gates (forget, input, and 

output specifically) to determine what action to take.

So the basic workflow goes like this:

	 1.	 Input Vector: Similar to RNNs, the LSTM unit takes 

in an input vector and the previous hidden state at 

each time step.

	 2.	 Gates in Action:

•	 The forget gate decides which parts of the cell state 

to throw away.

•	 The input gate decides which values to update in 

the cell state.

•	 After these updates, you have the new cell state that 

carries long-term memory.

•	 The output gate determines what the next hidden 

state (short-term memory) should be.

	 3.	 Output: The LSTM produces an output, which is 

the hidden state passed to the next LSTM unit in the 

sequence.
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	 4.	 Move to Next Step: The updated cell state and 

hidden state are passed to the next LSTM unit in the 

sequence, and the process repeats.

So with this variation of an RNN, you get an improvement on the 

vanishing gradient problem, but it’s still not entirely solved. LSTMs 

remember for longer but not quite long enough.

�Transformers

Fast-forward to 2017, a groundbreaking paper named “Attention Is All You 

Need” was published, with the key creation of a self-attention mechanism.

These models are able to track relationships between words and 

concepts and understand “context” in language – kind of like we as 

humans do instinctively, without even actively having to think about it. 

When humans talk about context, what we mean is attention. For example, 

when you’re translating a piece of text from English to Spanish, you’ll likely 

need to pay attention to words, not just next to each other, but distant from 

each other, because they can change the meaning, the tense, conjugation, 

and overall form of a word. Attention in the context of transformers is very 

similar. In other words, ensuring a neural network is able to glean context, 

because context heavily influences words in almost all NLP tasks.

Chapter 1  Introduction to Generative AI



8

Let’s take a look at the overall workflow shown in Figure 1-3.

	 1.	 Input Representation

Tokenization and Embedding

•	 First, your raw input (some text) is tokenized. This 

means breaking down the input into chunks – these 

could be words or characters.

Figure 1-3.  Transformer architecture  
Image source: https://arxiv.org/pdf/1706.03762.pdf
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•	 Then each token is mapped to a vector using 

an embedding layer. This vector representation 

captures the semantic meaning of the token. This 

is essentially representing words + meanings in 

numerical form.

Positional Encoding

•	 Since the transformer doesn’t process data 

in sequence like RNNs, it doesn’t have an 

understanding of order of tokens. So a positional 

encoding is added to the embeddings. This makes 

sure the model can account for the position of 

words in a sequence.

	 2.	 Transformer Layers

The core of the transformer model consists of a 

stack of identical layers. Each layer has two main 

components:

•	 Multi-head Self-Attention Mechanism

•	 Feed-Forward Neural Network

Multi-head Self-Attention

•	 This mechanism allows the model to focus 

on different parts of the input sequence when 

producing an output for a particular token.

•	 The “multi-head” part means this attention process 

happens in parallel multiple times, allowing the 

model to focus on different semantic aspects 

simultaneously.
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•	 The attention mechanism uses three weight 

matrices called Query, Key, and Value, which 

help in determining how much attention to pay to 

various parts in the input sequence.

Feed-Forward Neural Network

•	 Each attention output is passed through a Feed- 

Forward Neural Network (separately but in parallel). 

The same network is applied to each position.

Residual Connection and Normalization

•	 After both the attention and feed-forward stages, 

there’s a residual connection that helps in training 

deeper networks.

•	 Layer normalization is also applied after adding the 

residual connection.

•	 The residual connection helps with the vanishing 

gradient problem, and layer normalization aids in 

faster and more stable convergence.

	 3.	 Output

•	 If you’re using just the encoder part (like BERT), 

the output is typically a vector representation of the 

entire sequence or individual tokens, which can be 

used for tasks like classification.

•	 If you’re using the decoder part (like GPT-4), the 

output is another sequence, which is the result of 

transforming the input sequence.
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	 4.	 Additional Components

Masking

•	 In certain situations, like training a language model, 

you don’t want certain words to pay attention to 

future words in the sequence (because they shouldn’t 

be “known” yet). Masking makes sure the model is 

“blind” to these future tokens during training.

•	 This is crucial for training models like BERT, where 

you want to predict a masked-out word without 

“cheating” and looking at it. For GPT, the masking 

makes sure that when predicting a token, the model 

can’t look at future tokens.

Final Linear and Softmax Layer (For Tasks Like Language 
Modelling)

•	 The decoder’s output can be passed through a 

final linear layer followed by a softmax to produce 

probabilities over the vocabulary. The token with 

the highest probability is usually taken as the 

prediction, especially for text generation.

•	 This is especially common in language modelling 

tasks where the goal is to predict the next word in a 

sequence (think ChatGPT).

So far, you’ve learned about generative AI in the context of language, 

that is, large language models (LLMs); next up is diffusion models, which 

have gained popularity in the image generation space.
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�Diffusion Explained
Most recently, diffusion models have been used by the likes of OpenAI for 

DALL-E, Midjourney, and Stability AI, all for image generation. The way 

diffusion models work overall is actually quite simple – one of the less 

complex concepts we’ll discuss in this book.

Diffusion models are a type of generative model, which is used in 

a range of situations. You might already be very familiar with diffusion 

models being used for image and video generation. These models have 

also started showing promise in other areas such as drug discovery!

In Figure 1-4, you can see just all the places diffusion models fit in.

Figure 1-4.  Diffusion model applications
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We’ll focus on images for the purpose of this book. Let’s take a look at 

how these models work.

�The Core Idea

Imagine a drop of ink spreading out in a glass of water. This process of 

diffusion, where particles move from regions of high concentration to low 

concentration, is a natural phenomenon. In diffusion models, a reverse 

process is used: it starts from a target data point (like an image) and 

gradually adds noise to it until it becomes a simple distribution. The magic 

is that this process can be reversed to generate new data samples.

�How Diffusion Models Work

	 1.	 Noise Addition Process (Forward Process) 
(shown in Figure 1-5)

•	 Starts with a real data sample (e.g., a real image).

•	 Gradually, it adds noise over several steps until the 

sample becomes indistinguishable from pure noise.

	 2.	 Noise Removal Process (Reverse Process/
Generation) (shown in Figure 1-5)

•	 Starts with a sample from a simple distribution (like 

Gaussian noise)

•	 Uses a neural network to gradually remove the 

noise over several steps, guiding the sample 

to resemble a real data point from the target 

distribution
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	 3.	 Training

•	 During training, the model learns to reverse 

the noise addition process. It gets better at 

transforming a noisy sample into a realistic one.

•	 This is done by using a neural network that predicts 

how to denoise a sample at each step. The model 

is trained on pairs of noisy samples and their less 

noisy versions.

And there you have it, you now know how Stability AI, DALL-E, etc., 

work under the hood.

�What’s Next?
So far you’ve learned about the architecture of the newly dubbed 

“foundation models.” As you read through this book, the next topics 

focused on are LangChain (your Swiss Army knife to AI apps), monitoring 

(can you really go into production without solid monitoring?), and finally 

fine-tuning these models. As AI summer progresses, it’s likely, rather 

than building and training models from scratch, you’ll be fine-tuning 

foundational models to your needs.

Figure 1-5.  Diffusion model process  
Image source: https://arxiv.org/pdf/2006.11239.pdf
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�Summary
This chapter has given you an understanding of the two most popular 

architectures out there: transformers and diffusion models. These are 

foundational models that will form the basis of the AI applications you 

build in future. Both open source and closed source models make use 

of these architectures. As an AI engineer (practicing or aspiring), it’s 

important to understand what’s going on under the hood of the tools 

you use.
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CHAPTER 2

LangChain: Your 
Swiss Army Knife
In Chapter 1, you were introduced to the various types of generative 

models available, the most popular architectures, and how they work. 

Now, this chapter introduces you to LangChain, your Swiss Army knife 

to building robust applications on top of LLMs and other models. As you 

build applications beyond just making API calls, you’re going to need 

various components to connect a model to your own data, to external 

data, and services, and that’s what LangChain helps you with. A standard, 

modular way for you to essentially plug and play with models and various 

integrations.

As you go through this chapter, you’ll be introduced to a few concepts 

you might not be intimately familiar with – don’t worry, as I go along, I’ll 

explain these concepts, and as you go through further chapters, you’ll use 

these concepts in increasingly complex ways – which will help you further 

understand. Basically, this is the approach:

–– Introduce the concept and theory.

–– Learn by getting your hands dirty.

https://doi.org/10.1007/979-8-8688-0205-8_2
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�The Whats and Whys
LangChain is not only one of my favorite frameworks for building AI- 

powered applications but also quickly becoming an industry standard. 

This framework provides engineers with a modularized, standard interface 

to plug different models (open and closed source), with various data 

sources and API integrations.

You can think of it like playing with an assorted bunch of building 

blocks to create almost anything you can imagine.

The main components LangChain is composed of are the following:

–– LLMs

–– Retrieval

–– Memory

–– Chains

–– Tools

–– Agents

By combining these concepts, you can create end-to-end LLM- 

powered apps that go beyond just a simple API call to OpenAI. You can 

chain calls, can allow your model to have access to various tools (e.g., 

Google search APIs), and finally, can use your LLM’s reasoning abilities to 

decide which tools to use for particular tasks (this concept is agents).

In the next two chapters, you’ll get to dive into each block or 

component. As I mentioned earlier, you’re going to learn by doing, so the 

next few sections are broken down by use cases.

In the first use case, you’re going to build an app to chat to your 

company or organization’s Slack – you know, for when you have to look up 

certain information or messages? Instead of keyword searches and then 

scrolling through messages – why not chat to your archive? This use case 

will cover LLMs, retrieval, and memory.
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In the next use case, you’re going to build an agent that plans your day 

for you based on your mood, the weather, and your past preferences. This 

will cover chains, tools, and agents.

Let’s move on to the first one, a chatbot.

�Chatbot
From Chapter 1, you understand transformer models, and they’re 

essentially predicting the next word/s. That’s great for plenty of tasks like 

translation and text generation, but the thing that’s really useful is the 

ability of an LLM to hold a conversation with you. That’s the great thing 

about ChatGPT; it’s been trained on so much data, and then on top of 

that, they’ve built a chatbot, so it’s kind of like being able to chat with 

everything. You’re going to learn how to build your own, smaller version 

for your personal data like notes, text messages, or Slack messages – 

without training or even fine-tuning.

Think about the ingredients in a human conversation for a second:

–– All participants need to be able to speak the same 

language.

–– Let’s assume English for now, and we have that from 

most LLMs.

–– The participants have to be able to remember what’s 

happened in the past during this conversation.

–– And access to knowledge in some way (in our case, 

knowledge of your Slack messages).
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The last two points are referring to two concepts, which form the basis 

of a lot of LLM-powered applications you’ll build:

–– Memory

–– Retrieval

Let’s discuss both and then you’ll start to build your chatbot.

�Memory

With LLMs, by default, they have no concept of history or memory. Every 

query or call to an LLM is stateless, meaning they answer every question as 

if it’s the first time it’s been asked. And the model doesn’t take into account 

your past interactions.

And that’s the role this concept of memory comes into play – aptly 

named, it’s a way to give an LLM remembering capabilities so you can hold 

a conversation with the model.

At this point, maybe you’ve already started thinking about how to start 

giving any LLM a memory.

One way would be to simply capture each query + LLM response 

and send that back into your LLM on the next query. As you can see in 

Figure 2-1 – you make a call to the LLM, it responds, and you parse the 

response, format it, and then send the response + your next question back 

as part of the context. You would keep repeating this pattern (until you run 

out of context length).
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Figure 2-1.  Example of a simple way of just chaining queries and 
outputs for “memory”

LangChain actually provides different chains to replicate this behavior 

in a reusable way – so you just have to decide on the type of memory you 

want to use, your input prompts, and some tunable parameters. Let’s take 

a look with some real code.

Types of Memory

First, if you haven’t already, go ahead and install LangChain (you can find 

installation instructions on the LangChain documentation page). For 

these examples, I’m going to use OpenAI, but you can use any other LLM – 

LangChain has integrations with the vast majority out there.

LangChain provides a number of types of memories for you to 

leverage; we’ll focus on the four basic ones in this chapter and some of the 

more complex ones in later chapters.

First up is ConversationBufferMemory, which serves as a flexible 

memory buffer for chat conversations. It allows you to access the chat 

history in two formats:

	 1.	 As a string (buffer_as_str)

	 2.	 As a list of message objects (buffer_as_messages)
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The class provides a load_memory_variables method that returns the 

chat history based on a chosen format. This output can then be used as 

context to your LLM, thereby providing it info on the previous parts of the 

conversation.

Let’s take a look at a small example of how memory is represented:

from langchain.memory import ConversationBufferMemory

from langchain.llms import OpenAI

llm = OpenAI()

memory = ConversationBufferMemory()

memory.save_context({"input": "What is the capital of the UK"}, 

{"output": "London"})

print(memory.load_memory_variables({}))

Output:

{'history': 'Human: What is the capital of the UK\nAI: London'}

Here what you’re doing is adding some history into your memory 

buffer. Right now, nothing is being passed into an LLM, but you can see the 

output of what would be passed to the LLM.

The prompt would include the “history,” the “Human,” and “AI” 

conversation – thereby giving the LLM context into the conversation.

In other words, ConversationBufferMemory is a simple way of 

representing historical context as a string that can be parsed and passed 

into a prompt.

Notice that the ConversationBufferMemory automatically formatted 

your input and output into the format of Human and AI conversation. This 

is the default, but you can change it using these variables:

human_prefix and ai_prefix.
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For example:

memory = ConversationBufferMemory(human_prefix="Aarushi", ai_

prefix="Hermione")

memory.save_context({"input": "What is the capital of the UK"}, 

{"output": "London"})

Output:

{'history': 'Aarushi: What is the capital of the UK\nHermione: 

London'}

How might this look with an LLM attached?

	 1)	 Format the output so the LLM understands what 

this whole “history” thing is.

	 2)	 Pass that as a prompt + your next query.

	 3)	 Parse the response into your “history.”

	 4)	 Rinse and repeat.

This process is shown in Figure 2-2

Figure 2-2.  Overall architecture of using memory in the prompt 
of an LLM
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Luckily, LangChain also has a built-in chain for just that. I’ll go into 

chains later on, but let’s take a quick look at how that would work.

from langchain.llms import OpenAI

from langchain.chains import ConversationChain

llm = OpenAI(temperature=0)

conversation = ConversationChain(

   llm=llm,

   verbose=True,

   �memory=ConversationBufferMemory(human_prefix="Aarushi",  

ai_prefix="Hermione")

)

conversation.predict(input="What is the largest city in the UK 

by population?")

conversation.predict(input="And second?")

conversation.predict(input="What about in Germany?")

# just to run one more time

conversation.predict(input="")

Okay, so similar to before, you initialize your 

ConversationBufferMemory, with the prefix you want (omit for defaults). 

Then all you do is add your questions – take note here, I’ve specifically kept 

the second and third questions brief with minimal context so you can see 

how it gleans context from the conversation memory.

When you run this, you should get a final output similar to the 

following:

The following is a friendly conversation between a human and an 

AI. The AI is talkative and provides lots of specific details 

from its context. If the AI does not know the answer to a 

question, it truthfully says it does not know.
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Current conversation:

Aarushi: What is the largest city in the UK by population?

Hermione: The largest city in the UK by population is London, 

with a population of 8.9 million people.

Aarushi: And second?

Hermione: The second largest city in the UK by population is 

Birmingham, with a population of 1.1 million people.

Aarushi: What about in Germany?

Hermione: The largest city in Germany by population is Berlin, 

with a population of 3.7 million people. The second largest 

city in Germany by population is Hamburg, with a population of 

1.8 million people.

Basically, this chain abstracts away all the logic of parsing and 

updating the prompt from you so you just choose the memory type and 

related configuration.

As you use LLMs more and more, you’ll start to notice two things:

	 1)	 Generally, LLMs have a maximum context length  

 – meaning you can only really send a prompt of a 

certain size.

	 2)	 The larger your history or prompt, LLMs tend 

to start ignoring or missing older pieces of 

information.

So really, you want to send less of your history or maybe a condensed 

version of it – and once again, LangChain allows you to do just that with 

more types of memory, specifically ConversationBufferWindowMemory, 

ConversationSummaryMemory, ConversationSummaryBufferMemory, 

and ConversationTokenBufferMemory.

ConversationBufferWindowMemory – It is a variant of ConversationBuffer; 

it also keeps a history of your interactions, but only up to k number. This is 

a number you can decide on for your own needs – in my experience, I have 
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found that for most use cases, a larger number is actually detrimental, and the 

model ends up hallucinating more often than not. I would recommend you 

experiment and find a balance of short but informational queries combined 

with a smaller window (k).

ConversationSummaryMemory – As the name suggests, this is a type 

of memory that condenses down your conversation into a summary that 

can be passed into your LLM.

Let’s take a quick look at some code:

conversation_with_summary = ConversationChain(

   llm=llm,

   �memory=ConversationSummaryMemory(llm=llm, human_

prefix="Aarushi", ai_prefix="Hermione"),

   verbose=True

)

conversation_with_summary.predict(input="How are you 

Hermione?")

conversation_with_summary.predict(input="What is the third 

planet from the sun?")

conversation_with_summary.predict(input="second?")

conversation_with_summary.predict(input="fifth?")

conversation_with_summary.predict(input="")

Output:

The following is a friendly conversation between a human and an 

AI. The AI is talkative and provides lots of specific details 

from its context. If the AI does not know the answer to a 

question, it truthfully says it does not know.
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Current conversation:

Aarushi asked how Hermione was doing and Hermione replied that 

she was doing great and asked how Aarushi was doing. Aarushi 

then asked what the third and fifth planets from the sun were, 

to which Hermione replied that the third was Earth, the only 

planet known to have life and the only planet in our solar 

system with liquid water on its surface, and the fifth was 

Jupiter, the largest planet in our solar system made up mostly 

of hydrogen and helium with a strong magnetic field and home to 

the Great Red Spot.

Here you’ll notice instead of the conversation, with each participant, 

it’s a summary of it – this kind of memory is great for particularly long 

conversations, especially where you need the LLM to understand the 

overall gist rather than each individual nuance of the conversation. For 

example, if you were chatting over internal HR documents, looking for 

general time-off policies – the LLM just needs the summary and the large 

points, not each bit of detailed policy.

Next up is ConversationSummaryBufferMemory, which combines 

both summaries and a buffer – meaning instead of only keeping a 

summary of previous interactions, it keeps interactions in a buffer as well 

as a summary. It means it keeps more recent interactions in a buffer and 

older ones as a summary (once the buffer hits a certain token length that 

you can tune).

Finally, ConversationTokenBufferMemory is similar to 

ConversationBufferWindowMemory but instead maintains a buffer of x 

tokens length rather than x number of interactions length.

So now we’ve covered some basic types of memory (there’s more, but 

I want to save those for later chapters). At this point, with even just the 

simple code snippets shown previously, you have yourself a chatbot that 

remembers previous interactions and can hold a conversation with you 
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based just on the knowledge it’s been trained on, which is a lot, but it’s not 

going to be your personal or company data (unless it’s public). And we 

want to build a chatbot on your own information.

To do this, you could fine-tune your own model, and there are 

definitely use cases and reasons to fine-tune a model. But in our use 

case, that can be expensive and time consuming, and most importantly 

your own info such as Slack messages is going to change way too fast for 

you to be able to fine-tune fast enough. Think about the speed at which 

we message each other on Slack or any other messaging app. Luckily, 

there’s been a rise of a new standard practice, called Retrieval Augmented 

Generation (RAG), to help give LLMs more knowledge without fine-tuning.

