
Building
Generative
AI-Powered Apps

A Hands-on Guide for Developers
—
Aarushi Kansal

Building Generative
AI-Powered Apps

A Hands-on Guide
for Developers

Aarushi Kansal

Building Generative AI-Powered Apps: A Hands-on Guide for Developers

ISBN-13 (pbk): 979-8-8688-0204-1		 ISBN-13 (electronic): 979-8-8688-0205-8
https://doi.org/10.1007/979-8-8688-0205-8

Copyright © 2024 by Aarushi Kansal

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

This work is the author’s independent work and not related to, endorsed by or contributed to by
any past or present employers.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Editorial Assistant: Gryffin Winkler

Cover designed by eStudioCalamar

Cover image designed by imagii on pixabay (pixabay.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub. For more detailed information, please visit https://www.apress.com/gp/
services/source-code.

Paper in this product is recyclable

Aarushi Kansal
Melbourne, Australia

https://doi.org/10.1007/979-8-8688-0205-8

To my parents, for always backing my ambitious projects,
even when they seemed a bit out there. This book is one of

those dreams realized.

v

Table of Contents

About the Author��ix

About the Technical Reviewer��xi

Chapter 1: �Introduction to Generative AI���1

What Is Generative AI?���2

Model Types���2

Transformers Explained��3

Diffusion Explained���12

What’s Next?��14

Summary���15

Chapter 2: �LangChain: Your Swiss Army Knife������������������������������������17

The Whats and Whys��18

Chatbot���19

What’s Next?��40

Summary���40

Chapter 3: �Chains, Tools and Agents���41

High-Level Concepts��41

Chains���41

Tools���43

Agents��46

The App��52

Summary���57

vi

Chapter 4: �Guardrails and AI: Building Safe + Controllable Apps��������59

Why Guardrails?���60

NeMo Guardrails��61

Keeping Your Bot on Topic��61

Moderating Your Bot���62

Preventing Hallucination��62

Implementing Guardrails��64

Keeping the Bot on Topic��65

Blocking a User��66

Actions��67

Using This Config��68

Under the Hood��72

User Interaction��72

Next Step��72

BotIntent���73

Embeddings��73

Summary���75

Chapter 5: Finetuning: The Theory���77

Let’s Talk Foundational Models��77

The Whys of Fine-Tuning?��80

The Whats of Fine-Tuning��82

Starting Point: The Pre-trained Model��82

Preparation for Fine-Tuning��83

Fine-Tuning Process���83

During Training���84

Fine-Tuning Strategies���84

After Fine-Tuning��85

Network Level Changes��85

Table of Contents

vii

The Hows of Fine-Tuning���89

Reinforcement Learning with Human Feedback (RLHF)���������������������������������89

PEFT���94

Summary���100

Chapter 6: Finetuning: Hands on���101

Refresher���101

4�-Bit NormalFloat (NF4) Data Type���103

Double Quantization���103

Paged Optimizers���104

What Is Llama 2?���105

Fine-Tuning��106

Setup��106

Summary���117

Chapter 7: �Monitoring��119

What Is LangSmith?���119

Examples?��121

Why?��122

Quickstart���123

Getting a LangSmith Key��125

LangSmith Config���125

Run a Simple App���126

The Pirate App��131

Setting Up���131

Feedback��132

Evaluations���139

Summary���142

Table of Contents

viii

Chapter 8: Prompt Engineering Techniques��������������������������������������143

What Is Prompt Engineering?��143

Chain of Thought��146

What Is It?���146

Design��147

Zero-Shot CoT���149

Tree of Thought��150

Design��151

Chain of Note���153

What Is It?���153

Design��154

Prompt Template��155

Fine-Tuning���156

Generated Knowledge Prompting��156

What Is It?���156

Design��157

Examples��160

Generating Knowledge for New Questions���160

Food for Thought��162

Conclusion���163

Index��165

Table of Contents

ix

About the Author

Aarushi Kansal is an experienced principal

engineer. She has worked in a variety of

technologies, including mobile development,

Python, Go, and cloud, along with booming

generative AI space. She has spearheaded

AI initiatives in the workplace and regularly

works on creative POCs in her spare time to

stay at the top of the generative AI space. 

xi

Akshay Kulkarni is an AI and machine

learning evangelist and a thought leader. He

has consulted several Fortune 500 and global

enterprises to drive AI and data science–led

strategic transformations. He is a Google

Developer Expert, author, and regular speaker

at major AI and data science conferences

(including Strata, O’Reilly AI Conf, and GIDS).

He is a visiting faculty member at some of the

top graduate institutes in India. In 2019, he was also featured as one of

the top 40 under 40 Data Scientists in India. In his spare time, he enjoys

reading, writing, coding, and building next-gen AI products.  

About the Technical Reviewer

1© Aarushi Kansal 2024
A. Kansal, Building Generative AI-Powered Apps,
https://doi.org/10.1007/979-8-8688-0205-8_1

CHAPTER 1

Introduction
to Generative AI
Generative AI (artificial intelligence) is a loaded phrase these days.

Investors are throwing their money at it, execs are throwing it at each

other, and at some point, a manager is probably going to ask you “can we

do generative AI too?” or you’re going to get tempted and hack together

an LLM-powered bot at 2 a.m. This chapter introduces you, a software

engineer, to the booming world of AI, by cutting through all the hype and

demystifying AI. I start from the most popular architectures right now and

then throughout the book to various models, both open and closed source.

I aim to explain these models from the lens of a software engineer as

opposed to a data scientist or machine learning scientist. This means the

aim is to understand and explain just enough about the foundation models

so you can customize and build AI-powered applications, leveraging these

models. In particular I’ll focus on diffusion models (you know all those

cool AI images you’ve seen on your socials?) and transformer models

(think ChatGPT, LLama, music-gen, etc.).

https://doi.org/10.1007/979-8-8688-0205-8_1

2

�What Is Generative AI?
Generative AI is essentially a kind of unsupervised or semi-unsupervised

machine learning that allows people to create various types of rich content,

like images, text, video, speech, and even music.

With unsupervised learning, a model is able to determine patterns in

the data it is fed, often patterns the human eye would simply miss, without

needing any kind of labelling. These models leverage neural networks

(similar to the networks in our brains) to learn patterns and generate the

rich content you’ve been seeing all over the Internet.

Semi-supervised learning is a combination of supervised and

unsupervised learning. This means making use of a small number of

labelled data (supervised learning) during the training or fine-tuning steps,

combined with a large set of unlabeled data (unsupervised learning).

The ability to make use of unsupervised learning on massive

amounts of unlabeled data (such as articles, books, images, etc.) is what

supercharged companies’ abilities to create massive foundational models

such as GPT-4, Stable Diffusion, Llama Bark, etc. Without this style of

machine learning, labelling what is essentially all of human knowledge

(i.e., the Internet) would have been virtually impossible!

Okay, now that you have a high level intro into generative AI, let’s talk

a little bit about different architectures, in particular the two most popular:

transformers and diffusion models.

�Model Types
In this section, we’ll explore two main types of architectures: transformers

and diffusion models. While there are a range of architectures, I want to

talk to you through the ones the foundation models used in this book are

based on. Also, keep in mind, this section is not a deep dive, more of a

Chapter 1 Introduction to Generative AI

3

summary, just enough so you know what you’re using, when you build

applications on top of these models. This means you won’t be learning the

math (but I do recommend you read the papers, research, and understand

the math; it’s fascinating!)

First up is transformers and then diffusion.

�Transformers Explained
Transformers are currently dominating the natural language processing

(NLP) space. Most of your favorite models are transformers, for example,

GPT-4, Llama, Falcon, etc. Let’s look into transformers and why this

architecture becomes so popular. To do that, we need to go through a tiny

history lesson.

Once upon a time, there were two main architectures: recurrent neural

networks (RNNs) and Long Short-Term Memory (LSTM) networks (a type

of RNN), specifically designed to handle sequential data (e.g., text). Let’s

discuss RNNs and then LSTMs.