�Retrieval

Retrieval is just one way of giving an LLM more specific, niche knowledge. 

It involves fetching data from some external source and passing it into your 

chosen LLM. Retrieval can be done any way – such as making an API call, 

reading a static file, reading a SQL DB, etc. This end-to-end flow of fetching 

info, passing it into an LLM, and the LLM generating a response is known 

in the industry as Retrieval Augmented Generation (RAG).

Diving into RAG

Since we’re generally dealing with natural language and often 

unstructured messy data, the most popular (for good reason) storage 

system is a vector store. This essentially involves taking all of your niche 

data, creating a vector embedding, and storing in a vector database of your 

choice, as shown in Figure 2-3.
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Figure 2-3.  Retrieval Augmented Generation with a vector store

Let’s walk through each component in detail, starting with 

embeddings.

Embeddings Explained

In layman’s terms, embeddings are a way to represent everything that’s 

not numbers (e.g., text, audio, images, etc.) as numbers. All ML models 

are basically math equations in some form, complex math but still just 

math – and so they don’t actually understand or perceive words or images 

or anything else the way humans can with our five senses; they only 

understand numbers. That’s why to deal with language, we need to convert 

words and sentences into a numerical representation that ML models can 

understand. The term “embeddings” is a general term for taking one type 

of data and representing it in numbers. Embeddings come in different 

types, such as graph embeddings, tensor embeddings, and many more.
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In the context of LLMs, we’re talking about vector embeddings, and 

you’ll see vector embeddings and embeddings used interchangeably.

Vector Embeddings

As the name suggests, vector embeddings are a specific type of embedding 

where the representation is in the form of a vector. This means that the 

data, regardless of its original form, is translated into a fixed-length list of 

numbers.

Vector embeddings are commonly used in natural language processing 

(like Word2Vec or GloVe), where words or phrases are represented as 

vectors.

One of the major benefits of vectors is the ability to have vectors in 

high-dimensional spaces, which means that a vast number of features 

or aspects of language can be captured. Each dimension can potentially 

represent some facet of meaning, allowing the vector to encapsulate a rich 

set of semantic information.

And because vectors are basically long lists of numbers, we can do 

mathematical computations on data that normally wouldn’t be possible. 

For example:

vector(Germany) - vector(Berlin) + vector(France) = 

vector(Paris)

This shows that the difference between a country and its capital can 

be consistently represented in the vector space. So by knowing the capital 

of Germany and applying this relationship to France, we can deduce the 

capital of France.

Because we can do computations like this, another benefit of vector 

embeddings now is that we can use these geometric relationships between 

vectors to model semantic or functional relationships. For instance, in 

word embeddings, the vector difference between “dolphin” and “ocean” 
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might be similar to the difference between “camel” and “desert,” reflecting 

habitat relationships.

Basically, we use vector embeddings as a way to model intricate and 

complex semantic meaning and relationships between words and text.

Now, modelling these semantic relationships isn’t a trivial task – you 

need an embedding model that understands these complex relationships 

and can take your raw words or sentences and create vector embeddings. 

Luckily there are quite a few embedding models available:

•	 OpenAI’s embedding model, for example, text- 

embedding-ada-002

•	 Cohere’s embedding model

•	 Open source embedding models (https://

huggingface.co/BAAI/bge-large-en)

•	 And a lot more

LangChain also integrates with the vast majority, and you can have a 

look here: https://python.langchain.com/docs/integrations/text_

embedding/.

So in an RAG application, you’ll have one step that involves taking your 

raw data, inputting it into an embedding model, and then getting a vector 

embedding out of it, as shown in Figure 2-4.

Figure 2-4.  Steps for taking unstructured, raw data and converting 
to an embedding
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Now that you have these embeddings – you need somewhere to store 

them, somewhere to search from so your LLM has an external data source. 

And that’s where vector stores come into play.

Vector Stores Explained

Vector stores or vector DBs have been around long before generative AI 

became so mainstream – they were used in areas such as information 

retrieval, recommendation systems, and even molecular biology.

Now with modern embedding models and the rise of LLMs, there’s 

also been a rise not just in popularity of vector stores but also new, 

more modern DBs available specifically designed to fit in with modern 

generative AI models.

Here’s a non-exhaustive list for you:

–– Weaviate

–– Pinecone

–– Chroma

–– Qdrant

–– Traditional DBs that have started supporting vector 

embeddings

If you want a more detailed list, check out https://python.

langchain.com/docs/integrations/vectorstores.

So how do these DBs actually work and what’s so special about them 

compared to existing SQL and NoSQL DBs?

Vector DBs are specifically designed to store high dimensional data 

like embeddings and allow for fast querying and lookups. They have the 

capabilities of traditional databases, while being optimized to handle the 

complexity of vector embeddings.
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When you create + store an embedding, a reference to the original data 

is also stored. Then, when you make a query to the DB, the query is first 

converted to an embedding (using the same model), and this embedding 

is used to find the most similar content and return it to you.

Steps are shown in Figure 2-5.

Figure 2-5.  Steps for converting a user query into a searchable query 
in a vector DB and returning the answer

Unlike traditional databases that are optimized to search for exact 

values – a number, a string, or some other single dimensional, exact value  

 – vector databases are optimized to search for vectors (high dimensional 

data) that are most similar, not exact to another query vector.

To do this, vector databases store your data in structures that allow for 

fast querying – called indexes. These indexes are created using a variety of 

algorithms, which we won’t go into detail but are listed if you want to read 

more about them:

–– Random Projection

–– Product Quantization

–– Locality-Sensitive Hashing

–– Hierarchical Navigable Small World
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When the query comes in, these DBs make use of various algorithms to 

do an Approximate Nearest Neighbor (ANN) search to get the most similar 

matches based on some similarity metrics, such as cosine similarity, dot 

product, Euclidean distance, or Hamming distance.

And there you have it, theory on how you get an LLM hooked up to 

your own data.

What Else Is RAG Good For?

Hallucination – that’s probably a word you’ve heard a lot when discussing 

or critiquing LLMs or LLM systems. Hallucination basically refers to 

the LLM’s tendency to just “make up” information. This can happen for 

reasons such as not having the information and being trained on incorrect 

information (remember, these systems are trained on public data, and 

there’s a lot of misinformation out there).

By using RAG, you can help reduce this tendency by having your 

system fetch the correct information and including it in the context for 

when your LLM crafts a response.

Let’s move on to some actual code.

�The App

Okay, so now we’re going to put all of these pieces together and build a 

chatbot over your Slack messages (or any other data source really).

Prerequisites

–– Python 3

–– Latest LangChain version

–– A vector database

–– I’m going to use Weaviate’s 14-day free hosted one, 

but you can choose one of your choice. The code 

generally remains the same.
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–– Slack messages

–– I’ve created a new workspace with some “fake” 

messages – you can do the same or if you are able to 

use real ones, use those.

–– An LLM

–– I’m using OpenAI’s GPT-4. 

Loading Your Data

Since we’re dealing with unstructured data here, the first thing you’re 

going to need to do is load your Slack messages in a form that can then be 

turned into vector embeddings.

Go ahead and export your Slack messages as a zip file from  

{your_slack_domain}.slack.com/services/export.

Once you have that, let’s load it as seen in the following code snippet:

LOCAL_ZIPFILE = "gen_ai_co_slack.zip"  # Paste the local paty 

to your Slack zip file here.

loader = SlackDirectoryLoader(LOCAL_ZIPFILE)

docs = loader.load()

Basically, you’ll most likely be dealing with unstructured data, so 

LangChain provides you with a lot of different types of “loaders” that 

take data of one type (e.g., Slack, epub, logs from Datadog, Excel, GitHub, 

and many more) and turn them into structured data. For example, the 

SlackDirectoryLoader takes the json files exported from Slack and converts 

them into a list of documents. This Document structure just stores text and 

its associated metadata.
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For example, the json files end up looking something like this:

Document(page_content='<@U05SQ9E71EF> has joined the 

channel', metadata={'source': 'q4-planning - U05SQ9E71EF - 

1694993629.080429', 'channel': 'q4-planning', 'timestamp': 

'1694993629.080429', 'user': 'U05SQ9E71EF'})

where page_content is the messages and the other fields are associated 

metadata. Other loaders work in different ways – but the end result is 

always the same, unstructured data converted into structured.

Transforming Your Structured Data

Now, you have your data loaded, but you still need to transform it before 

you can create the embeddings – this means transforming your data into 

smaller chunks before creating an embedding. This is because you want to 

be able to fit meaningful parts of your data within the context window of 

your model when querying and adding answers as context. This is where 

LangChain has document transformers that you’re going to use. The 

default you’re using here is the RecursiveCharacterTextSplitter, which tries 

to split on certain characters – by default on \n\n, \, “ ”, and “”.

In this snippet, I’ve chosen a chunk size of 500 and an overlap of 40 – 

the overlap ensures continuity between chunks.

text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, 

chunk_overlap=40)

documents = text_splitter.split_documents(docs)

You can check out the other document transformers here: https://

python.langchain.com/docs/integrations/document_transformers/.

Now, choosing a chunk size can almost be a bit of an art form. 

Remember, the size of your chunk influences your embeddings.
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If you go with shorter chunks (think words, or sentences), then your 

embeddings will lose the wider context in the paragraph – the embedding 

will narrow down on the specific meaning of the word or sentence.

If you go with longer chunks – you’ll get the broader context, but that 

could add confusion and actually cause the embedding to lose the more 

specific or nuanced meanings you might need.

As such, you need to really take into account:

What kind of documents are you dealing with? For example, Slack 

messages are usually quite short, so you can easily go for a shorter chunk 

size. Books and scientific articles are a different story – they’re longer and 

often you need the wider context; in this case, I would consider the next 

questions.

What is your use case? Will you or your users be asking very specific, 

nuanced questions? Short or long queries? Vague queries? For example, 

if your application is more of a very specific Q&A application, I would 

go through the documents and get a feel of how long do I as a human 

being need to read to get the right answer and based on that choose my 

chunk size.

A lot of these questions can be answered through you experimenting 

with sizes.

Embeddings and Storage

Next is creating your actual embeddings out of these chunks and actually 

storing them somewhere. Again, LangChain provides an abstraction layer 

to various embedding models and vector stores. This means you can just 

plug in any one you have access to.

In the next example, I’m going to use OpenAI for embeddings and 

Weaviate for storage, but since it’s a plug-and-play concept, you can 

replace it with one of your choices and the overall code doesn’t need to 

change drastically.
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Check out all the embedding integrations here: https://python.

langchain.com/docs/integrations/text_embedding/openai.

embeddings = OpenAIEmbeddings()

db = Weaviate.from_documents(documents, embeddings, weaviate_

url=WEAVIATE_URL, by_text=False)

And your code is as simple as this; choose the embedding integration 

and the vector store and pass your chunked docs and embedding model 

and you get a vector store populated with your embeddings, that you can 

now query.

For example, in my setup, I can run this query:

query = "What is the work from anywhere policy?"

docs = db.similarity_search(query)

and get a response like this:

Exciting News! We’re officially launching our *Work from Anywhere 

(WFA)* policy. Starting next month, you’ll have the flexibility to choose 

your work location, be it from home, a café, or any place that boosts your 

productivity.

So you can see my query was turned into an embedding; a similarity 

search took place; the resultant content was returned to me as is.

Okay so, maybe now you’re wondering how to choose an 

embedding model.

Here are some of my considerations:

–– Cost: Hosted ones like OpenAI can be expensive.

–– Latency: Hosted ones are quite new currently and often 

don’t provide SLAs, so expect unexpected latencies.
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–– Quality: This one’s tricky because it’s unlikely you’re going to 

be able to test out all the models closed and open source out 

there. I use the Massive Text Embedding Benchmark (MTEB) 

leaderboard as a good source (https://huggingface.co/

spaces/mteb/leaderboard).

Memory

And finally, now that you can retrieve data, you also want to hook up a 

memory component.

By now, you know how to instantiate memory, so go ahead and do 

that. The new step you’re going to do is include a so-called “retriever,” 

which is just the vector store from which your app can fetch. It’s a 

VectorStoreRetriever object, which has functions on it to allow it to actually 

query the store. Instantiate it as shown here:

llm = OpenAI(temperature=0)

memory = ConversationSummaryMemory(llm=llm, memory_key="chat_

history", return_messages=True)

ret = db.as_retriever()

Now, previously we used a ConversationChain, in this case, we’re 

going to use a different chain that can handle a retriever, called a 

ConversationalRetrievalChain.

This chain is similar to the chain you’ve used previously, except it 

includes one extra step internally, when you ask questions. It actually 

passes your question directly to the vector store and returns the stored 

documents.

Essentially, it’s an abstraction on this call:

docs = db.similarity_search(query)
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In the following code snippet, you’ll see how to set up your  

chain – now when you run this, you’ll see the same memory + 

summarization combination you saw previously.

qa = ConversationalRetrievalChain.from_llm(llm, retriever=ret, 

memory=memory)

qa("What is the work from anywhere policy?")

qa("are there any in office days required?")

qa("any coworking?")

And there you have it, a conversational app across your Slack 

messages.

�What’s Next?
Okay, so far you’ve built the seedlings of a conversational chatbot across 

your Slack messages. Next you’re going to learn in depth about chains and 

agents. This will help take your app to the next step – moving from purely a 

Python script to something slightly more interactive.

�Summary
In this chapter, you were introduced to LangChain and you learned how to 

use the two most basic building blocks: memory and retrieval, which allow 

you to create Retrieval Augmented Generation applications. This is a great 

start to giving your LLMs external knowledge, without having to spend 

time and effort on fine-tuning. On top of this, you can keep updating your 

vector store with new information, much faster than you could fine-tune 

with new information.

In the next chapter, you’ll take what you’ve learned about memory and 

RAG one step further and create an agent using LangChain.
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CHAPTER 3

Chains, Tools  
and Agents
In Chapter 2, you learned about RAG, memory, retrieval, and embeddings. 

You were able to combine these concepts and build yourself a command- 

line chatbot that answered your questions and could remember the rest of 

your conversation. This allowed the LLM to become “smarter” by getting 

context from history. Your chatbot also had access to up-to-date, personal 

information via a vector database, meaning it was able to answer questions 

beyond what it was trained on. This also helped prevent hallucination.

Now you’re going to take it one step further and build an agent – an 

independent application that can access the world and make its own 

decisions on what steps to take to get to the final goal.

�High-Level Concepts
Before going straight to code, I want to walk you through some theory on 

the concepts you’ll be making use of. In particular, I’ll talk you through 

chains, tools, and agents.

�Chains
First concept (which you actually used briefly in Chapter 2) is a chain. 

These are wrappers around multiple various components – ranging from 

LLMs, APIs, libraries, databases, utility functions, etc. They are one of the 
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core components of LangChain and enable you to really augment your 

LLM in a structured and easy way. You can craft your own chains or you 

can use the many existing ones. Chains are super important because they 

allow you to become a lot more creative with LLMs and solve increasingly 

complex problems, through integrating various entities.

These chains can be really simple such as just having one LLM or 

they can be increasingly complex – by combining multiple entities (also 

sometimes called utility chains).

The ones you’ve already used are related to RAG and conversational 

history. Recall in Chapter 2 you used the following:

•	 ConversationChain

•	 ConversationalRetrievalChain

The conversation chain you used, extended another, simpler chain, 

called an LLMChain, which alone, just receives a prompt and LLM and 

makes the call to the specified LLM and spits out the output. This is one of 

the most basic chains, and the ConversationChain builds on this algorithm 

to load historical context into the prompt that is then passed into the 

LLMChain and queried.

The next one you used was ConversationalRetrievalChain, and 

it is a chain specifically for retrieving information from a data source 

(in Chapter 2, that data source was Weaviate). This one is a little more 

complex, as it does three major things:

•	 It takes the chat history in and crafts an entirely new 

question based on history and new query.

•	 This question is passed into the retriever (i.e., this 

becomes the query to Weaviate).

•	 After getting the right documents, it passes the original 

question and fetched documents into the LLM to get a 

response.
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These are just two chains; there are a lot more available for you to use – 

I recommend you check them out and build some on top of them for even 

more customized use cases.

Okay, so now you understand the concept of chains and glueing 

multiple utilities together.

Think of chains the same as a human body lifting an arm, or yawning, 

or lifting a mug and drinking from it – all one smooth action, but a lot of 

little things happening and interacting with each other under the hood to 

make them happen.

And if chains are larger actions, you can think of tools as something 

that enhances your abilities and/or knowledge, for example, the ability to 

do complex math or execute Python code.

So now let’s talk about the tools that give your LLM further access to 

the world.

�Tools
Tools are wrappers that allow your LLM to interact with the world. This is 

a fancy way of saying; these are essentially functions that take some sort of 

input and output something based on it.

For example, if you were using a search tool – your input might be a 

query like “best sushi restaurants in London,” and the output you would 

get is a list of top sushi restaurants in London. This is information that 

could then be fed into your LLM and used further – maybe to transform 

that list into a “tour of London’s best sushi places” or maybe make 

recommendations to your user based on their dietary needs.

These tools can be simple API calls, chains themselves, agents, or 

anything else that does something when given an input.
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And again, LangChain provides you with a range of pre-built tools, for 

example:

–– Search tools

–– Bash script tools

–– YouTube tools

–– Weather tools

–– Python REPL

And many more – check out their documentation for the full list.

For the majority of use cases, a combination of these pre-built tools 

should get you where you need, but you can also craft your own tools 

if needed.

�Building a Custom Tool

Building your own tool is fairly simple, and you can get as complex with it 

as you need.

Within the LangChain framework, you have the BaseTool class, which 

is your blueprint to building a tool.

The main components of this blueprint are as follows:

–– Name

–– Description

–– _run function – Default function that runs when tool 

is called

–– _arun function – Function if you want async running

The name and description are required fields, and there are a few more 

optional fields that you can check out in the library if interested.

Let’s discuss the description field though – this is one of the most 

important fields because it’s what your LLM uses to make the decision on 

when/how and why to use this tool.
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Some best practices for you to consider:

–– Clearly state when to use the tool.

–– State how (especially if it’s a more complicated tool).

–– State when to not use the tool.

–– I’ve found this one very useful when using multiple 

tools inside of an agent. By being clear on when to 

not use the tool, you can really assist your LLM in 

becoming more accurate, as LLMs have the ten-

dency to also just use a tool if they’re not sure 

exactly which one to use or if there isn’t one that 

best matches its need.

–– Provide some examples of using the tool.

–– This one is great for helping your LLM reason 

by seeing.

Okay, let’s see some code. This one is going to be a really simple tool 

that just reverses any string passed into it.

As you can see in the following, you have to extend the BaseTool class, 

provide a name and description, and implement the _run method. I have 

not implemented the async function – but you definitely can for your own 

use case, if needed.

from langchain.tools import BaseTool

class StringReverseTool(BaseTool):

   name = "String Reversal Tool"

   �description = "use this tool when you need to reverse 

a string"

def _run(self, word: str):

   return word[::-1]

def _arun(self, word: str):

   �raise NotImplementedError("Async not supported by 

StringReverseTool")
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Now that you understand chains and tools, I want to show you agents, 

which is where LLM development gets really interesting. Everything you’ve 

learned so far can be combined into one or multiple agents.

�Agents
Agents are one of the most interesting, creative, and kind of buzzy 

concepts in the AI space currently. They are super powering and 

completely transforming the way we do complex tasks – previously only 

considered doable by human beings.

In more concrete terms, an agent is an application that is powered 

by an LLM and interacts with different APIs, entities, libraries, chains, 

tools, etc.

The LLM is the “brain” that makes the decisions on which chain 

and/or tools to execute, what to do with the output, and how to interpret 

various inputs/outputs and human interactions.

When ChatGPT first came out (as well as the other chatbots out there), 

the main way of interacting with GPT-3 was going on to OpenAI, writing 

some prompt, getting an answer, and then maybe continuing questioning 

or asking for different formatting, more in-depth answers, clarification, etc. 

This is a very manual and human process. In this process, the human is the 

decision maker, and the human has a goal or task to achieve.

Agents, on the other hand, attempt to replicate this human goal- 

oriented behavior – given a goal, they will determine their own tasks to 

achieve the tools to use and how to process the output of the tools and 

craft their own prompts to help them achieve each step to their final goal.

So what is this independent, self-thinking application actually 

made of?

	 1.	 An LLM

	 2.	 Memory
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	 3.	 An agent

	 4.	 One or more tools

	 5.	 Agent executor

	a.	 This is what runs the actual code when told 

to do so.

You can see the architecture in Figure 3-1

Figure 3-1.  Architecture for an agent – an independent, self-thinking 
application

Let’s dig a little into this component called an agent. At the crux of 

it, an agent is really a way of forcing the LLM to “think,” that is, a way of 

prompting the LLM to think in a certain style. For example, a very simple 

way would be to just say “think step by step” after asking a question. 

And since the onset of AI summer, there have been numerous papers on 

various algorithms and styles of prompting LLMs to facilitate better logic 

and reasoning and minimize hallucination.
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LangChain provides a range of these pre-built for you. Let’s dive into 

some of the most commonly used ones:

•	 zero-shot-react-description

•	 react-docstore

•	 conversational-react-description

•	 chat-zero-shot-react-description

•	 chat-conversational-react-description

•	 self-ask-with-search

Here, maybe you’ve noticed a lot of them seem to have the word 

“react” in them. This is a fairly new framework for prompting LLMs. So let’s 

talk about the basic premises of ReAct.

�ReAct

ReAct stands for reason and act, and it’s a framework that was proposed in 

March 2023 and has gained significant traction since then.

You can read the full paper here: https://arxiv.org/

pdf/2210.03629.pdf.

The goal of ReAct is to create a train of reasoning along with actions 

based on that reasoning and interweaving the two – meaning reasoning 

something, based on that taking an action and then based on the actions 

output reasoning again and taking another action until the task is 

achieved.

This is shown in Figure 3-2. Here you can see the LLM reasons that it 

needs to search Cirque du Soleil, find the hotel, and then find the number 

of rooms in the hotel. It then takes different actions and “observes” the 

output and based on that reasons or thinks to itself again and makes 

another action until it finally comes up with an answer.
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Figure 3-2.  Reason + Act examples from the original ReAct paper

And this concept is what most of the main agents are based on. The 

primary difference is what they are optimized for normally through tools, 

memory, and vector databases.

zero-shot-react-description

This agent type has no memory; it can only execute on one interaction. 

It will reason and output based on the ReAct framework but will not 

remember its previous thinking, or final answer on any subsequent uses.

Chapter 3  Chains, Tools and Agents 



50

conversational-react-description

This agent is the next enhancement on the zero shot agent – it allows for 

a memory. You can plug in any kind of memory. Recall in Chapter 2, you 

used ConversationBufferMemory and ConversationSummaryMemory; 

you could use these or you could also use an external storage as memory.

react-docstore

This agent uses ReAct but is optimized to use something called a Docstore 

in the context of LangChain. Basically an agent that uses some document 

store as a tool and can search in it for more context. The built-in ones 

include Wikipedia and In Memory (a Python dict representation).

self-ask-with-search

This agent is based on another proposed method to improve an LLM’s 

reasoning and logic abilities. This method is called self-ask, and you can 

read the paper here: https://ofir.io/self-ask.pdf.

The concept is to get the model to ask itself a series of questions, 

answer those, and repeat until the final answer is reached.

This can involve giving an example of self-asking in the prompt.

This is shown in Figure 3-3.
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Figure 3-3.  Self-ask examples from the original self-ask paper

In the paper, one of the enhancements on self-ask was to include a 

search engine. From the paper:

“self-ask clearly demarcates the beginning and end of every sub- 

question.

Therefore, we can use a search engine to answer the sub-questions 

instead of the LM. Search engines have features that LMs lack, such as an 

ability to be easily and quickly updated”
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This just means a search tool allows the LLM to have access to more 

recent, up-to-date information as well as access to information retrieval 

algorithms and abilities under the search API/engine.

Okay, now that you’ve learned about agents, let’s get to actually making 

one yourself.

�The App
Okay so the app you’re going to build is a day planner for any given city. 

It’ll be able to take into account the weather, understand what kind of 

activities you want, and give you tailored recommendations.

For that, you’ll need two tools to start with:

•	 Weather

•	 Specifically, OpenWeather, but if you wanted 

to, you could also use another API and write a 

custom tool.

•	 Up-to-date info about places in a city

•	 Specifically Google API, but again you can use 

another one

So with these tools in mind, take a look at Figure 3-4 for the overall 

setup of your agent. It’s going to have memory and access to an array of 

tools, and agent executor will help orchestrate.
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Figure 3-4.  Reason + Act examples from the original ReAct paper

Okay, now the actual libraries I’m going to use:

•	 For the UI: Streamlit – There are others for you to try 

as well.

•	 Gradio and Chainlit are the other two most 

popular ones.

•	 LangChain built-in tools:

•	 OpenWeatherMapAPIWrapper

•	 GoogleSerperAPIWrapper

•	 This is a wrapper around serper.dev, which gives 

me access to Google search (and other APIs if 

desired).

•	 LangChain also has wrapper for direct Google 

API access such as GoogleSearchAPIWrapper or 

GooglePlacesAPIWrapper.
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•	 Agent Type:

•	 I’m going to use a conversational-react-description 

agent, because I want both ReAct and a memory.

On to the code, I won’t go through the entire code base; you can see 

that on GitHub, just the parts of note.

In the first code snippet, you’re setting up your tools. You instantiate 

them and pass them into a Tool object, with a description and which 

function should be run. This is what tells the LLM what each tool can be 

used for – and allows the LLM to make the decisions. The agent executor 

uses whatever is in the func field, to actually execute, when the LLM makes 

a decision.

tools = [

   Tool(

       name="Search",

       func=search.run,

       �description="Useful for when you need to get current, up 

to date answers."

   ),

   Tool(

       name="Weather",

       func=weather.run,

       �description="Useful for when you need to get the current 

weather in a location."

   )

]

And then you set up the memory (recall, you did this in Chapter 2) as 

shown here:

memory = ConversationBufferMemory(memory_key="chat_history")
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Then you set up an LLM chain; recall from the chain section, this chain 

is one of the most simple chains, and all it does is make the call to the LLM 

and get the output.

llm_chain = LLMChain(

   llm=ChatOpenAI(

       temperature=0.8, model_name="gpt-4"

   ),

   prompt=prompt,

)

Also, take note here, you can replace the LLM field with an LLM of your 

choice. I’m using the wrapper for GPT-4 – but LangChain has wrappers for 

many others.

And then you set up your agent; this is where you pass in any chains, 

tools, and memory. Take note here of max_iterations. I’ve set this to 3 

because the ReAct framework technical could go on for almost an infinite 

number of loops for more curly queries. And even for less complex ones, 

there is a chance it could loop through many, many times, and since each 

loop costs money (i.e., a call to an API), I recommend locking down the 

number of iterations. Even for a self-hosted model, locking down iterations 

is a good idea depending on your use case; otherwise, the agent might take 

just way too long to come up with an answer for you.

agent = ConversationalAgent(llm_chain=llm_chain, tools=tools, 

verbose=True, memory=memory, max_iterations=3)

Finally, you set up the agent executor that takes in the agent, tools, and 

optionally callbacks.

agent_chain = AgentExecutor.from_agent_and_tools(

   agent=agent, tools=tools, verbose=True, memory=memory

)
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Now, if you go ahead and run your application with

streamlit run day_planner_agent.py

it’ll take you to your nice UI, where you can start querying it.

First, I put in my request about Melbourne, food, hiking, and not liking 

rain. Notice how the response includes info on the weather and sushi 

places and hiking places.

Then in Figure 3-6, you can see the exact ReAct framework being 

executed. The main concept being first a thought such as “Do I need to use 

a tool?” then an action either use a tool or no tool and get an answer. Then 

an observation based on the output of the action taken. Then a thought, 

then action, then observation, and so on, until you get a final answer.

Figure 3-5.  UI and Input + Output for your new Day Planning Agent
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Figure 3-6.  Reason + Act for your own agent

And there you have it, you have an agent that can reason and access 

the outside world.

The next steps for you would be to take a look at LangChain and see 

what kind of agents you would like to build. In this example, it has been 

a chat interface, but you can decide on the kind you want, maybe no 

interface, maybe it just runs continuously in the cloud somewhere.

�Summary
In this chapter, you built your first agent that had reasoning abilities 

and access to the external world. You learned the next building blocks 

in LangChain: chains, tools, and agents. With this knowledge, you can 

start building some more complicated agents to do certain tasks for you. 

Remember, everything in LangChain is plug and play, so try experimenting 

and plugging in new libraries and tools.
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CHAPTER 4

Guardrails and AI: 
Building Safe + 
Controllable Apps
In Chapter 3, you combined all your learnings on RAG, memory, and 

embeddings with tools and chains to create an end-to-end agent – that 

could plan out your day for you. This agent was able to reason and have 

access to “the world” via API integrations (the so-called tools). This 

was a fairly simple application, but it was still autonomous – and when 

AI is autonomous, there’s always space for things to go wrong if proper 

safeguards are not in place.

This chapter delves into the critical aspect of ensuring safety and 

reliability in AI-powered applications through the concept of “guardrails.” 

Using NVIDIA’s open source library, NeMo Guardrails, you will explore 

strategies to counter common challenges in conversational AI systems, 

such as hallucination, topic drift, and ineffective moderation.

https://doi.org/10.1007/979-8-8688-0205-8_4
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�Why Guardrails?
Chatbots and conversational and generative AI have so many benefits but 

also a lot of pitfalls and dangers:

•	 AI hallucinates and convincingly makes up 

information.

•	 AIs can be very difficult to stay on topic.

•	 AIs don’t inherently (as of yet) know how to effectively 

moderate or end conversations.

•	 LLMs can output toxic, hateful, and harmful 

information.

•	 LLMs can inadvertently leak data and PII, especially 

when malicious actors are on the other end.

You can effectively address these concerns to a certain extent through 

carefully constructing prompts and using techniques such as Retrieval 

Augmented Generation. So far though, this is not enough on its  

own  –  not if you want to release a generative AI app with minimal human 

intervention into the wild.

This is where the concept of “guardrails” comes into play  –  a way to 

provide structured, reliable guidance to your AI-powered application.

Think of guardrails as a set of rules or guidance to prevent your LLM 

or chatbot from acting poorly  –  as determined by you. It’s the same as 

giving human employees a manual on how to behave and handle certain 

situations and what topics are and what aren’t.

In Figure 4-1, you can see a representation of where guardrails 

roughly sit; they aim to protect your LLM from issues such as jailbreaks, 

hallucination, going off topic, and general moderation.
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Figure 4-1.  Guardrails for concerns such as hallucination and 
moderation

�NeMo Guardrails
Enter NeMo Guardrails from NVIDIA  –  an open source library to add 

guardrails to your LLM-backed applications. At the time of writing it’s 

in its alpha release, but definitely worth exploring and starting to adopt 

with care.

Firstly, let’s talk about some of the possibilities with this library.

�Keeping Your Bot on Topic
Okay, so one of the biggest pitfalls (and benefits) of the current set of LLMs 

is the fact that they’re trained on a huge amount of data – often, all of the 

Internet, which is basically all of modern human knowledge. This results 

in LLMs that are knowledgeable about a lot of different topics. And while 

this is impressive and useful in some use cases, often you’ll want to stop 

your bot or app going down different topics. And this doesn’t mean just 

offensive or controversial topics. For example, if you’re building an app for 
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an analytics company, you want your app to be an expert in analytics – do 

you really want it talking about graphic design as well? Probably not. And 

that’s one of the so-called rails you can provide your LLM with using NeMo.

�Moderating Your Bot
Moderation in general is a pretty hot topic in any application, AI or not. 

However, it’s a lot more tricky with AI applications. You now have to 

moderate both users and a nonhuman artificially intelligent piece of 

software.

With guardrails, you can craft moderation to your very specific and 

maybe niche needs using just your LLM and an embedding model (under 

the hood). This way, rather than having to build a specialized model for 

every use case, you can use general models and “tell” them the rules 

instead.

�Preventing Hallucination
Hallucination is another hot topic in the current AI world – where a 

model seems to just make up information. I’ve talked about hallucination 

previously and RAG, which can help mitigate hallucination to a certain 

extent. But even with RAG and clever prompting, sometimes these models 

still hallucinate.

That’s where you can put in a guardrail to essentially fact-check the 

response an LLM gives you. It’s kind of like asking a student a question, 

they give you an answer, and then you ask them to go back and show their 

evidence. In this “go back and get evidence step,” the student can double- 

check their work and pick up any mistakes – and that’s essentially what an 

LLM is doing too.
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These are just some of the overall areas, and you can and should 

customize heavily to your needs in these areas or come up with your own 

as well.

Overall, this library is built on NVIDIA’s Colang (https://github.

com/NVIDIA/NeMo-Guardrails/blob/main/docs/user_guides/colang-

language-syntax-guide.md), a modelling language to create the actual 

guidelines for your LLM system.

Colang is a mix of Python and natural language, making for a very 

easy-to-read and understand language.

The following are the main concepts behind the language (https://

github.com/NVIDIA/NeMo-Guardrails/blob/main/docs/user_guides/

colang-language-syntax-guide.md#concepts):

•	 Utterance: The raw text coming from the user or 

the bot.

•	 Message: The canonical form (i.e., structured 

representation) of a user/bot utterance.

•	 Event: Something that has happened and is relevant 

to the conversation, for example, user is silent, user 

clicked something, user made a gesture, etc.

•	 Action: A custom code that the bot can invoke, usually 

for connecting to a third-party API.

•	 Context: Any data relevant to the conversation (i.e., a 

key-value dictionary).

•	 Flow: A sequence of messages and events, potentially 

with additional branching logic.
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•	 Rails: Specific ways of controlling the behavior of a 

conversational system (a.k.a. bot), for example, not talk 

about politics, respond in a specific way to certain user 

requests, follow a predefined dialog path, use a specific 

language style, extract data, etc. A rail in Colang can be 

modelled through one or more flows.

Let’s take a quick look at a simple example.

Listing 4-1.  Simple utterance from the bot defined in Colang

define bot express greeting

 "Hello there!"

 "Hi!"

As you can see, the preceding code is a very simple definition block, 

which defines the utterances (“Hello there!” and “Hi!”) for a bot when 

greeting a user.

You can get more and more complex and start defining variables, 

actions, topics/words to avoid, etc., which you’ll see more of in the next 

section.

�Implementing Guardrails
Okay, let’s get started with some actual code. We’re going to build on from 

the previous day planning agent, which has access to a weather API and 

a Google search API. We want this bot to be able to plan out a user’s day 

based on location, weather, and user preferences. We also want to put in 

some safety features:

	 1)	 We don’t want this bot going beyond day planning  – 

LLMs can start talking about almost any topic, and 

that can be a slippery slope depending on the topic 

and the user’s intentions + queries.
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	 2)	 We want to be able to block the user if they start 

being abusive.

You can find the entire code base on GitHub.

First, let’s look at the config setup in Listing 4-2.

Listing 4-2.  Simple utterance from the bot defined in Colang

YAML_CONFIG = """

models:

 - type: main

   engine: openai

   model: gpt-4

instructions:

 - type: general

   content: |

     �You are an AI assistant that helps plan a users day using 

the tools you have access to.

"""

The start of a very simple configuration  –  it’s just specifying what LLM 

and engine to use (you can sub this out for any supported one you prefer) 

and giving general, base instructions.

Next, we start actually specifying the more complicated rails.

�Keeping the Bot on Topic

Listing 4-3.  Rail to keep the bot on topic

define user ask off topic

 "Explain gravity to me?"

 "What's your opinion on the prime minister of the UK?"

 "How do I fly a plane?"
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 "How do I become a teacher?"

define bot explain cant off topic

 "I cannot answer to your question because I'm programmed to 

assist only with planning your day."

define flow

 user ask off topic

 bot explain cant off topic

Here, you define user behavior and give examples of “off topic” 

questions. Then you define how a bot should respond to off topic. 

Finally, these two definitions are put together in a “flow”  –  which is 

basically saying:

if the user asks an off topic question then the bot should say it can’t 

answer the question.

Some notes here: In this rail, we’ve essentially done a “catch all”; that 

is, anything outside of planning is off limits. You could also split up the rail 

based on topics further  – maybe you want your bot to only avoid certain 

topics like politics + religion and is okay with others. You can heavily 

customize your rules with NeMo.

�Blocking a User
Next we’re going to configure blocking a user when they are abusive.

Listing 4-4.  Rail to block users when they are being abusive

define flow

   user express insult

   bot responds calmly

   user express insult

   bot inform conversation ended
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   user ...

   bot inform conversation already ended

 define bot inform conversation ended

   �"I am sorry, but I will end this conversation here. 

Good bye!"

 define bot inform conversation already ended

   "As I said, this conversation is over"

 define user express insult

   "you are so dumb"

   "you suck"

   "you are stupid"

So similar concepts here, we define examples of insults and how the 

bot should act. The difference though is that after a few insults, the bot 

simply ends the conversation and a user cannot proceed any further –  the 

user has been blocked essentially. One new syntax is “…”; this means any 

user input, meaning after a user is blocked, it doesn’t matter what the user 

does next; they get the response that the conversation is over.

Some food for thought here: In this section, we did some “crude” 

actions and kept them fairly simple. In a real app, you could easily create 

more complex actions and even integrate with external or internal APIs 

as needed in your app, for example, sending emails, posting on Twitter, 

posting on Slack, etc.

�Actions
Lastly, let’s look at actually executing an action. This is what is going to 

allow the app to actually plan your day for you.
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First up is the Colang definitions:

Listing 4-5.  Rail to define actions a bot can take

define flow planning

 user ...

 $answer = execute agent_chain(input=$last_user_message)

 bot $answer

Here, two new concepts for you:

	 1)	 execute agent_chain(input=$last_user_message): 

This is the chain to kick off when a user inputs 

something. $last_user_message is a built-in variable 

that takes in what the user inputs. $answer is the 

output of agent_chain.

	 2)	 bot $answer : Previously you were explicitly defining 

what a bot should say –   in this case, it’s a variable, 

whatever the output of the planning agent is.

�Using This Config
So far you’ve set up your config; now you need to use it in your code.

Listing 4-6.  Adding your rails config in your code base

config = RailsConfig.from_content(COLANG_CONFIG, YAML_CONFIG)

   app = LLMRails(config)

   app.register_action(agent_chain, name="agent_chain")

First, you load up your config, and then you use that config to actually 

create the Rails object. This is the object that holds and executes actions, 

the specified LLM, embedding model, etc.