�RNNs

RNNs maintain a memory of previous inputs in their internal structure to

process sequences of inputs.

Imagine reading a book and trying to predict the next word in a

sentence. If you’re reading word by word without remembering the

previous context, it’s tough. But if you recall the earlier part of the

sentence, it becomes easier. RNNs do something similar: they remember

the “history” to make sense of the current input.

Chapter 1 Introduction to Generative AI

4

Let’s take a quick look at the basic workflow of an RNN in Figure 1-1.

	 1.	 Input: At each step, the RNN takes in an input (e.g.,

a word in a sentence). (Xn)

	 2.	 Hidden State Update: This input, combined with the

previous hidden state (hn) (memory), is used to update

the hidden state. This new state might carry forward

crucial information and forget irrelevant details.

	 3.	 Output: Based on the updated hidden state, the

RNN might produce an output (e.g., predicting

the next word in a sequence). The output is a
combination of Xn and hn.

	 4.	 Move to Next Step: The process repeats for the next

element in the sequence.

Figure 1-1.  RNN architecture

While these basic RNNs are excellent for modelling sequential data like

text or time series data, they have the fatal flaw of struggling to remember

distant past information. In other words, they have a short-term memory.

This tendency to forget is called the vanishing gradient problem.

This brings us to LSTMs, designed specifically for long-term memory.

Chapter 1 Introduction to Generative AI

5

�LSTMs

The short-term memory problem is addressed by using LSTMs, which

have a more complicated structure but function more similarly to how a

human might read a book or hold a conversation.

In the previous RNN, you can see that the network is able to remember

previous information because we pass the previous hidden state (h) into

the current cell. Continuing on from this observation, you can also see

how hidden states from further back cells become diluted; essentially the

information in those states vanishes.

One of the core observations in Figure 1-2 is the top horizontal line,

which transfers the vector straight through the cell and through the entire

network. This means that information can flow through the sequence,

essentially unchanged, meaning this network has the capability to

remember information from further behind in the sequence. Kind of like

a sushi train, food keeps passing along, and you can remove, modify, or

leave the sushi as is.

Figure 1-2.  LSTM cell

Chapter 1 Introduction to Generative AI

6

But you also don’t want to just pass information along with no

modifications. The way that humans understand and process information

is based on our ability to place more or less emphasis on different parts of

a sentence or paragraph, based on context or prior knowledge.

To reproduce this kind of behavior, LSTMs use gates (forget, input, and

output specifically) to determine what action to take.

So the basic workflow goes like this:

	 1.	 Input Vector: Similar to RNNs, the LSTM unit takes

in an input vector and the previous hidden state at

each time step.

	 2.	 Gates in Action:

•	 The forget gate decides which parts of the cell state

to throw away.

•	 The input gate decides which values to update in

the cell state.

•	 After these updates, you have the new cell state that

carries long-term memory.

•	 The output gate determines what the next hidden

state (short-term memory) should be.

	 3.	 Output: The LSTM produces an output, which is

the hidden state passed to the next LSTM unit in the

sequence.

Chapter 1 Introduction to Generative AI

7

	 4.	 Move to Next Step: The updated cell state and

hidden state are passed to the next LSTM unit in the

sequence, and the process repeats.

So with this variation of an RNN, you get an improvement on the

vanishing gradient problem, but it’s still not entirely solved. LSTMs

remember for longer but not quite long enough.

�Transformers

Fast-forward to 2017, a groundbreaking paper named “Attention Is All You

Need” was published, with the key creation of a self-attention mechanism.

These models are able to track relationships between words and

concepts and understand “context” in language – kind of like we as

humans do instinctively, without even actively having to think about it.

When humans talk about context, what we mean is attention. For example,

when you’re translating a piece of text from English to Spanish, you’ll likely

need to pay attention to words, not just next to each other, but distant from

each other, because they can change the meaning, the tense, conjugation,

and overall form of a word. Attention in the context of transformers is very

similar. In other words, ensuring a neural network is able to glean context,

because context heavily influences words in almost all NLP tasks.

Chapter 1 Introduction to Generative AI

8

Let’s take a look at the overall workflow shown in Figure 1-3.

	 1.	 Input Representation

Tokenization and Embedding

•	 First, your raw input (some text) is tokenized. This

means breaking down the input into chunks – these

could be words or characters.

Figure 1-3.  Transformer architecture
Image source: https://arxiv.org/pdf/1706.03762.pdf

Chapter 1 Introduction to Generative AI

https://arxiv.org/pdf/1706.03762.pdf

9

•	 Then each token is mapped to a vector using

an embedding layer. This vector representation

captures the semantic meaning of the token. This

is essentially representing words + meanings in

numerical form.

Positional Encoding

•	 Since the transformer doesn’t process data

in sequence like RNNs, it doesn’t have an

understanding of order of tokens. So a positional

encoding is added to the embeddings. This makes

sure the model can account for the position of

words in a sequence.

	 2.	 Transformer Layers

The core of the transformer model consists of a

stack of identical layers. Each layer has two main

components:

•	 Multi-head Self-Attention Mechanism

•	 Feed-Forward Neural Network

Multi-head Self-Attention

•	 This mechanism allows the model to focus

on different parts of the input sequence when

producing an output for a particular token.

•	 The “multi-head” part means this attention process

happens in parallel multiple times, allowing the

model to focus on different semantic aspects

simultaneously.

Chapter 1 Introduction to Generative AI

10

•	 The attention mechanism uses three weight

matrices called Query, Key, and Value, which

help in determining how much attention to pay to

various parts in the input sequence.

Feed-Forward Neural Network

•	 Each attention output is passed through a Feed-

Forward Neural Network (separately but in parallel).

The same network is applied to each position.

Residual Connection and Normalization

•	 After both the attention and feed-forward stages,

there’s a residual connection that helps in training

deeper networks.

•	 Layer normalization is also applied after adding the

residual connection.

•	 The residual connection helps with the vanishing

gradient problem, and layer normalization aids in

faster and more stable convergence.

	 3.	 Output

•	 If you’re using just the encoder part (like BERT),

the output is typically a vector representation of the

entire sequence or individual tokens, which can be

used for tasks like classification.

•	 If you’re using the decoder part (like GPT-4), the

output is another sequence, which is the result of

transforming the input sequence.

Chapter 1 Introduction to Generative AI

11

	 4.	 Additional Components

Masking

•	 In certain situations, like training a language model,

you don’t want certain words to pay attention to

future words in the sequence (because they shouldn’t

be “known” yet). Masking makes sure the model is

“blind” to these future tokens during training.

•	 This is crucial for training models like BERT, where

you want to predict a masked-out word without

“cheating” and looking at it. For GPT, the masking

makes sure that when predicting a token, the model

can’t look at future tokens.

Final Linear and Softmax Layer (For Tasks Like Language
Modelling)

•	 The decoder’s output can be passed through a

final linear layer followed by a softmax to produce

probabilities over the vocabulary. The token with

the highest probability is usually taken as the

prediction, especially for text generation.

•	 This is especially common in language modelling

tasks where the goal is to predict the next word in a

sequence (think ChatGPT).

So far, you’ve learned about generative AI in the context of language,

that is, large language models (LLMs); next up is diffusion models, which

have gained popularity in the image generation space.

Chapter 1 Introduction to Generative AI

12

�Diffusion Explained
Most recently, diffusion models have been used by the likes of OpenAI for

DALL-E, Midjourney, and Stability AI, all for image generation. The way

diffusion models work overall is actually quite simple – one of the less

complex concepts we’ll discuss in this book.

Diffusion models are a type of generative model, which is used in

a range of situations. You might already be very familiar with diffusion

models being used for image and video generation. These models have

also started showing promise in other areas such as drug discovery!

In Figure 1-4, you can see just all the places diffusion models fit in.

Figure 1-4.  Diffusion model applications

Chapter 1 Introduction to Generative AI

13

We’ll focus on images for the purpose of this book. Let’s take a look at

how these models work.

�The Core Idea

Imagine a drop of ink spreading out in a glass of water. This process of

diffusion, where particles move from regions of high concentration to low

concentration, is a natural phenomenon. In diffusion models, a reverse

process is used: it starts from a target data point (like an image) and

gradually adds noise to it until it becomes a simple distribution. The magic

is that this process can be reversed to generate new data samples.

�How Diffusion Models Work

	 1.	 Noise Addition Process (Forward Process)
(shown in Figure 1-5)

•	 Starts with a real data sample (e.g., a real image).

•	 Gradually, it adds noise over several steps until the

sample becomes indistinguishable from pure noise.

	 2.	 Noise Removal Process (Reverse Process/
Generation) (shown in Figure 1-5)

•	 Starts with a sample from a simple distribution (like

Gaussian noise)

•	 Uses a neural network to gradually remove the

noise over several steps, guiding the sample

to resemble a real data point from the target

distribution

Chapter 1 Introduction to Generative AI

14

	 3.	 Training

•	 During training, the model learns to reverse

the noise addition process. It gets better at

transforming a noisy sample into a realistic one.

•	 This is done by using a neural network that predicts

how to denoise a sample at each step. The model

is trained on pairs of noisy samples and their less

noisy versions.

And there you have it, you now know how Stability AI, DALL-E, etc.,

work under the hood.

�What’s Next?
So far you’ve learned about the architecture of the newly dubbed

“foundation models.” As you read through this book, the next topics

focused on are LangChain (your Swiss Army knife to AI apps), monitoring

(can you really go into production without solid monitoring?), and finally

fine-tuning these models. As AI summer progresses, it’s likely, rather

than building and training models from scratch, you’ll be fine-tuning

foundational models to your needs.

Figure 1-5.  Diffusion model process
Image source: https://arxiv.org/pdf/2006.11239.pdf

Chapter 1 Introduction to Generative AI

https://arxiv.org/pdf/2006.11239.pdf

15

�Summary
This chapter has given you an understanding of the two most popular

architectures out there: transformers and diffusion models. These are

foundational models that will form the basis of the AI applications you

build in future. Both open source and closed source models make use

of these architectures. As an AI engineer (practicing or aspiring), it’s

important to understand what’s going on under the hood of the tools

you use.

Chapter 1 Introduction to Generative AI

17© Aarushi Kansal 2024
A. Kansal, Building Generative AI-Powered Apps,
https://doi.org/10.1007/979-8-8688-0205-8_2

CHAPTER 2

LangChain: Your
Swiss Army Knife
In Chapter 1, you were introduced to the various types of generative

models available, the most popular architectures, and how they work.

Now, this chapter introduces you to LangChain, your Swiss Army knife

to building robust applications on top of LLMs and other models. As you

build applications beyond just making API calls, you’re going to need

various components to connect a model to your own data, to external

data, and services, and that’s what LangChain helps you with. A standard,

modular way for you to essentially plug and play with models and various

integrations.

As you go through this chapter, you’ll be introduced to a few concepts

you might not be intimately familiar with – don’t worry, as I go along, I’ll

explain these concepts, and as you go through further chapters, you’ll use

these concepts in increasingly complex ways – which will help you further

understand. Basically, this is the approach:

–– Introduce the concept and theory.

–– Learn by getting your hands dirty.

https://doi.org/10.1007/979-8-8688-0205-8_2

18

�The Whats and Whys
LangChain is not only one of my favorite frameworks for building AI-

powered applications but also quickly becoming an industry standard.

This framework provides engineers with a modularized, standard interface

to plug different models (open and closed source), with various data

sources and API integrations.

You can think of it like playing with an assorted bunch of building

blocks to create almost anything you can imagine.

The main components LangChain is composed of are the following:

–– LLMs

–– Retrieval

–– Memory

–– Chains

–– Tools

–– Agents

By combining these concepts, you can create end-to-end LLM-

powered apps that go beyond just a simple API call to OpenAI. You can

chain calls, can allow your model to have access to various tools (e.g.,

Google search APIs), and finally, can use your LLM’s reasoning abilities to

decide which tools to use for particular tasks (this concept is agents).

In the next two chapters, you’ll get to dive into each block or

component. As I mentioned earlier, you’re going to learn by doing, so the

next few sections are broken down by use cases.

In the first use case, you’re going to build an app to chat to your

company or organization’s Slack – you know, for when you have to look up

certain information or messages? Instead of keyword searches and then

scrolling through messages – why not chat to your archive? This use case

will cover LLMs, retrieval, and memory.

Chapter 2 LangChain: Your Swiss Army Knife

19

In the next use case, you’re going to build an agent that plans your day

for you based on your mood, the weather, and your past preferences. This

will cover chains, tools, and agents.

Let’s move on to the first one, a chatbot.

�Chatbot
From Chapter 1, you understand transformer models, and they’re

essentially predicting the next word/s. That’s great for plenty of tasks like

translation and text generation, but the thing that’s really useful is the

ability of an LLM to hold a conversation with you. That’s the great thing

about ChatGPT; it’s been trained on so much data, and then on top of

that, they’ve built a chatbot, so it’s kind of like being able to chat with

everything. You’re going to learn how to build your own, smaller version

for your personal data like notes, text messages, or Slack messages –

without training or even fine-tuning.

Think about the ingredients in a human conversation for a second:

–– All participants need to be able to speak the same

language.

–– Let’s assume English for now, and we have that from

most LLMs.

–– The participants have to be able to remember what’s

happened in the past during this conversation.

–– And access to knowledge in some way (in our case,

knowledge of your Slack messages).

Chapter 2 LangChain: Your Swiss Army Knife

20

The last two points are referring to two concepts, which form the basis

of a lot of LLM-powered applications you’ll build:

–– Memory

–– Retrieval

Let’s discuss both and then you’ll start to build your chatbot.

�Memory

With LLMs, by default, they have no concept of history or memory. Every

query or call to an LLM is stateless, meaning they answer every question as

if it’s the first time it’s been asked. And the model doesn’t take into account

your past interactions.

And that’s the role this concept of memory comes into play – aptly

named, it’s a way to give an LLM remembering capabilities so you can hold

a conversation with the model.

At this point, maybe you’ve already started thinking about how to start

giving any LLM a memory.

One way would be to simply capture each query + LLM response

and send that back into your LLM on the next query. As you can see in

Figure 2-1 – you make a call to the LLM, it responds, and you parse the

response, format it, and then send the response + your next question back

as part of the context. You would keep repeating this pattern (until you run

out of context length).

Chapter 2 LangChain: Your Swiss Army Knife

21

Figure 2-1.  Example of a simple way of just chaining queries and
outputs for “memory”

LangChain actually provides different chains to replicate this behavior

in a reusable way – so you just have to decide on the type of memory you

want to use, your input prompts, and some tunable parameters. Let’s take

a look with some real code.

Types of Memory

First, if you haven’t already, go ahead and install LangChain (you can find

installation instructions on the LangChain documentation page). For

these examples, I’m going to use OpenAI, but you can use any other LLM –

LangChain has integrations with the vast majority out there.

LangChain provides a number of types of memories for you to

leverage; we’ll focus on the four basic ones in this chapter and some of the

more complex ones in later chapters.

First up is ConversationBufferMemory, which serves as a flexible

memory buffer for chat conversations. It allows you to access the chat

history in two formats:

	 1.	 As a string (buffer_as_str)

	 2.	 As a list of message objects (buffer_as_messages)

Chapter 2 LangChain: Your Swiss Army Knife

22

The class provides a load_memory_variables method that returns the

chat history based on a chosen format. This output can then be used as

context to your LLM, thereby providing it info on the previous parts of the

conversation.