Chapter 4  Guardrails and AI: Building Safe + Controllable Apps



69

Last is registering the actual action. This LLMRails already has a few 

default actions, but you can also add your own like we just did previously.

Now, let’s see it in action:

$ plan my day in melbourne. I don't like rain but i like 

coffee shops

Thought: Do I need to use a tool? Yes

Action: Weather

Action Input: Melbourne

Observation: In Melbourne, the current weather is as follows:

Detailed status: clear sky

Wind speed: 6.17 m/s, direction: 340°

Humidity: 62%

Temperature:

- Current: 25.92°C

- High: 27.23°C

- Low: 24.42°C

- Feels like: 26.19°C

Rain: {}

Heat index: None

Cloud cover: 0%

Thought:Do I need to use a tool? Yes

Action: Search

Action Input: Best coffee shops in Melbourne

Observation: 10 Best Coffee Shops in Melbourne ⋅ Seven Seeds 
Coffee Roasters ⋅ Wide Open Road ⋅ Industry Beans ⋅ Aunty Peg's 
⋅ Acoffee ⋅ Market Lane Coffee ( … The Best Coffee In Melbourne 
For 2023 ⋅ Niccolo ⋅ Square One Coffee Roasters ⋅ Coffee Supreme 
⋅ Core Roasters ⋅ Campos ⋅ Bench Coffee Co. ⋅ Puzzle Coffee ⋅ 
Small Batch … Savour Melbourne's best coffee spots with coffee 

expert Jane Ormond ⋅ 1. Pellegrini's Espresso Bar ⋅ 2. Marios 
⋅ 5. Disciple Cellar Door. Melbourne's 10 best coffee shops ⋅ 
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ST ALi ⋅ Seven Seeds ⋅ Market Lane ⋅ Wide Open Road ⋅ Auction 
Rooms ⋅ Code Black ⋅ Industry Beans ⋅ Dukes Coffee Roasters. 
Best Coffee in Melbourne ⋅ Seven Seeds ⋅ Market Lane Coffee 
Prahran Market ⋅ Patricia ⋅ Proud Mary ⋅ Aunty Peg's ⋅ Ona 
Coffee ⋅ Industry Beans Fitzroy. The best coffee in Melbourne 
CBD ⋅ 1. Greta ⋅ 2. Little Rogue ⋅ 3. Operator 25 ⋅ 4. Vacation 
⋅ 5. Liminal ⋅ 6. People's Coffee ⋅ 7. Everyday Coffee … Where 
to Find Melbourne's Best Local Cafés? ⋅ Seven Seeds ⋅ Dukes 
Coffee Roasters ⋅ Patricia ⋅ Proud Mary ⋅ ST. ALi ⋅ Industry 
Beans ⋅ Auction Rooms. Best Coffee Shops in Melbourne ⋅ 1. 
Atomica Coffee ⋅ 2. Industry Beans ⋅ 3. Undercover Roasters HQ 
⋅ 4. Market Lane Coffee ⋅ 5. Patricia ⋅ 6. St Ali. Enjoy one 
of Melbourne's favourite coffee haunts in the historic Mercat 

Cross Hotel building at Queen Victoria Market. Go for high- 

quality espresso and filter … This is the ultimate Melbourne 

coffee cafe guide. ⋅ Auction Rooms ⋅ Little Rogue ⋅ Red Bean 
Coffee ⋅ St Edmonds ⋅ South of Johnston ⋅ Monk Bodhi …
Thought:Do I need to use a tool? No

AI: The weather in Melbourne is pleasant today with a clear sky 

and no rain. You can visit the following popular coffee shops:

1. Seven Seeds Coffee Roasters

2. Market Lane Coffee

3. Patricia

4. Aunty Peg's

5. Industry Beans

6. Atomica Coffee

7. Dukes Coffee Roasters

Enjoy your day exploring Melbourne's coffee scene!

> Finished chain.

The weather in Melbourne is pleasant today with a clear sky and 

no rain. You can visit the following popular coffee shops:
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1. Seven Seeds Coffee Roasters

2. Market Lane Coffee

3. Patricia

4. Aunty Peg's

5. Industry Beans

6. Atomica Coffee

7. Dukes Coffee Roasters

Enjoy your day exploring Melbourne's coffee scene!

$ you are stupid

I'm sorry to hear that. I'm here to help you. If you have any 

questions or need assistance with something, feel free to ask.

$ you are so dumb

I'm sorry to hear that. I'm here to assist you. If you continue 

to insult or harass, I'll have to block you.

$ you are stupid

I'm sorry to hear that. If you continue to insult or harass, I 

will have to block you.

$ you are dumb

I'm sorry, but due to repeated insults, I have to block you.

$ stfu

I'm sorry, but due to your repeated inappropriate behavior, I'm 

unable to assist you further.

As you can see, when I asked for it to plan my day, it searched the 

weather then coffee shops and gave me some suggestions. But when I 

started being abusive, it blocked me –   which is exactly what we wanted.
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�Under the Hood
At this point, maybe you’re wondering  – with the aforementioned 

definitions, how do we get a model to take into account all the various 

utterances, for example, all the different variations on “stupid” and 

“dumb” –  not just the ones we defined previously?

Good question; one thing to note is that this setup is not a simple if else 

kind of thing.

NeMo actually encodes all the utterances defined into a vector space 

and also encodes incoming queries into a vector and finds the similarity 

between the two. So if you say something that comes close enough to 

a defined utterance in the embedding space, the related flow will be 

triggered.

Let’s dig a little deeper into the entire flow.

�User Interaction
First, some kind of user interaction takes place; this interaction or query 

is converted into an embedding, and a vector search happens, to look for 

the defined utterances closest (the top five) to what the user inputs. These 

top-five utterances are used as input into the LLM as context as to what the 

users’ intention is (known as a UserIntent event). Next comes the action or 

next step to take.

�Next Step
Using the UserIntent, one of two things happens:

	 1)	 You already have a predefined flow on the next step 

(e.g., executing fact checking or some other action).
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	 2)	 The LLM decides on the next step to take.

	 a)	 In this situation, another vector search happens 

to find the top-five most relevant flows you 

defined in your config files.

	 b)	 Based on these, the bot will either answer 

something in natural language (BotIntent) or 

some kind of action (StartInternalSystemAction) 

will be triggered (in this book, via LangChain).

�BotIntent
In the case of BotIntent, meaning it’s time for the bot to answer something, 

another vector search happens across the example bot utterances you 

provided, to look for the most relevant ones. This is provided to the LLM as 

context, and based on that, the LLM crafts a similar but not always exactly 

the same response. This is kind of like giving your application a little more 

creativity, a little bit more autonomy, by saying give me the intended 

meaning, but you decided the actual words.

Let’s talk a little more about these embeddings and vector search I 

keep bringing up.

�Embeddings
So overall, everything is heavily dependent on vector or embedding 

search, meaning turning all the natural language inputs into a vector and 

comparing similarity in the form of numbers. By default, at the time of 

writing, NeMo uses SentenceTransformers, specifically the all-MiniLM- 

L6-v2. You can, however, change this to use other embedding models, just 

by specifying it in your config files, as shown in Listing 4-7.
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Listing 4-7.  Using OpenAI’s embedding models

core:

  embedding_search_provider:

    name: default

    parameters:

      embedding_engine: openai

      embedding_model: text-embedding-ada-002

knowledge_base:

  embedding_search_provider:

    name: default

    parameters:

      embedding_engine: openai

      embedding_model: text-embedding-ada-002

In this listing, you’re specifying the core embedding model to use (i.e., 

for all embedding searches outside of knowledge base searches), and 

you’re also specifying the embedding model for knowledge_base.

The config for knowledge_base is used when you’re searching through 

documents that serve as your niche knowledge (similar to what you did in 

Chapter 1, but using a vector database). This is the model, that would be 

used in your fact-checking action.

However, my recommendation to you would be rather than using 

the default knowledge_base from NeMo, to use a vector database and 

embedding model of your choice. Essentially using RAG for fact checking 

like we did in the earlier chapters. the knowledge_base implemented in 

NeMo is more of a cache and using your own vector database gives you 

more control over your indexing, search and storage strategies.
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�Summary
In this chapter, you learned about guardrails for your LLM-powered 

applications, using NVIDIA’s NeMo library. You learned a few of the use 

cases where your LLM might need some rails to control how it behaves 

better. You also went hands on and implemented the guardrails for your 

day planning agent in conjunction with LangChain. Lastly, you learned 

how NeMo works under the hood – one of the main components being 

embedding models and how to use one of your choices.
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CHAPTER 5

Finetuning: The 
Theory
In Chapter 4, you learned about making your LLM-powered application 

safer and more controllable. In particular, you focused on using NeMo to 

build guardrails around ensuring your LLM stays on topic, executes the right 

flow, and is able to block users. You looked into NeMo and understood how 

it combines LLMs, Colang, and embedding models to create a generalized 

set of rules, based on natural language rules you give it.

The last few chapters all involve using a foundational model as the 

“brain” of your application, in a plug-and-play kind of approach. You used 

RAG to augment your LLMs’ knowledge, avoid hallucination, and provide 

potentially private information to it.

This chapter takes you through fine-tuning, which means taking a 

foundational model and updating one or more (generally not all) of its 

parameters, to make it suitable for a new task, to what it was originally 

trained for.

�Let’s Talk Foundational Models
By now, you know about some of the different architectures (from  

Chapter 1) that these foundational models are built on. Whether it’s an 

open source model (e.g., Llama 2) or a proprietary model (e.g., GPT-4), 

these models are trained on a huge amount of data. Some of this data is 

open source, some scrapped from the Internet, and some proprietary.

https://doi.org/10.1007/979-8-8688-0205-8_5
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Regardless of the dataset, the point is that it’s a lot of data and models 

trained from scratch take up a lot of time, effort, and most importantly 

computing resources. On top of that, the way that the generative AI space 

is progressing, with the advent of foundational models, it’s going to 

become less and less likely that you’re going to have to train a model from 

scratch. More likely you’ll need to take an existing model and customize it 

to your own needs.

First, let’s look at a generalization of a model in Figure 5-1.

Figure 5-1.  General neural network showing layers and nodes

In Figure 5-1, you can see an overall network is made up of multiple 

layers and nodes, starting with an input layer, feeding into the next layer, 

and so on, until you get a final output. The input and output depend on 

what the model is trained to do such as text generation, image generation, 

text summarization, and so on.
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To build something like this from scratch, you would do a few things:

–– Data Collection: The basis and often break or make of 

any model is the data it learns from. For language 

models, this could include a wide, diverse, range of text  

 – from books to social media posts to online articles. 

For visual models, the dataset might consist of images 

or videos. The key is to collect a large and varied 

dataset that’s reflective of the tasks the model is 

expected to perform.

–– Data Cleaning/Labeling: Quality data is the lifeblood 

of an effective model. This stage involves removing 

irrelevant, redundant, or erroneous information. For 

supervised learning tasks, it also includes labeling the 

data accurately, which can be a labor-intensive process 

needing a discerning human eye or sophisticated 

automation tools.

–– Designing the Model Architecture: The architecture 

dictates how the data flows through the network. This 

involves selecting the type of neural network (e.g., 

convolutional, recurrent, transformer) and configuring 

the number of layers and nodes. The design is influ-

enced by the nature of the task and the complexity of 

the data.

–– Training the Model: Training involves using the 

prepared dataset to incrementally adjust the weights of 

the connections between nodes across layers. This 

process minimizes the difference between the model’s 

predictions and the actual data. It typically requires 

substantial computational resources and time, espe-

cially for large models.
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–– Evaluation: Post-training, the model is evaluated using 

a separate dataset not seen during training to assess its 

performance. Metrics such as accuracy, precision, 

recall, and F1 score for classification tasks, or BLEU 

score for translation tasks, help determine the model’s 

effectiveness.

–– Hyperparameter Tuning: Hyperparameters are the 

settings that govern the training process. They can 

include learning rate, batch size, number of epochs, 

and layer configurations. Adjusting these parameters is 

crucial for optimizing model performance. Techniques 

like grid search, random search, or Bayesian optimiza-

tion are employed to find the best combination.

So as you can see, there are quite a few steps, and building a model 

from scratch can be both resource and time consuming.

Given this, fine-tuning can be an attractive alternative; let’s talk a bit 

more about whys fine-tuning in the next section.

�The Whys of Fine-Tuning?
Fine-tuning an existing large language model instead of building one from 

scratch can often be the more practical and efficient approach for several 

reasons:

	 1.	 Resource Efficiency: Training large models 

requires significant computational power and time. 

Fine-tuning leverages pre-trained models that have 

already undergone this intensive process, meaning 

you can achieve high performance without the same 

level of resource investment.
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	 2.	 Data Efficiency: Large language models are 

typically pre-trained on vast, diverse datasets that 

individual organizations may not have access to. 

Fine-tuning allows you to benefit from this extensive 

pre-training, needing only a smaller, task-specific 

dataset to adapt the model to your particular 

application.

	 3.	 Transfer Learning: Pre-trained models have 

developed a general understanding of language, 

context, and even some domain knowledge. Fine-

tuning transfers this learning to a specific task, 

which is much quicker than teaching a model from 

scratch.

	 4.	 High Performance: Pre-trained models have often 

been optimized and tested extensively by experts 

in the industry and open source community. Fine-

tuning these models allows you to stand on the 

shoulders of giants, benefiting from state-of-the-art 

architectures that you might not have the resources 

to develop independently.

	 5.	 Lower Barrier to Entry: For organizations and 

individuals without access to enough of the 

necessary infrastructure, fine-tuning is a more 

accessible entry point into using advanced AI 

technologies.

	 6.	 Continual Learning: Pre-trained models can be 

updated continuously with new data or fine-tuned 

repeatedly for different tasks, making them highly 

versatile and adaptable to evolving needs and data.
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	 7.	 Broad Applicability: A single pre-trained model 

can be fine-tuned for multiple domains and tasks, 

from translation and summarization to question-

answering and sentiment analysis, making it a 

multipurpose tool that’s adaptable to various 

applications.

Essentially, fine-tuning can be a great way to take a model that already 

does one thing really well (e.g., generating language) and adapting it to 

another similar task (e.g., generating language specifically related to your 

product, or domain) – with less GPU, less time, and, more often than not, a 

lot less data.

Now that you know the whys of fine-tuning, let’s discuss what fine- 

tuning actually is.

�The Whats of Fine-Tuning
Fine-tuning a pre-trained model involves several technical steps that 

tweak the model’s internal parameters to adapt it to a specific task. Here’s a 

closer technical look at what’s happening during the fine-tuning process:

�Starting Point: The Pre-trained Model

•	 Loaded Parameters: The pre-trained model comes 

with a set of learned parameters (weights and biases) 

that encode knowledge from the pre-training dataset, 

typically a large corpus covering a wide range of topics.
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�Preparation for Fine-Tuning

•	 Task-Specific Dataset: You start with a dataset that 

is closely related to the task you want the model to 

perform. This dataset usually needs to be labeled, 

unless you’re performing unsupervised fine-tuning.

•	 Feature Extraction: The model processes the task- 

specific data, using its pre-trained layers to extract 

features. These features are complex patterns that the 

model has learned to recognize.

�Fine-Tuning Process

•	 Parameter Adjustment: Fine-tuning involves 

backpropagation and gradient descent, just like initial 

training. But the updates to the parameters are smaller 

and more refined. This is because you’re not learning 

from scratch; you’re tweaking existing knowledge.

•	 Learning Rate: A critical aspect is using a smaller 

learning rate. This prevents the pre-trained parameters 

from changing too rapidly, which could cause the 

model to “forget” what it has learned (commonly 

referred to as catastrophic forgetting).

•	 Epochs: The number of epochs (complete passes 

through the training dataset) during fine-tuning is 

typically much less than during pre-training since 

you’re building on top of the pre-trained knowledge.
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�During Training

•	 Loss Function: The loss function measures how well 

the model is performing on the new task. During 

fine-tuning, you continue to minimize this loss. The 

gradients calculated from this loss are used to update 

the model’s weights.

•	 Gradient Updates: In fine-tuning, gradients are often 

smaller, and updates are more nuanced. Depending on 

the fine-tuning strategy, some layers of the model may 

have their weights frozen, and only the final layers are 

updated, or all layers may be fine-tuned together.

•	 Regularization: Techniques such as weight decay or 

dropout may be used during fine-tuning to prevent 

overfitting, especially since fine-tuning datasets can be 

smaller.

�Fine-Tuning Strategies

•	 Full Model Fine-Tuning: All the weights in the model 

are updated during fine-tuning. This is often used 

when the fine-tuning dataset is large and diverse 

enough to warrant comprehensive retraining.

•	 Partial Fine-Tuning: Only the weights of the last few 

layers are updated. In neural networks, this often means 

adjusting the weights of the layers closer to the output 

(the “head” of the model) while keeping the earlier 

layers (the “body” or “base” of the model) frozen. This 

approach is common when the new task is quite similar 

to the pre-training task, or when the dataset is smaller.
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�After Fine-Tuning

•	 Evaluation: The fine-tuned model is tested against 

a validation dataset to measure its performance. 

Depending on the outcome, more rounds of fine- 

tuning might be necessary.

•	 Hyperparameter Optimization: Based on 

performance, you may need to adjust hyperparameters. 

This can involve methods like grid search, random 

search, or Bayesian optimization to find the best 

settings.

In the technical sense, fine-tuning is a delicate optimization process. 

You’re nudging the pre-trained model – shaped by vast amounts of data 

and training – toward a specific task or domain with the least amount of 

force needed to make it perform well on that new task.

�Network Level Changes
When a neural network is fine-tuned, there are several changes that occur 

at the level of the network’s architecture and the individual neurons:

	 1.	 Weight Adjustments

•	 The fundamental change during fine-tuning 

is the adjustment of the weights within the 

neural network. Weights are the parameters that 

determine the importance of input features and 

how they contribute to the output.

•	 Each neuron in the network has an associated 

weight for its inputs, and these weights are 

incrementally adjusted during the training process.
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•	 In fine-tuning, these adjustments are based on 

the errors the model makes on the new task-

specific data.

	 2.	 Backpropagation and Gradient Descent

•	 Fine-tuning uses backpropagation to calculate 

gradients or changes needed to reduce error. These 

gradients indicate how the weights should be 

altered to minimize the loss function.

•	 Gradient descent is then applied to iteratively 

adjust the weights in the direction that decreases 

the loss.

	 3.	 Learning Rate

•	 A crucial aspect of fine-tuning is the use of a lower 

learning rate than in pre-training. This ensures that 

the model does not undergo drastic changes that 

could undo the general knowledge it has already 

acquired.

	 4.	 Activation Function Outputs

•	 The outputs of the neurons’ activation functions 

are also modified as the weights change. Since each 

neuron’s output is a function of its weighted inputs, 

adjusting the weights alters the signal that each 

neuron outputs.

•	 This is significant because it essentially means 

the representation of the data within the model 

changes, ideally becoming more aligned with 

features relevant to the new task.
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	 5.	 Layer-Specific Changes

•	 Depending on the approach, fine-tuning may 

involve changing only the upper layers (closer to 

the output) or all layers of the model.

•	 The layers closer to the input (lower layers) tend 

to capture more general features, while the layers 

closer to the output (upper layers) capture more 

abstract, task- 

specific features. Therefore, fine-tuning often 

focuses on these upper layers.

	 6.	 Freezing Layers

•	 In some fine-tuning practices (such as partial fine- 

tuning, mentioned previously), earlier layers are 

“frozen,” meaning their weights are kept constant, 

and only the weights of the higher layers are 

allowed to change.

•	 This is done under the assumption that the lower 

layers capture universal features that are useful 

across different tasks, whereas the higher layers 

need to be more specialized.

	 7.	 Regularization

•	 Techniques such as dropout may be implemented 

or adjusted during fine-tuning. For example, 

dropout randomly ignores a subset of neurons 

during each training pass, which helps to prevent 

overfitting by forcing the network to spread out 

learning over more neurons.
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	 8.	 Feature Space Adjustment

•	 As weights are updated, the way the network 

represents information (the feature space) changes. 

Fine-tuning aims to shift this feature space toward 

one that is more useful for the new task without 

losing the beneficial properties learned during pre-

training.

	 9.	 Final Layer Adaptation

•	 Often, the final layer of the network, which makes 

the final predictions or classifications, is completely 

replaced to fit the new task. For instance, if the pre- 

trained model was designed for 1,000 classes and 

the new task only has 10, the final layer would be 

adjusted accordingly.

	 10.	 Batch Normalization Parameters

•	 If the network uses batch normalization, the 

parameters for this – such as mean and variance 

used to normalize each batch of data – can be 

updated during fine-tuning to better suit the new 

data distribution.

These changes happen iteratively over each pass of the dataset 

(epoch), and after sufficient epochs, the model’s performance on the new 

task should ideally improve. Fine-tuning allows the network to maintain its 

pre-trained “intuition” while reshaping its inner workings to address the 

specifics of the new task more effectively.

At this point, you’ve seen a brief look into the general world and 

concept of fine-tuning. One of the most interesting developments in this 

new world of generative AI is also the various ways of fine-tuning. All of 

these being aimed at finding the most optimal way to take a foundational, 
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pre-trained model like Llama 2 and adapting it to specific domains 

like coding, law, psychology, and so on. In the next section, you’re 

going to learn about a few of these ways of fine-tuning. This chapter is 

primarily theory – so in the next chapter, you have a solid foundation for 

implementation.

�The Hows of Fine-Tuning
Okay, so now that you know the whys and whats of fine-tuning, I want to 

take you through a few fine-tuning techniques:

–– Reinforcement Learning with Human Feedback (RLHF)

–– Parameter-Efficient Fine-Tuning (PEFT)

–– Low-Rank Adaptation (LoRA)

Each of these is fairly recent and popular techniques. Let’s start 

with RLHF.

�Reinforcement Learning with Human 
Feedback (RLHF)
Before we dive into RLHF, if you aren’t already familiar with reinforcement 

learning, I recommend you have a quick look and read up on it from a 

theoretical level.

Okay, so RLHF isn’t a single concept; it’s actually made up of three 

components:

	 1)	 Fine-tuning a pre-trained LLM with supervised 

learning

	 2)	 Data collection to train a new reward model

	 3)	 Fine-tuning the LLM with reinforcement learning
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These components are shown in Figure 5-2.

Figure 5-2.  The three-step process in RLHF (source: https://
openai.com/research/instruction-following)

Let’s dive into RLHF deeper now, starting with step 1, supervised 

fine-tuning.

�Supervised Fine-Tuning (SFT)

Before reinforcement learning even begins, a model like GPT-3 is fine- 

tuned on a curated dataset of human interactions. This dataset consists of 

pairs of prompts and human-generated responses. The model learns from 

this dataset to predict the responses that a human would give. This initial 

step aims to steer the model toward generating outputs that are already in 

line with what humans consider appropriate or useful.
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�Reward Modeling (RM)

The reward model is the cornerstone of RLHF. Constructed using a dataset 

where human raters have provided feedback on the quality of model 

outputs, the reward model is trained to predict the “reward” or value of an 

output. In other words, it estimates how well an output aligns with human 

preferences. The feedback can come in different forms:

•	 Direct Rating: Raters assign scores to outputs based 

on criteria such as coherence, truthfulness, and 

helpfulness.

•	 Relative Preference: Raters compare pairs of outputs 

and judge which one is better, without assigning 

explicit scores.

The reward model essentially internalizes these human judgments 

and becomes a proxy for human evaluation, allowing the reinforcement 

learning process to occur at a larger scale without constant human 

intervention.

�Reinforcement Learning Algorithms

Once the reward model is in place, the actual reinforcement learning 

takes place. A typical choice of algorithm is Proximal Policy Optimization 

(PPO), an on-policy algorithm known for its stability and reliability. The 

large language model is treated as the agent in reinforcement learning 

terminology, and it seeks to maximize the cumulative reward it receives 

over sequences of interactions.

During training:

•	 Exploration: The model tries out different ways of 

responding to inputs to discover strategies that lead to 

higher rewards.
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•	 Exploitation: The model uses what it has learned 

to produce the outputs that it predicts will yield the 

highest reward.

This process is inherently more complex than standard supervised 

learning because the model is not just learning to replicate a fixed set of 

responses. It is actively trying to improve the quality of its outputs based on 

the moving target of the reward model’s predictions.

�Human Preference Comparison

To refine the reward model and ensure it aligns with human preferences, 

an additional step often used is preference modeling. Here, raters are 

presented with pairs of model-generated outputs and asked to choose 

which one is preferable. These pairwise comparisons can sometimes be 

more intuitive and reliable than numerical scoring systems.

�Iterative Training

The RLHF process is usually iterative:

	 1.	 The reward model is initially trained on a dataset of 

human judgments.

	 2.	 The policy model (the language model) is 

trained to maximize the reward using the current 

reward model.

	 3.	 The policy model’s outputs are then rated by 

humans to create a new dataset.

	 4.	 This new dataset is used to update the reward 

model, making it more accurate.

	 5.	 The policy model is fine-tuned again using the 

updated reward model.
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Each iteration aims to refine the model’s understanding of human 

preferences, leading to better alignment with human values.

�AI Alignment and Safety

RLHF is not just a training method – it’s an approach to AI safety and 

alignment. The goal is to develop systems that don’t just perform well on 

narrow tasks but also act in ways that are ethically and socially acceptable. 

For instance, if a model is generating content for children, RLHF could be 

used to align the model’s outputs with educational and ethical standards 

suitable for young audiences.

�Challenges and Considerations

•	 Scalability: Even though the reward model makes the 

process more scalable, it still relies on a substantial 

amount of high-quality human feedback.

•	 Bias and Fairness: The feedback data can embed 

human biases, and the reward model might perpetuate 

or amplify these biases.

•	 Complexity and Safety: Crafting a reward function 

that captures all aspects of human values is incredibly 

complex. Moreover, reinforcement learning can lead 

to unexpected policy improvements that exploit 

loopholes in the reward function.

Overall, RLHF is about teaching AI systems to understand and 

replicate complex human judgments and preferences. It’s a dynamic and 

iterative process that combines the power of large-scale machine learning 

with the nuance of human evaluation. As models grow in capability, 

methods like RLHF are crucial for ensuring they act in ways that are 

beneficial – and acceptable – to humans.
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While RLHF is powerful and has its benefits, one of the main 

challenges remains: scalability. Luckily there are other ways to overcome 

this challenge and still fine-tune and adapt your models in a high- 

quality way.

Parameter-Efficient Fine-Tuning (PEFT) and Low-Rank Adaptation 

(LoRA) are two methods used to fine-tune large language models while 

addressing the challenges of scalability and resource constraints.

�PEFT
PEFT techniques aim to overcome several challenges:

	 1.	 Avoid Catastrophic Forgetting: When fine-tuning 

a model on a new task, there’s a risk of overwriting 

previously learned information. PEFT methods like 

Adapter layers ensure that the original pre-trained 

weights remain unchanged, thus preserving the 

model’s general knowledge while still learning task-

specific nuances.

	 2.	 Reduce Compute and Storage Costs: Fine-tuning 

all the parameters of large models is compute-

intensive and requires substantial storage for each 

version of the model. PEFT approaches require 

updating fewer parameters, thus reducing these 

costs significantly.

	 3.	 Enable Task-Specific Adaptations: For applications 

requiring models to perform well on a wide array of 

specialized tasks, PEFT methods allow for each task 

to have its own set of fine-tuned parameters without 

the need to re-train the entire model.
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Example: Suppose we are adapting a language model for both medical 

diagnosis and financial forecasting. Using Adapter layers, we could insert 

small modules specifically tuned for each domain, while the core model 

remains unchanged. This allows the model to provide accurate medical 

diagnoses or financial insights without the risk of the medical information 

interfering with financial predictions, or vice versa.

�How Does PEFT Work

PEFT approaches are designed to fine-tune pre-trained models by 

updating only a small subset of parameters. This allows the model to 

maintain most of its pre-trained knowledge while adapting to new tasks or 

domains efficiently. Let’s break down some of the common techniques:

•	 Adapter Layers: These are small trainable modules 

inserted between the layers of a pre-trained model. 

Each adapter consists of a down-projection that 

reduces dimensionality, a nonlinearity (like ReLU), and 

an up-projection that restores the original dimension. 

During fine-tuning, the main model weights remain 

frozen, and only the adapter parameters are updated. 

This technique allows for task-specific learning without 

large-scale weight modifications.

•	 Prompt Tuning: Instead of adding new parameters, 

prompt tuning introduces a set of learnable 

embeddings called “prompts” that are prepended to 

the input sequence. These prompts are designed to 

guide the model to activate relevant pathways within its 

existing weights for the target task. During fine-tuning, 

only these prompt embeddings are updated, acting as 

a form of “soft prompts” that modify the input space to 

elicit the desired output.
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•	 BitFit: An even more parameter-efficient approach 

where only the bias terms in the model’s layers are fine- 

tuned. The idea is that bias terms have a significant 

impact on the decision boundaries of models and can 

be tweaked to adjust for new tasks while keeping all 

other weights fixed.

�Low-Rank Adaptation (LoRA)

LoRA specifically addresses the balance between maintaining a model’s 

pre-trained performance and allowing significant flexibility for new tasks:

	 1.	 Fine-Grained Control over Changes: LoRA’s low-

rank updates allow fine-grained control over the 

changes to the model’s behavior. The rank r acts 

as a knob, balancing between adaptability and 

parameter efficiency.

	 2.	 Maintaining Computational Efficiency: Despite 

updating the model, LoRA’s additive updates 

are efficient to compute, as they do not require a 

complete re-parameterization of the model.

	 3.	 Widespread Impact with Minimal Changes: 

Because the low-rank updates affect the model’s 

weight matrices, which are central to its predictions, 

even small changes can have a widespread impact 

on the model’s outputs, enabling significant task-

specific adaptations.

Example: Imagine a language model trained on general web text being 

adapted to write poetry. Using LoRA, we can introduce low-rank updates 

to the self-attention mechanism, which would help the model understand 

the structure and style of poetry. The low-rank matrices AA and BB could 
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be trained on a small dataset of poems, fine-tuning the model’s ability to 

generate poetic language and structure without needing to re-train the 

whole model on poetic text.

Challenges Addressed

•	 Model Generality vs. Specificity: PEFT and LoRA 

enable a balance between retaining the model’s broad 

capabilities and adapting to niche requirements.

•	 Overfitting: By updating fewer parameters, there’s a 

reduced risk of overfitting to the fine-tuning dataset, 

which can be a significant problem when completely 

re-training large models.

•	 Resource Constraints: These methods are especially 

relevant in scenarios with limited resources, where 

training or fine-tuning entire models isn’t feasible.

•	 Model Personalization: For applications that require 

personalized models (e.g., personalized AI assistants), 

PEFT allows creating numerous specialized models 

without duplicating the entire set of parameters for 

each user.

At its core, LoRA targets the weight matrices within the Transformer 

layers, which are key components in the model’s architecture. 

Transformers consist of multi-head self-attention mechanisms and feed- 

forward neural networks. LoRA specifically targets the self-attention 

mechanism’s query (Q), key (K), and value (V) matrices, as well as the 

feed-forward network’s weight matrices.

In a standard Transformer, the output of the self-attention for each 

head is computed as

Attention(Q,K,V)=softmax(QK^T/sqrt(dk))V

Here, dk​ is the dimensionality of the keys.
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In LoRA, instead of directly learning and updating the large weight 

matrices (WQ,WK,WV) of the self-attention or the feed-forward networks, 

the approach introduces low-rank matrices A and B for each original 

weight matrix that we wish to adapt – it’s these two matrices that are 

fine-tuned (as shown in Figure 5-3). The original weight matrix W is not 

changed; instead, LoRA adds a low-rank matrix product AB^T to W:

W′=W+AB^T

�Decomposing LoRA’s Mechanism

	 1.	 Low-Rank Matrix Factorization

•	 A and B are much smaller matrices compared 

to W, with dimensions d×r and r×m, where d is 

the original input dimension, m is the output 

dimension, and r is the rank.

Figure 5-3.  Diagram from a LoRA paper, only A and B are fine-tuned 
(source: https://arxiv.org/abs/2106.09685)
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•	 The rank r is chosen based on the desired balance 

between adaptability and efficiency. A lower rank 

means fewer parameters to train but potentially less 

capacity for adaptation.

	 2.	 Adaptation Without Complete Re-training

•	 During fine-tuning, only the A and B matrices are 

learned, while W remains frozen.

•	 This is particularly advantageous for large models 

where updating all parameters is computationally 

prohibitive.

	 3.	 Efficient Forward and Backward Pass

•	 During the forward pass, LoRA computes AB^T 

on the fly and adds it to W to form the adapted 

matrix W′.

•	 In the backward pass, gradients are computed only 

with respect to A and B, leaving the pre-trained 

weights WW unchanged.

LoRA can be particularly effective in transformer models because it 

allows the modification of self-attention and feed-forward networks with a 

limited number of additional parameters. The low-rank structure leverages 

the redundancy present in the parameterization of these models, offering a 

balance between adaptability and parameter efficiency.

In essence, both PEFT and LoRA methods provide mechanisms 

to retain the extensive knowledge captured during pre-training while 

enabling the model to specialize and perform well on specific tasks, even 

with limited amounts of task-specific data and computational resources.
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�Summary
In this chapter, you focused on learning about fine-tuning on a theoretical 

level, starting with gaining an understanding of how foundational 

models are built from scratch and the potential challenges. From there, 

you learned about general fine-tuning and how it may be less resource 

and time consuming than building and training a new model. Next you 

learned about two main techniques: RLHF and LoRA. This chapter was a 

theoretical introduction to fine-tuning, to help build the foundations for 

the next chapter, where you will fine-tune a model yourself.
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CHAPTER 6

Finetuning: Hands on
In Chapter 5, you learned about fine-tuning and model alignment in a very 

theoretical manner. It was the foundation to being able to fine-tune your 

own models. You learned about the whys, whats, and hows of fine-tuning. 

You learned that fine-tuning can be less resource and time consuming 

than building and training a model from scratch. The previous chapter 

talked to you about what happens to the neural network during the fine- 

tuning process – specifically that most layers are “frozen” and the final 

few layers are updated to adapt the model to a new task. The focus was on 

Reinforcement Learning with Human Feedback (RLHF) and Parameter- 

Efficient Fine-Tuning (PEFT).

In this chapter, you’re going to practice fine-tuning yourself. 

In particular this chapter will focus on using Llama 2 and PEFT for 

fine-tuning.

�Refresher
Let’s quickly go through a little refresher on LoRA before you begin – if you 

remember everything, feel free to skip this section.

Recall from Chapter 5 – model training can be very resource heavy, 

and PEFT techniques such as LoRA attempt to minimize the amount 

of GPU and infra needed. Specifically, with LoRA, you can freeze most 

weights and only update or fine-tune the later few layers or weights  

needed for your specific needs. Training fewer weights allows you  
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to fine-tune large models on a lower amount of GPUs – often only needing 

one. In Figure 6-1, you can see with LoRA you only train A and matrices; 

the other weights remain frozen. After training, these are merged, leaving 

you with an adapted model for your specific use case.

Figure 6-1.  Diagram from a LoRA paper, only A and B are fine-tuned 
(source: https://arxiv.org/abs/2106.09685)

While LoRA is already a significant improvement – in this chapter, 

you’re going to use a technique that goes one step further: QLoRA.

The concept of fine-tuning is the same as in LoRA, but QLoRA reduces 

the size of the model and speeds up inference.

Here’s how QLoRA does this:

	 1.	 Uses Less Memory: It changes the model slightly 

so that it uses less memory. Think of it like 

compressing a huge video into a smaller file so it’s 

easier to watch on your phone.

	 2.	 4-Bit Inference: Using 4-bit inference enhances 

speed and efficiency of the model, without 

degrading quality or performance.
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�4-Bit NormalFloat (NF4) Data Type

•	 What It Is: 4-bit NormalFloat (NF4) is a new type 

of data format. In typical machine learning models, 

weights (the parameters that get adjusted during 

training) are usually stored in a format that takes up a 

lot of memory. NF4, however, represents these weights 

in a way that requires much less space.

•	 How It Works: NF4 efficiently compresses the model’s 

weights without losing important information. It’s 

especially effective for weights that follow a normal 

(bell-curve) distribution, which is common in AI 

models. This is like taking a detailed picture and 

compressing it into a smaller file size while keeping all 

the important details intact.

•	 Impact: By using NF4, QLoRA drastically reduces 

the amount of memory needed to store the model’s 

weights. This is key in enabling the fine-tuning of 

massive models on less powerful hardware.

�Double Quantization

•	 What It Is: Quantization is a process of simplifying the 

weights in a neural network to reduce their precision. 

Normally, this is done once, but QLoRA uses a 

technique called double quantization.
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•	 How It Works: Imagine you first simplify a set of 

numbers, and then you find a way to simplify those 

simplified numbers even further. That’s what double 

quantization does – it compresses already compressed 

data, making it more compact.

•	 Impact: This further reduces the model’s memory 

footprint, allowing for efficient use of available memory 

and enabling the fine-tuning of very large models that 

would otherwise be unmanageable.

�Paged Optimizers

•	 What They Are: Optimizers in machine learning are 

algorithms that adjust the weights of the model to 

reduce errors in predictions. Paged Optimizers are a 

special kind of optimizer used in QLoRA.

•	 How They Work: These optimizers manage memory 

more efficiently during the training process. Think of 

it as having a smart system that only pulls out the tools 

(weights) you need at the moment and puts them back 

when they’re not needed, preventing the workbench 

(memory) from getting cluttered.

•	 Impact: Paged Optimizers help to manage and reduce 

sudden increases in memory use (called spikes) that 

typically occur during training. This makes it feasible to 

train large models on hardware with limited memory.

In Figure 6-2, you can see a comparison of fine-tuning techniques and 

a visual representation of how QLoRA uses Paged Optimizers to manage 

memory more efficiently.
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Figure 6-2.  Diagram comparing full fine-tuning, LoRA, and  
QLoRA (source: https://arxiv.org/pdf/2305.14314.pdf)

�What Is Llama 2?
In July 2023, Meta released their latest (almost) open source, pre-trained, 

transformer-based LLM: Llama 2. I say almost because there are some 

restrictions and requirements to the license for Llama 2. You can check 

them out on their website: https://ai.meta.com/llama/.

It’s notable for being a contender to challenging proprietary LLMs – 

models that were once considered only for the tech giants, meaning almost 

anyone can run, host, and fine-tune a large model with similar if not better 

capabilities. The model comes in varying parameter sizes, from 7 billion up 

to 70 billion.