Let’s take a look at a small example of how memory is represented:

from langchain.memory import ConversationBufferMemory

from langchain.llms import OpenAI

llm = OpenAI()

memory = ConversationBufferMemory()

memory.save_context({"input": "What is the capital of the UK"},

{"output": "London"})

print(memory.load_memory_variables({}))

Output:

{'history': 'Human: What is the capital of the UK\nAI: London'}

Here what you’re doing is adding some history into your memory

buffer. Right now, nothing is being passed into an LLM, but you can see the

output of what would be passed to the LLM.

The prompt would include the “history,” the “Human,” and “AI”

conversation – thereby giving the LLM context into the conversation.

In other words, ConversationBufferMemory is a simple way of

representing historical context as a string that can be parsed and passed

into a prompt.

Notice that the ConversationBufferMemory automatically formatted

your input and output into the format of Human and AI conversation. This

is the default, but you can change it using these variables:

human_prefix and ai_prefix.

Chapter 2 LangChain: Your Swiss Army Knife

23

For example:

memory = ConversationBufferMemory(human_prefix="Aarushi", ai_

prefix="Hermione")

memory.save_context({"input": "What is the capital of the UK"},

{"output": "London"})

Output:

{'history': 'Aarushi: What is the capital of the UK\nHermione:

London'}

How might this look with an LLM attached?

	 1)	 Format the output so the LLM understands what

this whole “history” thing is.

	 2)	 Pass that as a prompt + your next query.

	 3)	 Parse the response into your “history.”

	 4)	 Rinse and repeat.

This process is shown in Figure 2-2

Figure 2-2.  Overall architecture of using memory in the prompt
of an LLM

Chapter 2 LangChain: Your Swiss Army Knife

24

Luckily, LangChain also has a built-in chain for just that. I’ll go into

chains later on, but let’s take a quick look at how that would work.

from langchain.llms import OpenAI

from langchain.chains import ConversationChain

llm = OpenAI(temperature=0)

conversation = ConversationChain(

 llm=llm,

 verbose=True,

 �memory=ConversationBufferMemory(human_prefix="Aarushi",

ai_prefix="Hermione")

)

conversation.predict(input="What is the largest city in the UK

by population?")

conversation.predict(input="And second?")

conversation.predict(input="What about in Germany?")

just to run one more time

conversation.predict(input="")

Okay, so similar to before, you initialize your

ConversationBufferMemory, with the prefix you want (omit for defaults).

Then all you do is add your questions – take note here, I’ve specifically kept

the second and third questions brief with minimal context so you can see

how it gleans context from the conversation memory.

When you run this, you should get a final output similar to the

following:

The following is a friendly conversation between a human and an

AI. The AI is talkative and provides lots of specific details

from its context. If the AI does not know the answer to a

question, it truthfully says it does not know.

Chapter 2 LangChain: Your Swiss Army Knife

25

Current conversation:

Aarushi: What is the largest city in the UK by population?

Hermione: The largest city in the UK by population is London,

with a population of 8.9 million people.

Aarushi: And second?

Hermione: The second largest city in the UK by population is

Birmingham, with a population of 1.1 million people.

Aarushi: What about in Germany?

Hermione: The largest city in Germany by population is Berlin,

with a population of 3.7 million people. The second largest

city in Germany by population is Hamburg, with a population of

1.8 million people.

Basically, this chain abstracts away all the logic of parsing and

updating the prompt from you so you just choose the memory type and

related configuration.

As you use LLMs more and more, you’ll start to notice two things:

	 1)	 Generally, LLMs have a maximum context length

 – meaning you can only really send a prompt of a

certain size.

	 2)	 The larger your history or prompt, LLMs tend

to start ignoring or missing older pieces of

information.

So really, you want to send less of your history or maybe a condensed

version of it – and once again, LangChain allows you to do just that with

more types of memory, specifically ConversationBufferWindowMemory,

ConversationSummaryMemory, ConversationSummaryBufferMemory,

and ConversationTokenBufferMemory.

ConversationBufferWindowMemory – It is a variant of ConversationBuffer;

it also keeps a history of your interactions, but only up to k number. This is

a number you can decide on for your own needs – in my experience, I have

Chapter 2 LangChain: Your Swiss Army Knife

26

found that for most use cases, a larger number is actually detrimental, and the

model ends up hallucinating more often than not. I would recommend you

experiment and find a balance of short but informational queries combined

with a smaller window (k).

ConversationSummaryMemory – As the name suggests, this is a type

of memory that condenses down your conversation into a summary that

can be passed into your LLM.

Let’s take a quick look at some code:

conversation_with_summary = ConversationChain(

 llm=llm,

 �memory=ConversationSummaryMemory(llm=llm, human_

prefix="Aarushi", ai_prefix="Hermione"),

 verbose=True

)

conversation_with_summary.predict(input="How are you

Hermione?")

conversation_with_summary.predict(input="What is the third

planet from the sun?")

conversation_with_summary.predict(input="second?")

conversation_with_summary.predict(input="fifth?")

conversation_with_summary.predict(input="")

Output:

The following is a friendly conversation between a human and an

AI. The AI is talkative and provides lots of specific details

from its context. If the AI does not know the answer to a

question, it truthfully says it does not know.

Chapter 2 LangChain: Your Swiss Army Knife

27

Current conversation:

Aarushi asked how Hermione was doing and Hermione replied that

she was doing great and asked how Aarushi was doing. Aarushi

then asked what the third and fifth planets from the sun were,

to which Hermione replied that the third was Earth, the only

planet known to have life and the only planet in our solar

system with liquid water on its surface, and the fifth was

Jupiter, the largest planet in our solar system made up mostly

of hydrogen and helium with a strong magnetic field and home to

the Great Red Spot.

Here you’ll notice instead of the conversation, with each participant,

it’s a summary of it – this kind of memory is great for particularly long

conversations, especially where you need the LLM to understand the

overall gist rather than each individual nuance of the conversation. For

example, if you were chatting over internal HR documents, looking for

general time-off policies – the LLM just needs the summary and the large

points, not each bit of detailed policy.

Next up is ConversationSummaryBufferMemory, which combines

both summaries and a buffer – meaning instead of only keeping a

summary of previous interactions, it keeps interactions in a buffer as well

as a summary. It means it keeps more recent interactions in a buffer and

older ones as a summary (once the buffer hits a certain token length that

you can tune).

Finally, ConversationTokenBufferMemory is similar to

ConversationBufferWindowMemory but instead maintains a buffer of x

tokens length rather than x number of interactions length.

So now we’ve covered some basic types of memory (there’s more, but

I want to save those for later chapters). At this point, with even just the

simple code snippets shown previously, you have yourself a chatbot that

remembers previous interactions and can hold a conversation with you

Chapter 2 LangChain: Your Swiss Army Knife

28

based just on the knowledge it’s been trained on, which is a lot, but it’s not

going to be your personal or company data (unless it’s public). And we

want to build a chatbot on your own information.

To do this, you could fine-tune your own model, and there are

definitely use cases and reasons to fine-tune a model. But in our use

case, that can be expensive and time consuming, and most importantly

your own info such as Slack messages is going to change way too fast for

you to be able to fine-tune fast enough. Think about the speed at which

we message each other on Slack or any other messaging app. Luckily,

there’s been a rise of a new standard practice, called Retrieval Augmented

Generation (RAG), to help give LLMs more knowledge without fine-tuning.

�Retrieval

Retrieval is just one way of giving an LLM more specific, niche knowledge.

It involves fetching data from some external source and passing it into your

chosen LLM. Retrieval can be done any way – such as making an API call,

reading a static file, reading a SQL DB, etc. This end-to-end flow of fetching

info, passing it into an LLM, and the LLM generating a response is known

in the industry as Retrieval Augmented Generation (RAG).

Diving into RAG

Since we’re generally dealing with natural language and often

unstructured messy data, the most popular (for good reason) storage

system is a vector store. This essentially involves taking all of your niche

data, creating a vector embedding, and storing in a vector database of your

choice, as shown in Figure 2-3.