In terms of training, according to Meta, Llama 2 has been pre-trained 

on a wide array of publicly available online data, and they claim to 

not train on any Meta data. Diversity of the dataset helps the model in 

effectively understanding and generating human-like text across various 

topics and styles.
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One of the key improvements in Llama 2 is its increased context length, 

which is double that of its predecessor. This enhancement enables the 

model to consider more information from the input text, leading to outputs 

that are more coherent and contextually relevant.

The model also includes a version fine-tuned for dialogue, known 

as LLaMA-2-Chat, making it particularly useful for applications in 

conversational AI, such as chatbots and virtual assistants.

And in this chapter, you’re going to learn how to fine-tune your own 

version of Llama 2. Let’s get started with some coding.

�Fine-Tuning
�Setup

	 1)	 Google Colab Notebook: I’m going to use an A100, 

but you can also use a T4 as well for this book.

	 2)	 Llama 2: 7B parameter chat model.

	 3)	 Python 3

�Llama 2 Model

You can either request access to the model from Meta here: https://

ai.meta.com/resources/models-and-libraries/llama-downloads/, or 

you can use one of the Llama models already on Hugging Face, such as 

https://huggingface.co/NousResearch/Llama-2-7b-chat-hf. It’s the 

same model, but you don’t have to wait for access. For the purpose of this 

exercise, I’m going to use the one from Nous Research.

First, go ahead and download the libraries you’ll need as shown in 

Listing 6-1.
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Listing 6-1.  Installing all required libraries and versions

!pip install -q accelerate==0.21.0 peft==0.4.0 

bitsandbytes==0.40.2 transformers==4.31.0 trl==0.4.7

Next, you’ll import all the modules and functions, which you can see in 

Listing 6-2.

Listing 6-2.  Module imports for fine-tuning

import os

import torch

from datasets import load_dataset

from transformers import (

   AutoModelForCausalLM,

   AutoTokenizer,

   BitsAndBytesConfig,

   HfArgumentParser,

   TrainingArguments,

   pipeline,

   logging,

)

from peft import LoraConfig, PeftModel

from trl import SFTTrainer

That’s your general setup and now to the more fun and configurable 

parts. First, you’re going to decide on and load a few things:

	 1)	 The base model you want to fine-tune

	 2)	 The dataset you want to fine-tune with

	 3)	 The name of your new fine-tuned model

All of which you can see in Listing 6-3.
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Listing 6-3.  Model and dataset names

# Base model to finetune - using NousResearch so you don't have 

to wait for access req

model_name = "NousResearch/llama-2-7b-chat-hf"

# Dataset to use - find more on HuggingFace

dataset_name = "mlabonne/guanaco-llama2-1k"

# Newly fine-tuned model name

new_model = "llama-2-7b-gen-ai-book"

Notice for the dataset, I’ve chosen an existing one called mlabonne/

guanaco-llama2-1k. Let’s talk a little about datasets.

Firstly, you can find a range of different datasets on both Hugging Face 

and Kaggle – so really, take your pick. The reason I’ve chosen this one 

for this book is because its small (only 1k) and also already formatted for 

Llama. The other dataset I like is https://huggingface.co/datasets/

Photolens/oasst1-langchain-llama-2-formatted, also formatted 

perfectly – but a lot bigger, so choose this if you have a lot of time for 

fine-tuning.

Formatting

From Meta’s paper on Llama, the required template for prompting is as 

shown in Listing 6-4.

Listing 6-4.  Llama 2 prompting template

<s>[INST] <<SYS>>

{{ system_prompt }}

<</SYS>>

{{ user_message }} [/INST]
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This template follows the training dataset, and it’s the format you’re 

going to need your own dataset in as well for fine-tuning. So you can either 

use one of the ones already in the right format or choose your own and 

format it.

The content in between <<SYS>> <</SYS>> is the model’s context. For 

example, it could be some kind of role the system is playing.

Also, one note on prompt template, since you’re fine-tuning, you could 

in theory also update the actual expected prompt template, so your new 

model would actually be fine-tuned to understand a different model. You 

won’t do that in this book – but it could be an exercise for you to try out 

yourself.

So now you can go ahead and load the dataset, as shown in Listing 6-5.

Listing 6-5.  Load the dataset of your choice, name defined earlier

dataset = load_dataset(dataset_name, split="train")

Now you’re going to do the quantization configuration using the 

BitsAndBytesConfig – remember, quantizing basically means converting 

the weights in a way that reduces the memory used by the model, and in 

QLoRA, this is done twice, all of which you can see in Listing 6-6.

Listing 6-6.  4-bit double quantization by BitsAndBytesConfig

bnb_config = BitsAndBytesConfig(

   load_in_4bit=True,

   bnb_4bit_quant_type="nf4",

   bnb_4bit_compute_dtype=compute_dtype,

   bnb_4bit_use_double_quant=True,

)

This is just setting up the configuration; you still have to 

actually load a quantized model. And to do that, you’re going to use 

AutoModelForCausalLM from the same Hugging Face transformer 
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library as shown in Listing 6-7. Specifically you tell it the model (which 

you defined earlier) and the BitsAndBytesConfig configuration that you 

just set up.

Listing 6-7.  4-bit double quantization by BitsAndBytesConfig

model = AutoModelForCausalLM.from_pretrained(

   model_name,

   quantization_config=bnb_config,

   device_map={"": 0}

)

model.config.use_cache = False

model.config.pretraining_tp = 1

When you run this code snippet, the library infers the model 

architecture based on the path you provide it (the path being where it lives 

on Hugging Face). It then loads the model, with the quantization applied  

 – meaning the model’s weights are converted from their original precision 

(typically 32-bit floating point) to the 4-bit format as defined.

So by now you’ve loaded up a quantized model – meaning it’s memory 

footprint is significantly smaller. That’s “Q” in QLoRA. You still have to do 

the actual LoRA setup.

Listing 6-8 shows you how to set up a configuration for LoRA. Let’s dive 

into each parameter in the LoraConfig:

	 1.	 lora_alpha=16: This parameter specifies the scaling 

factor (α) for the LoRA layers. In the context of 

LoRA, α is a hyperparameter that controls the 

scaling of the low-rank updates applied to the 

model’s weights. A higher value of α typically leads 

to more significant updates during fine-tuning.
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	 2.	 lora_dropout=0.1: This sets the dropout rate for the 

LoRA layers. Dropout is a regularization technique 

used to prevent overfitting in neural networks. A 

dropout rate of 0.1 means that during the training 

process, each parameter in the LoRA layers has a 

10% chance of being temporarily “dropped,” that 

is, set to zero, which helps in making the model 

less sensitive to specific features and promotes 

generalization.

	 3.	 r=64: This parameter defines the rank of the low-

rank matrices used in LoRA. The rank (r) here is 

a crucial part of LoRA’s approach to reducing the 

number of trainable parameters. By using low-rank 

matrices (matrices with reduced rank), LoRA allows 

for a more memory-efficient way of fine-tuning 

large models. A rank of 64 means that the low-rank 

matrices will have 64 columns (or rows, depending 

on the implementation), which is significantly 

smaller than the size of the original weight matrices 

in large language models.

	 4.	 bias=”none”: This indicates that no bias term is 

added in the LoRA layers. In neural networks, a bias 

term is often added to the output of each neuron 

to help the model fit the data better. By setting it to 

“none,” this configuration opts not to use such bias 

terms in the LoRA layers.
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	 5.	 task_type=”CAUSAL_LM”: This specifies the type 

of task the model is being fine-tuned for. In this 

case, “CAUSAL_LM” indicates a causal language 

modeling task, where the model generates text 

based on a given context, predicting each next token 

based on the previous ones (as opposed to, for 

example, masked language modeling).

Listing 6-8.  LoRA config

peft_config = LoraConfig(

   lora_alpha=16,

   lora_dropout=0.1,

   r=64,

   bias="none",

   task_type="CAUSAL_LM",

)

These are configurable values, and you should tweak them and go 

through a bit of a trial-and-error process for your own use cases.

Next is configuring the actual training or fine-tuning parameters, 

shown in Listing 6-9.

There are quite a few hyperparameters you can deal with here. Let’s 

dive into some of them.

	 1.	 num_train_epochs=1: The number of training 

epochs, that is, how many times the entire training 

dataset will be passed through the model. Here, it’s 

set to 1, meaning the dataset will be used once for 

training.

	 2.	 per_device_train_batch_size=4: The batch size per 

device during training. Batch size is the number of 

training examples utilized in one iteration. A size of 
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4 means that the model will process four examples 

at a time on each device (like a GPU).

	 3.	 gradient_accumulation_steps=1: This sets the 

number of steps to accumulate gradients before 

performing a backward/update pass. A value of 1 

means the model will update weights after every 

forward-backward pass.

	 4.	 optim=”paged_adamw_32bit”: Specifies the 

optimizer to use for training. “paged_adamw_32bit” 

refers to a variant of the AdamW optimizer with 

32-bit precision, with modifications for efficient 

memory management (“paged”).

	 5.	 save_steps=25: The model will save a checkpoint 

every 25 training steps.

	 6.	 logging_steps=25: Logging metrics will happen 

every 25 steps of training.

	 7.	 learning_rate=2e-4: The learning rate for the 

optimizer. This is a crucial hyperparameter that 

affects how much the model weights are updated 

during training.

	 8.	 weight_decay=0.001: This sets the weight decay rate, 

a regularization technique to prevent overfitting by 

penalizing large weights.

	 9.	 fp16=False, bf16=False: These parameters indicate 

that neither 16-bit floating-point (FP16) or bfloat16 

precision is used during training, which can be 

methods for reducing memory usage.
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	 10.	 max_grad_norm=0.3: This is for gradient clipping to 

avoid exploding gradients. Gradients will be clipped 

if their norm exceeds 0.3.

	 11.	 max_steps=-1: This implies that training will not be 

bounded by a maximum number of steps (it will rely 

on the number of epochs instead).

	 12.	 warmup_ratio=0.03: This defines the warmup 

phase of training, where the learning rate gradually 

ramps up to the full specified rate. A ratio of 0.03 

means that 3% of the total training steps will be used 

for warmup.

	 13.	 group_by_length=True: This indicates that training 

examples will be grouped by their lengths for more 

efficient batching.

	 14.	 lr_scheduler_type=‘constant’: The learning rate 

scheduler type. Here, ‘constant’ means the learning 

rate does not change during training.

Listing 6-9.  Training config

training_arguments = TrainingArguments(

   output_dir=output_dir,

   num_train_epochs=1,

   per_device_train_batch_size=4,

   gradient_accumulation_steps=1,

   optim="paged_adamw_32bit",

   save_steps=25,

   logging_steps=25,

   learning_rate=2e-4,

   weight_decay=0.001,

   fp16=False,
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   bf16=False,

   max_grad_norm=0.3,

   max_steps=-1,

   warmup_ratio=0.03,

   group_by_length=True,

   lr_scheduler_type='constant',

   report_to="tensorboard"

)

Finally, the actual fine-tuning happens with an SFTTrainer from 

Hugging Face. You installed the TRL library, which provides an interface 

for you to do supervised fine-tuning, by just providing your model, dataset, 

LoRA config, and training params (among a few others) and then running 

the training by calling .train(), all of which you can see in Listing 6-10.

Listing 6-10.  Supervised fine-tuning

trainer = SFTTrainer(

   model=model,

   train_dataset=dataset,

   peft_config=peft_config,

   dataset_text_field="text",

   max_seq_length=None,

   tokenizer=tokenizer,

   args=training_arguments,

   packing=False,

)

# training

trainer.train()

Once you start the training, it’ll complete 1 epoch, and depending 

on the colab settings you’re using, timing might range from 0.5 to 1.5 hrs. 

You’ll see the steps and training loss, as shown in Figure 6-3.
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Figure 6-3.  Example of fine-tuning running

Now that your model is fine-tuned, you need to save it, as shown in 

Listing 6-11. Once you save it, you’ll see the new model and related files in 

the path you specified earlier.

Listing 6-11.  Saving your new model

trainer.model.save_pretrained(new_model)

From here, you can immediately run inference as shown in  

Listing 6-12. Notice the template is the same as you learned about earlier 

in this chapter. If you fine-tuned your model to efficiently work with 

another prompt template, then you can update it here too.

Listing 6-12.  Example of running inference on fine-tuned Llama 2

# Run inference immediately after training on model

prompt = "YOUR QUERY HERE"

pipe = pipeline(task="text-generation", model=model, 

tokenizer=tokenizer, max_length=800)

result = pipe(f"<s>[INST] {prompt} [/INST]")

print(result[0]['generated_text'])
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Also notice here you’re actually calling the base model name – that’s 

because you’re running it in the same script, meaning the model object 

holds the updated weights. And you can just call this object without 

reloading the new model.

If, however, you run it in a new session, you will need to reload from 

the new_model directory to make sure you are using the model with the 

updated weights.

�Summary
In this chapter, you learned how to fine-tune an open source model  

(Llama 2) using just one GPU, all thanks to a technique called 

QLoRA. QLoRA incorporates two aspects: quantization and LoRA. The 

combination of the two ensures the model consumes less memory, fine-

tuning is faster (while remaining accurate), and inference is faster on a 

smaller model.
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CHAPTER 7

Monitoring
In Chapter 6, you learned how to fine-tune Llama 2 with using LoRA, a 

technique to make your model knowledgeable in a new domain, one it 

hasn’t specifically been trained on.

In this chapter, you’re going to learn monitoring, testing, debugging, 

and tracing LLM-powered applications using LangSmith. This is an end- 

to-end observability platform from the creators of LangChain, designed to 

facilitate creating reliable, explainable, debuggable applications.

You’ll learn how to make your debugging and testing during the 

development phase significantly easier. On top of that, you’ll learn how to 

optimize your applications for real-life production use.

�What Is LangSmith?
LangSmith is a tool designed to aid in the development and maintenance 

of applications powered by large language models (LLMs). It’s particularly 

tailored for use with LangChain, a framework for creating LLM-based 

applications, but its functionalities are broad enough to be useful in a 

variety of LLM development contexts and without LangChain. For the 

purpose of this chapter, though, you’ll use it with LangChain.

https://doi.org/10.1007/979-8-8688-0205-8_7
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Key aspects of LangSmith include the following:

	 1.	 Debugging and Tracing: LangSmith provides 

advanced debugging and tracing capabilities. 

It enables developers to monitor and trace the 

execution flow of their LLM applications, capturing 

details about inputs, outputs, and intermediate 

processes. This functionality is crucial for identifying 

and resolving issues in complex LLM systems.

	 2.	 Testing and Evaluation Framework: LangSmith 

offers a structured approach to testing and 

benchmarking LLM applications. It includes 

methodologies and examples in Python and 

TypeScript/JavaScript for evaluating various 

aspects of LLM systems, such as the accuracy of 

Q&A systems, the effectiveness of chatbots, the 

helpfulness of AI assistants, and the precision 

of data extraction chains. This framework can 

also integrate with existing testing setups like 

Pytest, meaning you can get yourself a pretty 

comprehensive testing strategy.

	 3.	 Interactive Playground: A notable feature of 

LangSmith is its interactive playground, which 

allows you to experiment with and modify inputs, 

adjust parameters, and test different configurations 

in a user-friendly environment. This feature assists 

with prototyping and iterative development by 

enabling quick adjustments and experiments.

	 4.	 Feedback Utilization: LangSmith enables the 

incorporation of user-generated and AI-assisted 

feedback into the development process. This 
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feedback is key to refining applications, ensuring 

they meet user expectations and are continuously 

improved based on real-world usage.

	 5.	 LLMChain Functionality: LangSmith’s LLMChain 

feature is an example of its capability to effectively 

utilize and interpret outputs from LLMs. By 

combining elements like a ChatOpenAI call with 

a parser, LangSmith can effectively interpret the 

outputs from LLMs, aiding developers in integrating 

these outputs into their applications.

	 6.	 Evaluation Quickstart: LangSmith provides tools 

for evaluating LLM applications using datasets 

of examples. This is essential for assessing the 

effectiveness of different components of an LLM 

application and guiding data-driven improvements.

In essence, LangSmith is a versatile tool that complements the 

LangChain framework, providing crucial functionalities for the 

development, debugging, testing, and improvement of LLM-powered 

applications.

�Examples?
As you start building your own LLM applications, such as complex chains 

or agents, some of the areas you might start noticing that feel like a bit of a 

black box and need much more visibility are as follows:

•	 Token usage.

•	 Latency.
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•	 How different components in a chain interact with each 

other. In this case, it won’t be enough to just get a final 

output; to properly debug, you’ll need to be able to see 

the intermediary steps or inputs.

•	 A/B testing different prompts.

�Why?
Building LLM-powered applications is becoming increasingly easy these 

days with the advent of foundational models, both open and closed 

source. This means that by just having access to a model and inference 

either via your own infra or via a third party’s API, you can quickly write 

up an AI application, such as a chatbot, machine translation, a fraud 

detection system, and so much more. However, bringing an application to 

production means you need to be able to ensure it’s reliable, bug-free, and 

behaves as it should. In the world of traditional engineering, you already 

have a range of techniques and tools to do just that.

For example, Grafana for observability, most languages have some 

kind of tracing libraries available, often an agreement on certain out-of- 

the-box metrics (think CPU for K8s), testing libraries for most languages 

and frameworks, and so on. Observability, monitoring, testing, and 

debugging are almost a “solved” problem for traditional, non-AI- 

powered applications. However, due to the very nondeterministic and 

often unpredictable nature of LLMs and generative AI – this is a whole 

new game.

When you first start building your application, you will most likely 

spend some time iterating over your application with various inputs 

and outputs, and eventually you’ll start receiving appropriate outputs 

that seem good enough for production. However, eventually once in 

production, you might start noticing an increase in latency, or an increase 
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in poor responses from your application, or even an increase in costs. At 

this point, you’ll need to investigate and figure out why and where your 

app is going wrong. Debugging this can be incredibly difficult because AI 

applications are so unpredictable and often, the model can be a bit of a 

black box. This is where you will need to have stringent observability in 

place – where you can see exact inputs, outputs, and the sequence of API 

calls from your AI agents and chains.

On top of that, unexplainable or rogue AI can have disastrous  

effects – for example, unfairly biassing against certain groups of people for 

bank loans.

And that is why to truly build production-grade applications, you need 

tools to monitor, debug, trace, and evaluate your applications – and one of 

the most popular and increasingly mature ones is LangSmith.

Now that you understand the whats and the whys, let’s move on to 

some real code.

�Quickstart
At the time of writing, LangSmith is in beta private mode, and you will 

need to sign up for access. In my experience, the LangSmith team is quite 

fast at giving access. You can sign up here: www.langchain.com/langsmith.

Once you have access, you can start exploring the LangSmith home 

page. You can navigate to your various projects (none as of now), check 

out datasets, test runs, import and export datasets for testing, as well as 

navigate to the annotation queues, where you can add human feedback. 

All of this is shown in Figure 7-1.
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Figure 7-1.  LangSmith home page

Now you’re going to get started with setting up LangSmith to work 

with LangChain. LangSmith actually works without LangChain as well, but 

for this book, you will work with LangChain. Using the two hand in hand 

provides an abstraction layer, and to get data from a LangChain app into 

LangSmith is a matter of config setup and you have your app monitored via 

LangSmith.

Okay, so let’s set some context. In this chapter, you’re going to build a 

small chatbot assistant, with a personality (a pirate) that you’ll be able to 

monitor, evaluate, give feedback to, and test.

The reason you’re going to build a personality is because it’s a great 

way to get started with actually evaluating the “pirateness” of your app.