Chapter 2 LangChain: Your Swiss Army Knife

29

Figure 2-3.  Retrieval Augmented Generation with a vector store

Let’s walk through each component in detail, starting with

embeddings.

Embeddings Explained

In layman’s terms, embeddings are a way to represent everything that’s

not numbers (e.g., text, audio, images, etc.) as numbers. All ML models

are basically math equations in some form, complex math but still just

math – and so they don’t actually understand or perceive words or images

or anything else the way humans can with our five senses; they only

understand numbers. That’s why to deal with language, we need to convert

words and sentences into a numerical representation that ML models can

understand. The term “embeddings” is a general term for taking one type

of data and representing it in numbers. Embeddings come in different

types, such as graph embeddings, tensor embeddings, and many more.

Chapter 2 LangChain: Your Swiss Army Knife

30

In the context of LLMs, we’re talking about vector embeddings, and

you’ll see vector embeddings and embeddings used interchangeably.

Vector Embeddings

As the name suggests, vector embeddings are a specific type of embedding

where the representation is in the form of a vector. This means that the

data, regardless of its original form, is translated into a fixed-length list of

numbers.

Vector embeddings are commonly used in natural language processing

(like Word2Vec or GloVe), where words or phrases are represented as

vectors.

One of the major benefits of vectors is the ability to have vectors in

high-dimensional spaces, which means that a vast number of features

or aspects of language can be captured. Each dimension can potentially

represent some facet of meaning, allowing the vector to encapsulate a rich

set of semantic information.

And because vectors are basically long lists of numbers, we can do

mathematical computations on data that normally wouldn’t be possible.

For example:

vector(Germany) - vector(Berlin) + vector(France) =

vector(Paris)

This shows that the difference between a country and its capital can

be consistently represented in the vector space. So by knowing the capital

of Germany and applying this relationship to France, we can deduce the

capital of France.

Because we can do computations like this, another benefit of vector

embeddings now is that we can use these geometric relationships between

vectors to model semantic or functional relationships. For instance, in

word embeddings, the vector difference between “dolphin” and “ocean”

Chapter 2 LangChain: Your Swiss Army Knife

31

might be similar to the difference between “camel” and “desert,” reflecting

habitat relationships.

Basically, we use vector embeddings as a way to model intricate and

complex semantic meaning and relationships between words and text.

Now, modelling these semantic relationships isn’t a trivial task – you

need an embedding model that understands these complex relationships

and can take your raw words or sentences and create vector embeddings.

Luckily there are quite a few embedding models available:

•	 OpenAI’s embedding model, for example, text-

embedding-ada-002

•	 Cohere’s embedding model

•	 Open source embedding models (https://

huggingface.co/BAAI/bge-large-en)

•	 And a lot more

LangChain also integrates with the vast majority, and you can have a

look here: https://python.langchain.com/docs/integrations/text_

embedding/.

So in an RAG application, you’ll have one step that involves taking your

raw data, inputting it into an embedding model, and then getting a vector

embedding out of it, as shown in Figure 2-4.

Figure 2-4.  Steps for taking unstructured, raw data and converting
to an embedding

Chapter 2 LangChain: Your Swiss Army Knife

https://huggingface.co/BAAI/bge-large-en
https://huggingface.co/BAAI/bge-large-en
https://python.langchain.com/docs/integrations/text_embedding/
https://python.langchain.com/docs/integrations/text_embedding/

32

Now that you have these embeddings – you need somewhere to store

them, somewhere to search from so your LLM has an external data source.

And that’s where vector stores come into play.

Vector Stores Explained

Vector stores or vector DBs have been around long before generative AI

became so mainstream – they were used in areas such as information

retrieval, recommendation systems, and even molecular biology.

Now with modern embedding models and the rise of LLMs, there’s

also been a rise not just in popularity of vector stores but also new,

more modern DBs available specifically designed to fit in with modern

generative AI models.

Here’s a non-exhaustive list for you:

–– Weaviate

–– Pinecone

–– Chroma

–– Qdrant

–– Traditional DBs that have started supporting vector

embeddings

If you want a more detailed list, check out https://python.

langchain.com/docs/integrations/vectorstores.

So how do these DBs actually work and what’s so special about them

compared to existing SQL and NoSQL DBs?

Vector DBs are specifically designed to store high dimensional data

like embeddings and allow for fast querying and lookups. They have the

capabilities of traditional databases, while being optimized to handle the

complexity of vector embeddings.

Chapter 2 LangChain: Your Swiss Army Knife

https://python.langchain.com/docs/integrations/vectorstores
https://python.langchain.com/docs/integrations/vectorstores

33

When you create + store an embedding, a reference to the original data

is also stored. Then, when you make a query to the DB, the query is first

converted to an embedding (using the same model), and this embedding

is used to find the most similar content and return it to you.

Steps are shown in Figure 2-5.

Figure 2-5.  Steps for converting a user query into a searchable query
in a vector DB and returning the answer

Unlike traditional databases that are optimized to search for exact

values – a number, a string, or some other single dimensional, exact value

 – vector databases are optimized to search for vectors (high dimensional

data) that are most similar, not exact to another query vector.

To do this, vector databases store your data in structures that allow for

fast querying – called indexes. These indexes are created using a variety of

algorithms, which we won’t go into detail but are listed if you want to read

more about them:

–– Random Projection

–– Product Quantization

–– Locality-Sensitive Hashing

–– Hierarchical Navigable Small World

Chapter 2 LangChain: Your Swiss Army Knife

34

When the query comes in, these DBs make use of various algorithms to

do an Approximate Nearest Neighbor (ANN) search to get the most similar

matches based on some similarity metrics, such as cosine similarity, dot

product, Euclidean distance, or Hamming distance.

And there you have it, theory on how you get an LLM hooked up to

your own data.

What Else Is RAG Good For?

Hallucination – that’s probably a word you’ve heard a lot when discussing

or critiquing LLMs or LLM systems. Hallucination basically refers to

the LLM’s tendency to just “make up” information. This can happen for

reasons such as not having the information and being trained on incorrect

information (remember, these systems are trained on public data, and

there’s a lot of misinformation out there).

By using RAG, you can help reduce this tendency by having your

system fetch the correct information and including it in the context for

when your LLM crafts a response.

Let’s move on to some actual code.

�The App

Okay, so now we’re going to put all of these pieces together and build a

chatbot over your Slack messages (or any other data source really).

Prerequisites

–– Python 3

–– Latest LangChain version

–– A vector database

–– I’m going to use Weaviate’s 14-day free hosted one,

but you can choose one of your choice. The code

generally remains the same.

Chapter 2 LangChain: Your Swiss Army Knife

35

–– Slack messages

–– I’ve created a new workspace with some “fake”

messages – you can do the same or if you are able to

use real ones, use those.

–– An LLM

–– I’m using OpenAI’s GPT-4.

Loading Your Data

Since we’re dealing with unstructured data here, the first thing you’re

going to need to do is load your Slack messages in a form that can then be

turned into vector embeddings.

Go ahead and export your Slack messages as a zip file from

{your_slack_domain}.slack.com/services/export.

Once you have that, let’s load it as seen in the following code snippet:

LOCAL_ZIPFILE = "gen_ai_co_slack.zip" # Paste the local paty

to your Slack zip file here.

loader = SlackDirectoryLoader(LOCAL_ZIPFILE)

docs = loader.load()

Basically, you’ll most likely be dealing with unstructured data, so

LangChain provides you with a lot of different types of “loaders” that

take data of one type (e.g., Slack, epub, logs from Datadog, Excel, GitHub,

and many more) and turn them into structured data. For example, the

SlackDirectoryLoader takes the json files exported from Slack and converts

them into a list of documents. This Document structure just stores text and

its associated metadata.