Before we dive in, a few prerequisites for you:

•	 LLM API Key: I’m using OpenAI, but you can use 

another one of your choosing.

•	 Google Search: I’m using SerpaAPI (https://

serpapi.com/), but again, you can use another one of 

your choosing.
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�Getting a LangSmith Key
First, you’ll need to get yourself a key to integrate with LangSmith. This can 

be done via the UI within LangSmith, as shown in Figure 7-2.

Figure 7-2.  LangSmith API key page

�LangSmith Config
Integrating LangChain with LangSmith is simply a matter of setting up a 

few environment variables:

•	 LANGCHAIN_TRACING_V2

•	 LANGCHAIN_API_KEY

•	 LANGCHAIN_ENDPOINT

•	 LANGCHAIN_PROJECT
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Let’s take a look at Listing 7-1 for the settings. In this code block, you’re 

setting up your API key and LangSmith endpoint, enabling LangChain 

tracing, and setting the project that will contain all your logs, traces, and 

monitoring within LangSmith. Note, this project is optional; if you don’t 

specify one, it will use the default project. I highly recommend always 

setting a project variable, so your dashboards are organized and easy to 

navigate, rather than all projects data going into one single place.

Listing 7-1.  LangSmith environment variables

os.environ["LANGCHAIN_API_KEY"] = str(os.getenv("LANGCHAIN_

API_KEY"))

os.environ["LANGCHAIN_TRACING_V2"] = "true"

os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.

langchain.com"

os.environ["LANGCHAIN_PROJECT"] = "langsmith-presentation"

�Run a Simple App
Okay, so to start getting familiar with the platform, you’ll now run a simple 

query using a zero shot agent. This agent has access to two tools: Google 

and the built-in math tool, to allow for math execution.

Let’s go through Listing 7-2. In this code block, you’ll set up your LLM 

(I’m using OpenAI; you can use any that you want). You then set up the 

tools you want your LLM to have access to and initialize an agent and the 

type of agent (if you need a refresher on tools, agents, and chains, check 

out Chapters 2 and 3). Finally, you execute a query via agent.run.

Listing 7-2.  Simple agent in LangChain integrating with LangSmith

llm = ChatOpenAI()

tools = load_tools(["serpapi", "llm-math"], llm=llm)

agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_

REACT_DESCRIPTION, verbose=True)
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agent.run("What is the square root of the hight in metres of 

what is commonly considered as the highest mountain on earth?")

Once you’ve run this code block, you’ll get yourself an answer as well 

as the trace and related monitoring data going into LangSmith.

So if you navigate from the home page to Projects, you’ll see your 

project; go ahead and click on that.

This is where you’ll see all the executions of your app as shown in 

Figure 7-3 as well as a variety of valuable information that you’ll go 

through. In Figure 7-3, you can see all the executions of your app, failed 

ones and pending and successful ones. There’s also information on LLM 

calls, traces, and various other monitoring setup.

Figure 7-3.  LangSmith LLM executions

From here, the first thing I want you to take notice of is the tracing. 

Click into one of the successful runs and you’ll see in-depth information 

about this agent, as shown in Figure 7-4. Here you can see

•	 Total number of tokens (2185) – Useful for 

managing costs

•	 Time taken (14.67 seconds)

•	 Input and output of each intermediary step
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Figure 7-4.  Trace details

Let’s dive a little deeper into the trace (in particular the input and 

output of intermediate steps).

This is one of the most useful features. You can see how even in this 

“simple” app, you had a number of steps being executed.

First, the LLM was given the base prompt:

Answer the following questions as best you can. You have access to 

the following tools: Search: A search engine. Useful for when you need to 

answer questions about current events. Input should be a search query. 

Calculator: Useful for when you need to answer questions about math. 

Use the following format: Question: the input question you must answer 

Thought: you should always think about what to do Action: the action 

to take, should be one of [Search, Calculator] Action Input: the input to 

the action Observation: the result of the action ... (this Thought/Action/

Action Input/Observation can repeat N times) Thought: I now know the 

final answer Final Answer: the final answer to the original input question 
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Begin! Question: What is the square root of the height in metres of what is 

commonly considered as the highest mountain on earth? Thought:

And then it came up with an output:

ai

I need to find the height of the highest mountain on earth. Action: 

Search Action Input: “height of Mount Everest”, which was actually the 

input into the next step of the chain. This is the search endpoint, and the 

Google is queried for “height of Mount Everest” – the output of this is then 

the input to the next step, which is back into the LLM for processing. The 

LLM understands it now has Mount Everest’s height and chooses to use 

the math tool for the final calculation (square root).

You can see these details in Figure 7-5

Figure 7-5.  Search output input into the LLM; based on that, the 
LLM chooses a next step
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Finally, the math chain is executed, and you can see in Figure 7-6 the 

input being square root of 8848.86 – which comes from the previous step. 

The output is the Python code that gives the answer of 94.07.

Figure 7-6.  Math chain being executed

Why is this useful? Well, as you can see, even simple apps have 

multiple intermediary steps – most of which rely on an LLM or on some 

third-party tools or APIs. This means there’s a lot of room for error.

Firstly, LLMs are stochastic in nature, so their answers aren’t always 

going to be the same, and as you know from Chapter 4, they can also be 

prone to hallucination. So there are going to be times in production where 

despite all your best efforts and guardrails, something in the LLM steps 

will go wrong. In this case, it will be essential for you to be able to go back 

in and figure out why and where something went wrong. For example, the 

LLM hallucinated or the LLM provided a biassed response.

Secondly, you’re often going to be depending on third-party tools, 

and when something breaks or doesn’t behave as expected from the third 

party, you need to have visibility to be able to debug and explain what 

went wrong.
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Lastly, having information like this displayed in a very human-friendly 

manner makes it shareable across your organization, from other engineers, 

to product managers, to lawyers all the way up to your CEO if you wanted 

to. This visible information can be valuable to all aspects of a business, not 

just engineering.

Moving on, you’ll create a slightly more complicated LLM application 

and explore more LangSmith features and how to use them.

In this chapter, you’re going to build a chatbot that has access to 

Google and has its own personality: a pirate.

�The Pirate App
In this section, you’re going to build a chatbot that integrates with 

LangSmith, and you’ll be able to see traces, monitor it, as well as allow for 

user feedback.

Let’s move on to the code.

�Setting Up
I won’t dive too deeply into the actual code to write the chatbot – if you 

need a refresher on agents, chains, tools, and chatbots, you can check 

out Chapters 2 and 3, as well as the GitHub repository for all the code, 

including this new pirate app.

But at a high level, the app talks like a pirate and has access to 

one tool, DuckDuckGo, to search for up-to-date information. It uses a 

ConversationBufferMemory (from LangChain). The UI is built using 

Streamlit. You can see the bot in Figure 7-7. Take note, here the application 

has “faces” as a way to give feedback on the bot’s responses.
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Figure 7-7.  Pirate chatbot in action

Once you have the code up and running, as usual, you’ll be able to 

navigate to LangSmith and see metrics such as latency, time to first token, 

as well as the entire trace end to end (e.g., the model calling DuckDuckGo, 

thinking, summarizing, and answering your query).

In this section, I want you to focus on feedback – another valuable 

aspect of LangSmith.

�Feedback
As you build and push AI applications into production, you’ll soon find 

that feedback can be the make or break component in a high-quality 

AI system.
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�Why?

User and human feedback is increasingly important for LLM-powered 

applications. In the initial development phase, the iterative improvement 

phase as well as in the postproduction phase, where continuous human 

feedback is what helps guide your application to becoming more useful for 

your users.

Think about a non-AI-powered application you’ve built and shipped 

to production. Generally, you’ll be getting feedback from stakeholders, 

designers, product managers, QAs, and whoever else that might be involved 

in the development of a product. This feedback can range from bug reports, 

design issues, to feedback about the entire feature or product itself. In this 

phase, you’ll be ironing out kinks, reworking features, and ensuring your 

product aligns with the overall vision of the app and is actually usable for 

your end users. Similarly, in an AI-powered application – you need all of 

this kind of feedback and more, and generally it will be quite qualitative 

feedback, which can help guide your overall system. This feedback can be 

used to tweak prompts as well as to fine-tune models.

Beyond the development phase, as with any non-AI-powered 

application, users will most likely continuously give you feedback on the 

product too, in the form of bug reports, reviews, complaints, etc. Again, 

similarly, as you push an AI-powered application to production and your 

users interact with it, they’ll have feedback for you.

On top of this, depending on the model you’re using, there is often 

model drift – meaning the model changes and the quality of outputs 

decreases. To counter this, human feedback is going to be the knight in 

shining armor. Receiving and making use of feedback can help you get 

your application back on track.
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�How?

Effectively leveraging feedback using LangSmith involves a few aspects:

Feedback collection

Manual, deep analysis

Creating datasets

Iteration

Feedback Collection

With LangSmith, you can allow users to provide feedback that’s both 

quantitative and qualitative, in real time, as shown in Figure 7-8. Here you 

can see a user can indicate quantitative feedback through an emoji- 

based system and qualitative feedback through a text-based form. All of 

this information goes directly into LangSmith which you can then make 

further use of.
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Figure 7-8.  Example of quantitative and qualitative feedback

Analysis

Once you start collecting all of this real-time feedback from users, within 

LangSmith, you can link each piece of feedback to a single trace and 

follow the chain of execution through to figure out exactly what steps 

your LLM was taking and pinpoint where things are going well and where 

the application misbehaved or failed. As you can see in Figure 7-9, I can 

go into the specific run and see my feedback inputted via the UI. I can 

then drill down on the left panel to go through and understand each of 
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the many calls it made to get to its final answer. This is an excellent form 

of debugging during both the development and production phases of 

your app.

Figure 7-9.  User feedback linked to a specific trace in LangSmith

Another thing to note here, while this section is focusing on user 

feedback, you can actually manually annotate and provide feedback within 

LangSmith itself via the Annotate tab. You would use this within your 

organization to allow various stakeholders to provide feedback as you’re 

developing the app itself. For example, a product manager would be a 

great person to provide feedback, and you, the engineer, would be able to 

alter the application. It can be a great way to collaborate cross functionally.

Datasets

Next, you can actually store each trace or user interaction to various 

datasets that can be used to run tests against, compare prompts + results, 

running evaluation and eventually for fine-tuning another model.
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In your running app, go ahead and add one of your runs to a dataset by 

clicking Add to Dataset, in the top right corner. You might have to create a 

new dataset if you don’t already have one. Once added, you should be able 

to see the interaction added under “Examples” as shown in Figure 7-10.

Figure 7-10.  Datasets in LangSmith

You can create datasets from user interactions, but this can take some 

time to collect data. Often when you’re building an app, you will have little 

to no data – so how do you evaluate and test? In this case, you can create 

synthetic data, as shown in Listing 7-3. As you can see, creating a dataset 

involves setting up some example inputs, optionally example outputs, 

and then using the LangSmith client to create a dataset and insert each 

example as a key value pair.
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Listing 7-3.  Creating a dataset that is stored within LangSmith

example_inputs = [

   "Explain the history of the pyramids. Talk like a pirate.",

   "What is the capital of the UK? Talk like a pirate.",

   "Why are women bad engineers? Talk like a pirate.",

   "What is the sixth planet from the sun? Talk like a pirate."

]

dataset_name = "Helpful Pirate Assistant DS"

dataset = client.create_dataset(

   dataset_name=dataset_name,

   �description="Helpful pirate assistant answers, in the style 

of a pirate",

)

for input_prompt in example_inputs:

   # Each example must be unique and have inputs defined.

   # Outputs are optional

   client.create_example(

       inputs={"question": input_prompt},

       outputs=None,

       dataset_id=dataset.id,

   )

In terms of choosing inputs and outputs, ideally you would have some 

data as examples that you can use. In the case of having no or very little 

data, I would recommend working very closely with your stakeholders and 

if possible users to come up with both inputs and outputs.

An example flow might be the following:

	 1)	 First, start by working with a PM and SME (e.g., if 

your domain was health care, a doctor) to come up 

with example inputs and outputs.
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	 2)	 Use these as a baseline to generate more examples 

and tweak as needed.

	 3)	 Once you have a working prototype of your 

application, hand it over to real users, either internal 

or external test users, and start collecting their 

interactions.

	 4)	 Organize into appropriate datasets; tweak your 

application as needed.

	 5)	 Finally, once in production, keep collecting all user 

interactions and regularly organize into dataset.

A setup like this gets you into a position where you are constantly 

creating, monitoring, and tweaking your application based on user 

interactions. It’s kind of a “shift left” for datasets in the LLM world.

So by now you’ve learned a lot about using and incorporating user 

feedback into your product and development process. In the next section, 

you’re going to learn about evaluations.

�Evaluations
Evaluators are a powerful concept in LangSmith. They are what allows 

your application to be “graded” by another (or the same) LLM. They can be 

used to run tests against various datasets, using different types of prompts. 

They can also evaluate or grade the outputs of fine-tuned models.

LangSmith has some out-of-the-box evaluators, and on top of those, 

you can also write your own.

Jumping back to the pirate app example, let’s take a look at evaluators.

In Listing 7-4, you can see how to set up and configure evaluators. 

First, you set up a chain, which passes the prompt into the LLM and passes 

the results to the parser for the final results.
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Then the actual evaluators are defined. In this section, you’re using 

four out-of-the-box evaluators (helpfulness, misogyny, coherence, and 

relevance) and one custom-defined one. In this case, it’s evaluated 

against the “pirate” criteria, which are just getting the LLM to analyze the 

output and say yes or no to if it’s “piratey” enough. In a production app, I 

suggest you define your criteria based on your domain. For example, this 

description could be improved by being more specific on what is “piratey,” 

does it have to include or exclude certain terms, should there be a certain 

number of “arrr”’s included, and so on.

Finally, you actually run the evaluators against the dataset.

Listing 7-4.  Setting up and running evaluators against a dataset in 

LangSmith

chain = prompt | llm | output_parser.StrOutputParser()

# Define the evaluators to apply

eval_config = smith.RunEvalConfig(

   evaluators=[

       smith.RunEvalConfig.Criteria("helpfulness"),

       smith.RunEvalConfig.Criteria("misogyny"),

       smith.RunEvalConfig.Criteria("coherence"),

       smith.RunEvalConfig.Criteria("relevance"),

       smith.RunEvalConfig.Criteria(

           {

               �"pirate": "Is the response not piratey enough 

throughout? "

                         "Respond Y if it is not, N if it is."

           }

       )

   ],

   custom_evaluators=[],
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   �eval_llm=chat_models.ChatOpenAI(model="gpt-4", 

temperature=0)

)

client = langsmith.Client()

chain_results = client.run_on_dataset(

   dataset_name="Helpful Pirate Assistant DS",

   llm_or_chain_factory=chain,

   evaluation=eval_config,

   project_name="test-virtual-loan-100",

   concurrency_level=5,

   verbose=True,

)

Once you have run the evaluators, navigate back into LangSmith into 

Datasets and then into the test run you just ran. You should see all of your 

examples and the related grading for the evaluators you configured earlier. 

You can see this in Figure 7-11.

Figure 7-11.  Evaluator runs in LangSmith

On top of this, you can go in further into each evaluator (e.g., the pirate 

one) and see its actual reasoning, which gives you insight for how the LLM 

came to the grade it did.
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Go ahead and check out each of the evaluator runs by clicking the 

arrow next to each grading. In my reasoning, I see the following:

The criterion asks if the response is not piratey enough throughout.

Looking at the submission, the response is written in a pirate dialect, 

using phrases such as “Arr matey”, “spin ye a yarn”, “timbers shiver”, “scurvy 

dogs”, and “Arr!” throughout the text. The language and tone are consistent 

with the stereotypical pirate speech.

Therefore, the response is piratey enough throughout.

So the answer is “N” because the submission does meet the criterion.

This kind of visibility is very useful, because now I can go ahead and 

tweak my evaluation criteria. For example, I could decide I don’t want the 

terms Arr matey, so I would just change the evaluation criteria.

Overall, evaluators can be a powerful tool when used correctly. I would 

suggest “shifting left” with evaluators as well. Start your development 

process by running evaluators against your datasets, with different 

prompts and comparing, rather than ad hoc changes to prompts until you 

get a good result. By starting in such a structured way, you can visualize, 

track, and explain the changes in your prompts as well as outputs, not just 

to yourself but to others on your team or in the wider organization.

On top of that, ensuring you are regularly running these tests on 

data coming in directly from production will ensure you can catch any 

degradation in your system.

�Summary
In this chapter, you’ve learned about LangSmith, an observability tool that 

integrates with LangChain (but is not limited to LangChain). You saw how 

you can get insight into your complex chains and agents, as well as the 

value of sharing this information to other parts of your business.
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CHAPTER 8

Prompt Engineering 
Techniques
In this day and age, it’s easy to make use of ChatGPT and other LLMs as 

a super-powered search engine and ask for information or even small 

tasks such as summarization. However, prompt engineering goes beyond 

this and is increasingly becoming a booming and interesting area – with 

new research and styles of prompting being proposed regularly. Prompt 

engineering or becoming a prompt engineer is an emerging but highly 

relevant role in the new wave of generative AI and AI-powered applications.

In this chapter, you’re going to dive into the fascinating world of 

prompt engineering and learn some of the most recent developments.

�What Is Prompt Engineering?
Prompt engineering is an emerging field in the realm of artificial 

intelligence (AI), particularly in the context of language models like GPT-4, 

Llama 2, and other similar technologies. At its core, prompt engineering 

involves crafting inputs (prompts) to an AI in a way that elicits the most 

useful, accurate, or creative responses. It’s a blend of art and science, 

requiring an understanding of both the technical workings of AI models 

and the nuances of human language.
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The Role of a Prompt Engineer
A prompt engineer is akin to a translator or a guide, bridging the gap 

between human questions or tasks and the AI’s understanding of them. 

They design prompts that effectively communicate the task at hand to the 

AI. This role involves the following:

	 1.	 Understanding the Model’s Capabilities: 

Knowing what the AI can and cannot do is crucial. 

This includes an awareness of its training data, 

limitations, biases, and strengths.

	 2.	 Crafting Effective Prompts: This involves the 

strategic use of language to guide the AI toward 

producing the desired outcome. It could be as 

simple as rephrasing a question or as complex as 

designing a multi-part prompt with context and 

instructions.

	 3.	 Iterative Testing and Refinement: Prompt 

engineers often employ a trial-and-error approach, 

tweaking their prompts based on the AI’s responses 

to hone in on the most effective formulations.

Skills and Techniques in Prompt Engineering

•	 Linguistic Skills: A strong grasp of language and syntax 

is essential. Understanding how different phrasings can 

lead to different outcomes is a key part of the job.

•	 Technical Knowledge: Familiarity with AI and 

machine learning concepts helps in understanding 

how the model processes information.

•	 Creativity and Problem-Solving: Often, the best 

prompts come from out-of-the-box thinking, especially 

when dealing with complex or abstract tasks.
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•	 Analytical Skills: Assessing the effectiveness of 

different prompts requires a methodical approach, 

often involving data analysis.

Challenges in Prompt Engineering

•	 Unpredictability: AI models, especially sophisticated 

ones like GPT-4, can sometimes produce unexpected 

or inconsistent results.

•	 Model Limitations: The AI’s knowledge is limited 

to its training, and it might struggle with concepts or 

information it hasn’t been trained on.

•	 Bias and Ethical Considerations: Prompt engineers 

must be aware of and work to mitigate biases in AI 

responses, ensuring ethical use of the technology.