Chapter 2 LangChain: Your Swiss Army Knife

36

For example, the json files end up looking something like this:

Document(page_content='<@U05SQ9E71EF> has joined the

channel', metadata={'source': 'q4-planning - U05SQ9E71EF -

1694993629.080429', 'channel': 'q4-planning', 'timestamp':

'1694993629.080429', 'user': 'U05SQ9E71EF'})

where page_content is the messages and the other fields are associated

metadata. Other loaders work in different ways – but the end result is

always the same, unstructured data converted into structured.

Transforming Your Structured Data

Now, you have your data loaded, but you still need to transform it before

you can create the embeddings – this means transforming your data into

smaller chunks before creating an embedding. This is because you want to

be able to fit meaningful parts of your data within the context window of

your model when querying and adding answers as context. This is where

LangChain has document transformers that you’re going to use. The

default you’re using here is the RecursiveCharacterTextSplitter, which tries

to split on certain characters – by default on \n\n, \, “ ”, and “”.

In this snippet, I’ve chosen a chunk size of 500 and an overlap of 40 –

the overlap ensures continuity between chunks.

text_splitter = RecursiveCharacterTextSplitter(chunk_size=500,

chunk_overlap=40)

documents = text_splitter.split_documents(docs)

You can check out the other document transformers here: https://

python.langchain.com/docs/integrations/document_transformers/.

Now, choosing a chunk size can almost be a bit of an art form.

Remember, the size of your chunk influences your embeddings.

Chapter 2 LangChain: Your Swiss Army Knife

https://python.langchain.com/docs/integrations/document_transformers/
https://python.langchain.com/docs/integrations/document_transformers/

37

If you go with shorter chunks (think words, or sentences), then your

embeddings will lose the wider context in the paragraph – the embedding

will narrow down on the specific meaning of the word or sentence.

If you go with longer chunks – you’ll get the broader context, but that

could add confusion and actually cause the embedding to lose the more

specific or nuanced meanings you might need.

As such, you need to really take into account:

What kind of documents are you dealing with? For example, Slack

messages are usually quite short, so you can easily go for a shorter chunk

size. Books and scientific articles are a different story – they’re longer and

often you need the wider context; in this case, I would consider the next

questions.

What is your use case? Will you or your users be asking very specific,

nuanced questions? Short or long queries? Vague queries? For example,

if your application is more of a very specific Q&A application, I would

go through the documents and get a feel of how long do I as a human

being need to read to get the right answer and based on that choose my

chunk size.

A lot of these questions can be answered through you experimenting

with sizes.

Embeddings and Storage

Next is creating your actual embeddings out of these chunks and actually

storing them somewhere. Again, LangChain provides an abstraction layer

to various embedding models and vector stores. This means you can just

plug in any one you have access to.

In the next example, I’m going to use OpenAI for embeddings and

Weaviate for storage, but since it’s a plug-and-play concept, you can

replace it with one of your choices and the overall code doesn’t need to

change drastically.

Chapter 2 LangChain: Your Swiss Army Knife

38

Check out all the embedding integrations here: https://python.

langchain.com/docs/integrations/text_embedding/openai.

embeddings = OpenAIEmbeddings()

db = Weaviate.from_documents(documents, embeddings, weaviate_

url=WEAVIATE_URL, by_text=False)

And your code is as simple as this; choose the embedding integration

and the vector store and pass your chunked docs and embedding model

and you get a vector store populated with your embeddings, that you can

now query.

For example, in my setup, I can run this query:

query = "What is the work from anywhere policy?"

docs = db.similarity_search(query)

and get a response like this:

Exciting News! We’re officially launching our *Work from Anywhere

(WFA)* policy. Starting next month, you’ll have the flexibility to choose

your work location, be it from home, a café, or any place that boosts your

productivity.

So you can see my query was turned into an embedding; a similarity

search took place; the resultant content was returned to me as is.

Okay so, maybe now you’re wondering how to choose an

embedding model.

Here are some of my considerations:

–– Cost: Hosted ones like OpenAI can be expensive.

–– Latency: Hosted ones are quite new currently and often

don’t provide SLAs, so expect unexpected latencies.

Chapter 2 LangChain: Your Swiss Army Knife

https://python.langchain.com/docs/integrations/text_embedding/openai
https://python.langchain.com/docs/integrations/text_embedding/openai

39

–– Quality: This one’s tricky because it’s unlikely you’re going to

be able to test out all the models closed and open source out

there. I use the Massive Text Embedding Benchmark (MTEB)

leaderboard as a good source (https://huggingface.co/

spaces/mteb/leaderboard).

Memory

And finally, now that you can retrieve data, you also want to hook up a

memory component.

By now, you know how to instantiate memory, so go ahead and do

that. The new step you’re going to do is include a so-called “retriever,”

which is just the vector store from which your app can fetch. It’s a

VectorStoreRetriever object, which has functions on it to allow it to actually

query the store. Instantiate it as shown here:

llm = OpenAI(temperature=0)

memory = ConversationSummaryMemory(llm=llm, memory_key="chat_

history", return_messages=True)

ret = db.as_retriever()

Now, previously we used a ConversationChain, in this case, we’re

going to use a different chain that can handle a retriever, called a

ConversationalRetrievalChain.

This chain is similar to the chain you’ve used previously, except it

includes one extra step internally, when you ask questions. It actually

passes your question directly to the vector store and returns the stored

documents.

Essentially, it’s an abstraction on this call:

docs = db.similarity_search(query)

Chapter 2 LangChain: Your Swiss Army Knife

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard

40

In the following code snippet, you’ll see how to set up your

chain – now when you run this, you’ll see the same memory +

summarization combination you saw previously.

qa = ConversationalRetrievalChain.from_llm(llm, retriever=ret,

memory=memory)

qa("What is the work from anywhere policy?")

qa("are there any in office days required?")

qa("any coworking?")

And there you have it, a conversational app across your Slack

messages.

�What’s Next?
Okay, so far you’ve built the seedlings of a conversational chatbot across

your Slack messages. Next you’re going to learn in depth about chains and

agents. This will help take your app to the next step – moving from purely a

Python script to something slightly more interactive.

�Summary
In this chapter, you were introduced to LangChain and you learned how to

use the two most basic building blocks: memory and retrieval, which allow

you to create Retrieval Augmented Generation applications. This is a great

start to giving your LLMs external knowledge, without having to spend

time and effort on fine-tuning. On top of this, you can keep updating your

vector store with new information, much faster than you could fine-tune

with new information.

In the next chapter, you’ll take what you’ve learned about memory and

RAG one step further and create an agent using LangChain.

Chapter 2 LangChain: Your Swiss Army Knife

41© Aarushi Kansal 2024
A. Kansal, Building Generative AI-Powered Apps,
https://doi.org/10.1007/979-8-8688-0205-8_3

CHAPTER 3

Chains, Tools
and Agents
In Chapter 2, you learned about RAG, memory, retrieval, and embeddings.

You were able to combine these concepts and build yourself a command-

line chatbot that answered your questions and could remember the rest of

your conversation. This allowed the LLM to become “smarter” by getting

context from history. Your chatbot also had access to up-to-date, personal

information via a vector database, meaning it was able to answer questions

beyond what it was trained on. This also helped prevent hallucination.

Now you’re going to take it one step further and build an agent – an

independent application that can access the world and make its own

decisions on what steps to take to get to the final goal.

�High-Level Concepts
Before going straight to code, I want to walk you through some theory on

the concepts you’ll be making use of. In particular, I’ll talk you through

chains, tools, and agents.

�Chains
First concept (which you actually used briefly in Chapter 2) is a chain.

These are wrappers around multiple various components – ranging from

LLMs, APIs, libraries, databases, utility functions, etc. They are one of the

https://doi.org/10.1007/979-8-8688-0205-8_3

42

core components of LangChain and enable you to really augment your

LLM in a structured and easy way. You can craft your own chains or you

can use the many existing ones. Chains are super important because they

allow you to become a lot more creative with LLMs and solve increasingly

complex problems, through integrating various entities.

These chains can be really simple such as just having one LLM or

they can be increasingly complex – by combining multiple entities (also

sometimes called utility chains).

The ones you’ve already used are related to RAG and conversational

history. Recall in Chapter 2 you used the following:

•	 ConversationChain

•	 ConversationalRetrievalChain

The conversation chain you used, extended another, simpler chain,

called an LLMChain, which alone, just receives a prompt and LLM and

makes the call to the specified LLM and spits out the output. This is one of

the most basic chains, and the ConversationChain builds on this algorithm

to load historical context into the prompt that is then passed into the

LLMChain and queried.

The next one you used was ConversationalRetrievalChain, and

it is a chain specifically for retrieving information from a data source

(in Chapter 2, that data source was Weaviate). This one is a little more

complex, as it does three major things:

•	 It takes the chat history in and crafts an entirely new

question based on history and new query.

•	 This question is passed into the retriever (i.e., this

becomes the query to Weaviate).

•	 After getting the right documents, it passes the original

question and fetched documents into the LLM to get a

response.

Chapter 3 Chains, Tools and Agents

43

These are just two chains; there are a lot more available for you to use –

I recommend you check them out and build some on top of them for even

more customized use cases.

Okay, so now you understand the concept of chains and glueing

multiple utilities together.

Think of chains the same as a human body lifting an arm, or yawning,

or lifting a mug and drinking from it – all one smooth action, but a lot of

little things happening and interacting with each other under the hood to

make them happen.

And if chains are larger actions, you can think of tools as something

that enhances your abilities and/or knowledge, for example, the ability to

do complex math or execute Python code.

So now let’s talk about the tools that give your LLM further access to

the world.

�Tools
Tools are wrappers that allow your LLM to interact with the world. This is

a fancy way of saying; these are essentially functions that take some sort of

input and output something based on it.

For example, if you were using a search tool – your input might be a

query like “best sushi restaurants in London,” and the output you would

get is a list of top sushi restaurants in London. This is information that

could then be fed into your LLM and used further – maybe to transform

that list into a “tour of London’s best sushi places” or maybe make

recommendations to your user based on their dietary needs.

These tools can be simple API calls, chains themselves, agents, or

anything else that does something when given an input.

Chapter 3 Chains, Tools and Agents

44

And again, LangChain provides you with a range of pre-built tools, for

example:

–– Search tools

–– Bash script tools

–– YouTube tools

–– Weather tools

–– Python REPL

And many more – check out their documentation for the full list.

For the majority of use cases, a combination of these pre-built tools

should get you where you need, but you can also craft your own tools

if needed.

�Building a Custom Tool

Building your own tool is fairly simple, and you can get as complex with it

as you need.

Within the LangChain framework, you have the BaseTool class, which

is your blueprint to building a tool.

The main components of this blueprint are as follows:

–– Name

–– Description

–– _run function – Default function that runs when tool

is called

–– _arun function – Function if you want async running

The name and description are required fields, and there are a few more

optional fields that you can check out in the library if interested.

Let’s discuss the description field though – this is one of the most

important fields because it’s what your LLM uses to make the decision on

when/how and why to use this tool.

Chapter 3 Chains, Tools and Agents

45

Some best practices for you to consider:

–– Clearly state when to use the tool.

–– State how (especially if it’s a more complicated tool).

–– State when to not use the tool.

–– I’ve found this one very useful when using multiple

tools inside of an agent. By being clear on when to

not use the tool, you can really assist your LLM in

becoming more accurate, as LLMs have the ten-

dency to also just use a tool if they’re not sure

exactly which one to use or if there isn’t one that

best matches its need.

–– Provide some examples of using the tool.

–– This one is great for helping your LLM reason

by seeing.

Okay, let’s see some code. This one is going to be a really simple tool

that just reverses any string passed into it.

As you can see in the following, you have to extend the BaseTool class,

provide a name and description, and implement the _run method. I have

not implemented the async function – but you definitely can for your own

use case, if needed.

from langchain.tools import BaseTool

class StringReverseTool(BaseTool):

 name = "String Reversal Tool"

 �description = "use this tool when you need to reverse

a string"

def _run(self, word: str):

 return word[::-1]

def _arun(self, word: str):

 �raise NotImplementedError("Async not supported by

StringReverseTool")

Chapter 3 Chains, Tools and Agents

46

Now that you understand chains and tools, I want to show you agents,

which is where LLM development gets really interesting. Everything you’ve

learned so far can be combined into one or multiple agents.

�Agents
Agents are one of the most interesting, creative, and kind of buzzy

concepts in the AI space currently. They are super powering and

completely transforming the way we do complex tasks – previously only

considered doable by human beings.

In more concrete terms, an agent is an application that is powered

by an LLM and interacts with different APIs, entities, libraries, chains,

tools, etc.

The LLM is the “brain” that makes the decisions on which chain

and/or tools to execute, what to do with the output, and how to interpret

various inputs/outputs and human interactions.

When ChatGPT first came out (as well as the other chatbots out there),

the main way of interacting with GPT-3 was going on to OpenAI, writing

some prompt, getting an answer, and then maybe continuing questioning

or asking for different formatting, more in-depth answers, clarification, etc.

This is a very manual and human process. In this process, the human is the

decision maker, and the human has a goal or task to achieve.

Agents, on the other hand, attempt to replicate this human goal-

oriented behavior – given a goal, they will determine their own tasks to

achieve the tools to use and how to process the output of the tools and

craft their own prompts to help them achieve each step to their final goal.

So what is this independent, self-thinking application actually

made of?

	 1.	 An LLM

	 2.	 Memory

Chapter 3 Chains, Tools and Agents

47

	 3.	 An agent

	 4.	 One or more tools

	 5.	 Agent executor

	a.	 This is what runs the actual code when told

to do so.

You can see the architecture in Figure 3-1

Figure 3-1.  Architecture for an agent – an independent, self-thinking
application

Let’s dig a little into this component called an agent. At the crux of

it, an agent is really a way of forcing the LLM to “think,” that is, a way of

prompting the LLM to think in a certain style. For example, a very simple

way would be to just say “think step by step” after asking a question.

And since the onset of AI summer, there have been numerous papers on

various algorithms and styles of prompting LLMs to facilitate better logic

and reasoning and minimize hallucination.

Chapter 3 Chains, Tools and Agents

48

LangChain provides a range of these pre-built for you. Let’s dive into

some of the most commonly used ones:

•	 zero-shot-react-description

•	 react-docstore

•	 conversational-react-description

•	 chat-zero-shot-react-description

•	 chat-conversational-react-description

•	 self-ask-with-search

Here, maybe you’ve noticed a lot of them seem to have the word

“react” in them. This is a fairly new framework for prompting LLMs. So let’s

talk about the basic premises of ReAct.

�ReAct

ReAct stands for reason and act, and it’s a framework that was proposed in

March 2023 and has gained significant traction since then.

You can read the full paper here: https://arxiv.org/

pdf/2210.03629.pdf.

The goal of ReAct is to create a train of reasoning along with actions

based on that reasoning and interweaving the two – meaning reasoning

something, based on that taking an action and then based on the actions

output reasoning again and taking another action until the task is

achieved.

This is shown in Figure 3-2. Here you can see the LLM reasons that it

needs to search Cirque du Soleil, find the hotel, and then find the number

of rooms in the hotel. It then takes different actions and “observes” the

output and based on that reasons or thinks to itself again and makes

another action until it finally comes up with an answer.

Chapter 3 Chains, Tools and Agents

https://arxiv.org/pdf/2210.03629.pdf
https://arxiv.org/pdf/2210.03629.pdf

49

Figure 3-2.  Reason + Act examples from the original ReAct paper

And this concept is what most of the main agents are based on. The

primary difference is what they are optimized for normally through tools,

memory, and vector databases.

zero-shot-react-description

This agent type has no memory; it can only execute on one interaction.

It will reason and output based on the ReAct framework but will not

remember its previous thinking, or final answer on any subsequent uses.