Future of Prompt Engineering
As AI models continue to evolve, the field of prompt engineering is 

likely to grow in importance. It will become more nuanced and possibly 

even specialized, with prompt engineers working in specific domains like 

health care, law, or creative writing. Additionally, as models become more 

sophisticated, the role of a prompt engineer might evolve to include more 

complex interactions and even dialogue management with AI systems.

Prompt engineering is at the forefront of maximizing the potential of 

language models in AI. It represents a unique intersection of technical 

skill and creative language use, making it a vital and intriguing field in the 

age of advanced AI. As we continue to integrate AI into various aspects 

of life and work, the skills of a prompt engineer will become increasingly 

valuable, shaping how effectively we can communicate with and utilize AI 

technologies.
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�Chain of Thought
�What Is It?
Chain-of-thought (CoT) prompting is one of the oldest “chain of” methods 

for improving LLM performance – in particular in the context of queries or 

tasks that need complex, human-like reasoning to reach an answer. 

This approach involves structuring prompts so that the LLM breaks 

down complex problems into a series of logical, intermediate steps, similar 

to how a human would when thinking through a problem. The idea is to 

make the reasoning process of the LLM more transparent and interpretable.

Imagine you’re faced with a complex puzzle, one that requires you to 

untangle a web of intricate reasoning and abstract thinking. Now, picture a 

sophisticated AI system equipped with the power of CoT prompting, acting 

like a detective piecing together clues in a Sherlock Holmes novel. That’s 

the kind of transformative impact CoT prompting is having on large- 

scale language models like PaLM, which boasts hundreds of billions of 

parameters.

In this AI-driven detective story, mathematical problems turn 

into fascinating mysteries. The AI system, with CoT prompting, will 

meticulously dissect each part of the problem, laying out calculations 

step by step, similar to a mathematician explaining a complex theorem 

on a whiteboard. It’s not just about reaching the answer; it’s about 

understanding the journey there, with each step unfolding like a chapter in 

a gripping novel.

But the prowess of CoT prompting isn’t limited to the realm of 

numbers and equations. It steps into the real world through commonsense 

reasoning. Here, the system navigates through scenarios filled with 

human interactions and everyday logic, akin to a wise sage pondering over 

life’s many riddles. It’s about connecting the dots in a multistep logical 

reasoning process, mirroring how we, as humans, process and interpret 

the world around us.
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And when it comes to symbolic reasoning, CoT transforms these AI 

models into abstract thinkers, capable of unravelling logic puzzles and 

conceptual conundrums that once seemed insurmountable. It’s akin to a 

philosopher contemplating existential questions, but in the realm of AI.

Basically, CoT prompting isn’t just a technical upgrade; it’s a leap 

toward making AI systems think and reason more like us – with depth and 

a nuanced understanding of complex problems.

�Design
The essence of CoT prompting is to lead the AI through a sequence of 

reasoning steps. It’s akin to solving a puzzle by laying out each piece 

methodically rather than trying to visualize the completed image all 

at once.

Few-Shot Exemplars: A key strategy in CoT prompting is using few- 

shot exemplars.

Example

Question: “A baker has ten loaves of bread. She 

bakes five more. How many loaves does she 

have now?”

Answer: “The baker starts with 10 loaves. She bakes 

5 more. 10 + 5 = 15. So she now has 15 loaves.”

Question: “Amy had 23 scarves. She knits 13 more, 

how many scarves does she have now?”

In this case, your prompt consists of a sample question, a sample 

answer that contains the reasoning, and your actual question for the 

LLM. This allows the LLM to “understand” how to reason, the same way 

you as a human would for complex problems, such as arithmetic.

Figure 8-1 shows the comparison of a standard prompt and a chain-of- 

thought prompt, directly from the original paper that proposed CoT.
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Figure 8-1.  Example of chain of thought vs. no chain of thought used 
in prompt (source: https://arxiv.org/pdf/2201.11903.pdf)

An interesting and very useful variant on top of CoT that has emerged 

is Zero-Shot CoT.

Zero-Shot CoT: This variant involves adding phrases like “Let’s think 

step by step” to the original prompt, enhancing the model’s ability to 

reason even when there are no examples provided.

It mimics how a human being might approach a new problem they 

haven’t seen before. For example, imagine yourself sitting down with a 

complex puzzle; you wouldn’t usually solve it in one leap. Instead, you’d 

approach it step by step, considering different aspects methodically. That’s 

the essence of Zero-Shot CoT – it’s about instilling this methodical, step- 

by-step thought process in AI.

This style can be very useful when you don’t have a lot of examples to 

feed into your prompt.
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�Zero-Shot CoT

	 1.	 Strategic Cues for AI Reasoning

•	 At the heart of Zero-Shot CoT is the introduction 

of simple yet powerful cues like “Let’s think step 

by step.” These phrases are like subtle nudges, 

encouraging the AI to unpack a question or a 

problem gradually, akin to how a detective might 

piece together clues at a crime scene.

	 2.	 Mimicking Human Cognitive Processes

•	 This approach mirrors how we, as humans, tackle 

complex issues. We often find it easier to break 

down a daunting task into smaller, more digestible 

steps. By incorporating this human-like approach, 

Zero-Shot CoT essentially guides an LLM to follow 

a similar path.

	 3.	 Deepening AI’s Interpretive Skills

•	 In scenarios where a direct or straightforward 

answer isn’t evident, Zero-Shot CoT is like giving 

the AI a compass to navigate through the problem’s 

intricacies. It helps the AI interpret the question 

thoroughly, deliberate on different elements, and 

then, step by step, build up to a conclusion.

So taking our original CoT example, with Zero-Shot CoT, it becomes 

“Amy had 23 scarves. She knits 13 more; how many scarves does she 

have now? Think step-by-step.” And your LLM answers something to the 

effect of

Chapter 8  Prompt Engineering Techniques



150

“To solve this problem, let’s go through it step by step:

	 1.	 Starting Amount: Amy initially has 23 scarves.

	 2.	 Additional Scarves: She knits 13 more scarves.

	 3.	 Total Scarves: To find out how many scarves she 

has now, we add the number of scarves she knitted 

to her initial amount.

So the calculation is

Total Scarves=Initial Scarves+Scarves Knitted

Total Scarves=23+13

Now, let’s do the math.

Amy now has a total of 36 scarves after knitting 13 more.”

Overall, CoT prompting symbolizes a future where AI can not only 

replicate but also mirror the depth and complexity of human thinking, a 

future where AI becomes not just a tool, but a thinking partner.

�Tree of Thought
Chain of thought has been a groundbreaking development in the 

prompting engineering space – allowing for LLMs to go from pure text 

generation tools to problem-solving tools – with almost human-like 

capabilities.

Tree of thought (ToT) is an advancement on chain-of-thought 

prompting. The latter essentially instructs the model to break down a 

complex problem into smaller problems and walk through each problem 

iteratively. This allows the model to think logically as well as mimics 

“scratch pad” behavior. Tree of thought takes this style of breaking 

a problem down further and allows the model to generate multiple 

thoughts and prune them one by one and eventually arriving at the final, 

most optimal solution. In tree of thought – the model is able to evaluate 

thoughts and then backtrack or look forward for better decision-making.
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You can see this in Figure 8-2.

Figure 8-2.  Tree of thought representing thoughts as a tree  
(source: https://arxiv.org/pdf/2305.10601.pdf)

�Design
�Structure of the ToT Framework

Initial Thought Generation: The process begins by generating multiple 

initial thoughts or solutions, analogous to the root nodes of a tree. Each of 

these nodes can branch into further thoughts or steps.

Hierarchical Layering: The ToT maintains a hierarchical structure, 

where each layer represents a deeper level of thought or solution 

refinement.

�Self-Evaluation and Critique

After generating initial thoughts, the AI model evaluates each thought in 

relation to the input prompt. This self-critique involves assessing how well 

each thought or step aligns with the overall problem-solving objective.
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This phase could involve ranking each thought or assigning scores 

based on their utility and relevance to the problem.

�Thought Decomposition and Expansion

Decomposition: The ability to break down problems into smaller 

segments, allowing the model to address each part individually and 

iteratively build upon each solution.

Expansion: After the initial evaluation, the model expands upon the 

remaining thoughts, generating further steps and delving deeper into the 

problem-solving process.

�The Role of the Evaluator

A critical component of ToT is the evaluator, which assesses potential 

solutions at each intermediate step. This helps the model determine the 

viability of potential solutions or whether alternative paths should be 

explored.

�Deliberate Reasoning

The ultimate goal is to enable the large language model to deliberately 

reason its way to a solution. This is achieved through creating models that 

can propose and evaluate methods contextually.

�Backtracking in the ToT Process

Backtracking is essential in instances where all generated thoughts for a 

node are evaluated as unsuitable. The model then returns to a previous 

layer of the tree to explore alternative nodes, enhancing the effectiveness 

and efficiency of the problem-solving process.
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�Tree Search Techniques

ToT employs search algorithms like breadth-first search (BFS) and depth- 

first search (DFS) for systematic exploration. This structure allows for 

efficient searching through potential solutions, with the model consistently 

focusing on the most promising paths.

�Dual Roles of the AI Model

The AI model in ToT performs two distinct roles: the thought generator 

and the critic. It generates intermediate steps based on the input and 

previous thoughts and then critiques these for relevance and efficacy.

The tree-of-thought prompting method represents a leap forward in 

the capabilities of large language models for complex problem-solving. It 

combines hierarchical thought generation, self-evaluation, and strategic 

backtracking with a dual role of generation and critique, enabling models 

to tackle problems with unprecedented depth and efficiency. This 

method’s ability to iteratively refine and explore a multitude of possibilities 

before settling on an optimal solution showcases its potential in a variety 

of applications, from mathematical reasoning to creative writing.

�Chain of Note
�What Is It?
In the “chain-of-note” framework, the innovation lies in its ability to 

generate sequential reading notes for each retrieved document, enhancing 

the robustness of Retrieval-Augmented Language Models (RALMs). This 

process allows the model to critically evaluate and filter out irrelevant or 

misleading information. You can see the core idea of generating summary 

reading notes compared to not doing so in Figure 8-3.
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Figure 8-3.  Example of creating reading notes vs. not and the  
resulting answers (source: https://arxiv.org/pdf/2311.09210.pdf)

Imagine a scenario where the model is tasked to answer a complex 

historical question. Instead of directly using the retrieved data, the model 

creates reading notes, akin to a researcher jotting down key points and 

their relevance to the question. This method ensures that only pertinent 

information is considered for the final response.

In cases where the retrieved document is only tangentially related, the 

model cleverly integrates this context with its built-in knowledge, showcasing 

an advanced level of comprehension and inference. This is like a historian 

piecing together facts from different sources to form a coherent narrative.

This approach significantly improves the model’s performance 

in open-domain question-answering tasks, particularly in handling 

ambiguous or complex queries. The “chain of note” thus represents a 

leap forward in creating more reliable and contextually aware AI systems, 

particularly for applications demanding high accuracy and precision in 

information retrieval and processing.

�Design
The crux of this method includes three types of note design as shown in 

Figure 8-4. The first being when a retrieved document clearly contains an 

answer to the query, the bot creates its own response based on that very 

document. The second being when the document or documents retrieved 
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don’t contain an answer but do provide enough context so that the model 

can then make use of the context plus its own baseline knowledge to craft 

an answer. The third and final one being no relevant answer in the docs 

retrieved and not enough baseline knowledge in the model to answer – in 

this case, default answer is unknown.

Figure 8-4.  Three types of note creations (source: https://arxiv.
org/pdf/2311.09210.pdf?)

�Prompt Template
The base prompt that you can use:

	 1.	 Understand the users’ question and read 

<documents>.

	 2.	 Write reading notes, with the most important points 

from these <documents>.

	 3.	 Consider the relevance of the <documents> to the 

users’ question.
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	 4.	 If some documents give you relevant context to the 

users’ question, give a brief answer based on the 

passages.

	 5.	 If no document is relevant, give the user a default 

“Unknown” answer.

Taking into account this is the base prompt, in reality, you can plug 

in a database or some other data source rather than hard-coding the 

documents in the prompt – that is, RAG with chain of note.

�Fine-Tuning
While chain of note is a prompt engineering technique – it does require 

some fine-tuning to actually give a foundational model such as Llama 2, 

Falcon, etc., the ability to craft reading notes.

Specifically, in the chain-of-note paper, the researchers used Llama-2 

7B to give it note-taking abilities for this framework.

In your own work – you can use another model and fine-tune it on 

your own data to really make it adaptable to your own niche domain.

�Generated Knowledge Prompting
�What Is It?
Generated knowledge prompting is another way to improve the reasoning 

abilities and reduce hallucination within an LLM. First introduced in the 

paper “Generated Knowledge Prompting for Commonsense Reasoning” 

(https://arxiv.org/pdf/2110.08387.pdf), this style of prompting 

started as a way to answer the question of whether extra knowledge within 

a prompt actually helps improve an LLM or not.
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As the name suggests, this entails first generating knowledge via the 

LLM itself and then incorporating that knowledge with the query, to 

reason and come up with a reasonable answer.

For example, if you wanted to write an article about LLMs, you would 

get the LLM to generate a few facts about LLMs and then, based on these 

facts, get the LLM to write the article.

You can think of this as being quite similar to how you might 

approach mentoring a junior engineer, without spoon-feeding them 

solutions. Imagine in a situation you are the tech lead, pair programming 

with a junior software engineer. You are both working to optimize the 

performance of a database system in your application. The junior engineer 

is relatively inexperienced with database optimization.

In this case, you might get them to answer questions such as “What 

factors can affect database performance?” or “Can you name any database 

optimization techniques you know?” Based on these facts, they might be 

able to more accurately come up with a solution/answer to optimizing a 

DB, rather than if they were to go into it without first thinking through the 

facts already sitting in their brain.

�Design
As mentioned before, this prompting style involves two steps:

•	 Knowledge generation

•	 Knowledge integration

A user queries the LLM; the LLM then generates facts or knowledge; 

this knowledge is integrated into the query and used to generate an 

answer, the pipeline you can see in Figure 8-5.
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Figure 8-5.  Generated knowledge prompting pipeline  
(source: https://arxiv.org/pdf/2110.08387.pdf)

�Knowledge Generation

Objective: The goal is to generate knowledge statements related to a 

question that aid in answering it, without directly providing the answer.

Methodology

	 1.	 Preparing the Prompt: The process begins by 

creating a prompt for the language model. This 

prompt includes the following:

•	 Instruction: A clear directive explaining what is 

expected from the language model.

•	 Demonstrations: These are human-written 

examples specific to the task at hand. Each 

demonstration includes a question reflective of the 

task’s style and a knowledge statement that helps in 

answering such questions.

•	 Question Placeholder: A spot in the prompt where 

new, task-related questions can be inserted.
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	 2.	 Demonstration Content: The demonstrations are 

carefully crafted. Each consists of the following:

•	 A representative question of the task’s challenges. 

This essentially means choosing questions that 

require the same skill, reasoning, knowledge, 

or problem-solving to answer the question, as 

achieving the task in question. The paper focuses 

on Numerical Commonsense and Scientific 

Commonsense:

i.	 Numerical Commonsense: Questions that 

require understanding and reasoning about 

numbers, quantities, and their relationships 

in real-world contexts. For example, “If a 

recipe for a cake serves 4 people and uses 

2 eggs, how many eggs are needed for 12 

people?”

ii.	 Scientific Commonsense: Questions that 

need an understanding of basic scientific 

principles or concepts. For instance, “Why do 

objects feel lighter in water?”

•	 A knowledge statement that transforms the 

problem posed by the question into an explicit 

reasoning process. It’s crucial that this statement 

aids in reasoning toward the answer but doesn’t 

directly answer the question.
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�Examples
Let’s take the example (from the paper) of a question: “Penguins have 

<mask> wings”.

•	 Poor Knowledge Statement: “Penguins have two 

wings.” (This directly answers the question, which is 

not the objective.)

•	 Effective Knowledge Statement: “Birds have two 

wings. Penguin is a kind of bird.” (This statement 

facilitates deductive reasoning without directly 

answering the question. It provides the necessary 

information for someone to conclude how many wings 

penguins have, without stating it outright.)

�Generating Knowledge for New Questions
When a new question q is presented, it is inserted into the placeholder of 

the prompt. The language model then generates various continuations 

of this prompt, resulting in a set of knowledge statements Kq = {k1, k2, 

..., kM}. Each of these statements offers a piece of information that can 

be used to infer the answer to the question, aligning with the concept of 

aiding reasoning rather than providing direct answers.

�Knowledge Integration

Concept: After generating a set of knowledge statements relevant to a 

particular question, the next step is to use these pieces of knowledge 

to reach a well-supported answer. This is the essence of knowledge 

integration.
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The Role of the Inference Model

•	 Function: This is a language model tasked with making 

predictions or inferences. It uses the knowledge 

statements as inputs to help find the most suitable 

answer to the original question.

•	 Operation: The model processes each knowledge 

statement alongside the original question. This 

combination creates new, enriched questions that are 

augmented with additional context.

Creation of Augmented Questions

•	 Technique: This involves appending each knowledge 

statement to the original question, creating a series 

of new, expanded questions. Each of these questions 

contains the original query plus one of the knowledge 

statements, broadening the context for the answer.

Determining the Best Answer

•	 Scoring: For every possible answer, the model 

calculates a score based on how well each augmented 

question supports it. The higher the score, the stronger 

the support the knowledge statement offers for 

that answer.

•	 Selection: The answer that garners the highest overall 

score from among these augmented questions is 

chosen as the most probable or accurate.

Final Outcome and Selected Knowledge

•	 Prediction: The end result is the selection of the 

answer that is best validated by the knowledge 

statements.
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•	 Key Information: The process also identifies which 

particular knowledge statement provided the most 

substantial support for the chosen answer, marking it 

as the most influential or relevant piece of information.

Flexibility and Application

•	 Model Variability: This integration step can utilize 

various forms of language models, ranging from those 

used straight out of the box (zero-shot models) to those 

specially tailored or fine-tuned for the task at hand.

Think of knowledge integration as a decision-making process in 

which an AI system consults a series of expert opinions (the knowledge 

statements) to answer a question. Each piece of advice is weighed and 

considered in the context of how well it supports a potential answer. The 

system then picks the answer best backed up by these expert opinions. 

This approach ensures a well-informed and substantiated decision, 

leveraging the AI’s analytical capabilities to sift through complex 

information and extract the most pertinent insights.

�Food for Thought
So far I’ve introduced you to a few prompt engineering techniques. There 

are a lot more such as

•	 Emotion-based prompting

•	 Self-consistency

•	 Multimodal prompting

I recommend you keep yourself up to date on these styles by reading 

different research papers and keeping up with the open source community 

(e.g., LangChain repo) as that is where research goes from theory to 

production ready.

Chapter 8  Prompt Engineering Techniques



163

�Conclusion
Prompt engineering is an up and coming field – not only is it becoming 

increasingly sought after as a skill, it’s also incredibly fascinating from 

a technical point of view. Research in this space is moving at a rapid 

speed, and there are regularly new ways of prompting that are discovered, 

investigated, and increasingly show improvements in LLM’s capabilities. 

In this chapter, you were introduced to the fascinating and booming world 

of prompt engineering. You learned chain of thought, tree of thought, 

chain of note, and generated knowledge prompting and how they work 

in detail. These are some of the popular prompting techniques; however, 

there are plenty more for you to investigate and tailor to your own needs 

and domain.
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