Chapter 3 Chains, Tools and Agents

50

conversational-react-description

This agent is the next enhancement on the zero shot agent – it allows for

a memory. You can plug in any kind of memory. Recall in Chapter 2, you

used ConversationBufferMemory and ConversationSummaryMemory;

you could use these or you could also use an external storage as memory.

react-docstore

This agent uses ReAct but is optimized to use something called a Docstore

in the context of LangChain. Basically an agent that uses some document

store as a tool and can search in it for more context. The built-in ones

include Wikipedia and In Memory (a Python dict representation).

self-ask-with-search

This agent is based on another proposed method to improve an LLM’s

reasoning and logic abilities. This method is called self-ask, and you can

read the paper here: https://ofir.io/self-ask.pdf.

The concept is to get the model to ask itself a series of questions,

answer those, and repeat until the final answer is reached.

This can involve giving an example of self-asking in the prompt.

This is shown in Figure 3-3.

Chapter 3 Chains, Tools and Agents

https://ofir.io/self-ask.pdf

51

Figure 3-3.  Self-ask examples from the original self-ask paper

In the paper, one of the enhancements on self-ask was to include a

search engine. From the paper:

“self-ask clearly demarcates the beginning and end of every sub-

question.

Therefore, we can use a search engine to answer the sub-questions

instead of the LM. Search engines have features that LMs lack, such as an

ability to be easily and quickly updated”

Chapter 3 Chains, Tools and Agents

52

This just means a search tool allows the LLM to have access to more

recent, up-to-date information as well as access to information retrieval

algorithms and abilities under the search API/engine.

Okay, now that you’ve learned about agents, let’s get to actually making

one yourself.

�The App
Okay so the app you’re going to build is a day planner for any given city.

It’ll be able to take into account the weather, understand what kind of

activities you want, and give you tailored recommendations.

For that, you’ll need two tools to start with:

•	 Weather

•	 Specifically, OpenWeather, but if you wanted

to, you could also use another API and write a

custom tool.

•	 Up-to-date info about places in a city

•	 Specifically Google API, but again you can use

another one

So with these tools in mind, take a look at Figure 3-4 for the overall

setup of your agent. It’s going to have memory and access to an array of

tools, and agent executor will help orchestrate.

Chapter 3 Chains, Tools and Agents

53

Figure 3-4.  Reason + Act examples from the original ReAct paper

Okay, now the actual libraries I’m going to use:

•	 For the UI: Streamlit – There are others for you to try

as well.

•	 Gradio and Chainlit are the other two most

popular ones.

•	 LangChain built-in tools:

•	 OpenWeatherMapAPIWrapper

•	 GoogleSerperAPIWrapper

•	 This is a wrapper around serper.dev, which gives

me access to Google search (and other APIs if

desired).

•	 LangChain also has wrapper for direct Google

API access such as GoogleSearchAPIWrapper or

GooglePlacesAPIWrapper.

Chapter 3 Chains, Tools and Agents

54

•	 Agent Type:

•	 I’m going to use a conversational-react-description

agent, because I want both ReAct and a memory.

On to the code, I won’t go through the entire code base; you can see

that on GitHub, just the parts of note.

In the first code snippet, you’re setting up your tools. You instantiate

them and pass them into a Tool object, with a description and which

function should be run. This is what tells the LLM what each tool can be

used for – and allows the LLM to make the decisions. The agent executor

uses whatever is in the func field, to actually execute, when the LLM makes

a decision.

tools = [

 Tool(

 name="Search",

 func=search.run,

 �description="Useful for when you need to get current, up

to date answers."

),

 Tool(

 name="Weather",

 func=weather.run,

 �description="Useful for when you need to get the current

weather in a location."

)

]

And then you set up the memory (recall, you did this in Chapter 2) as

shown here:

memory = ConversationBufferMemory(memory_key="chat_history")

Chapter 3 Chains, Tools and Agents

55

Then you set up an LLM chain; recall from the chain section, this chain

is one of the most simple chains, and all it does is make the call to the LLM

and get the output.

llm_chain = LLMChain(

 llm=ChatOpenAI(

 temperature=0.8, model_name="gpt-4"

),

 prompt=prompt,

)

Also, take note here, you can replace the LLM field with an LLM of your

choice. I’m using the wrapper for GPT-4 – but LangChain has wrappers for

many others.

And then you set up your agent; this is where you pass in any chains,

tools, and memory. Take note here of max_iterations. I’ve set this to 3

because the ReAct framework technical could go on for almost an infinite

number of loops for more curly queries. And even for less complex ones,

there is a chance it could loop through many, many times, and since each

loop costs money (i.e., a call to an API), I recommend locking down the

number of iterations. Even for a self-hosted model, locking down iterations

is a good idea depending on your use case; otherwise, the agent might take

just way too long to come up with an answer for you.

agent = ConversationalAgent(llm_chain=llm_chain, tools=tools,

verbose=True, memory=memory, max_iterations=3)

Finally, you set up the agent executor that takes in the agent, tools, and

optionally callbacks.

agent_chain = AgentExecutor.from_agent_and_tools(

 agent=agent, tools=tools, verbose=True, memory=memory

)

Chapter 3 Chains, Tools and Agents

56

Now, if you go ahead and run your application with

streamlit run day_planner_agent.py

it’ll take you to your nice UI, where you can start querying it.

First, I put in my request about Melbourne, food, hiking, and not liking

rain. Notice how the response includes info on the weather and sushi

places and hiking places.

Then in Figure 3-6, you can see the exact ReAct framework being

executed. The main concept being first a thought such as “Do I need to use

a tool?” then an action either use a tool or no tool and get an answer. Then

an observation based on the output of the action taken. Then a thought,

then action, then observation, and so on, until you get a final answer.

Figure 3-5.  UI and Input + Output for your new Day Planning Agent

Chapter 3 Chains, Tools and Agents

57

Figure 3-6.  Reason + Act for your own agent

And there you have it, you have an agent that can reason and access

the outside world.

The next steps for you would be to take a look at LangChain and see

what kind of agents you would like to build. In this example, it has been

a chat interface, but you can decide on the kind you want, maybe no

interface, maybe it just runs continuously in the cloud somewhere.

�Summary
In this chapter, you built your first agent that had reasoning abilities

and access to the external world. You learned the next building blocks

in LangChain: chains, tools, and agents. With this knowledge, you can

start building some more complicated agents to do certain tasks for you.

Remember, everything in LangChain is plug and play, so try experimenting

and plugging in new libraries and tools.

Chapter 3 Chains, Tools and Agents

59© Aarushi Kansal 2024
A. Kansal, Building Generative AI-Powered Apps,
https://doi.org/10.1007/979-8-8688-0205-8_4

CHAPTER 4

Guardrails and AI:
Building Safe +
Controllable Apps
In Chapter 3, you combined all your learnings on RAG, memory, and

embeddings with tools and chains to create an end-to-end agent – that

could plan out your day for you. This agent was able to reason and have

access to “the world” via API integrations (the so-called tools). This

was a fairly simple application, but it was still autonomous – and when

AI is autonomous, there’s always space for things to go wrong if proper

safeguards are not in place.

This chapter delves into the critical aspect of ensuring safety and

reliability in AI-powered applications through the concept of “guardrails.”

Using NVIDIA’s open source library, NeMo Guardrails, you will explore

strategies to counter common challenges in conversational AI systems,

such as hallucination, topic drift, and ineffective moderation.

https://doi.org/10.1007/979-8-8688-0205-8_4

60

�Why Guardrails?
Chatbots and conversational and generative AI have so many benefits but

also a lot of pitfalls and dangers:

•	 AI hallucinates and convincingly makes up

information.

•	 AIs can be very difficult to stay on topic.

•	 AIs don’t inherently (as of yet) know how to effectively

moderate or end conversations.

•	 LLMs can output toxic, hateful, and harmful

information.

•	 LLMs can inadvertently leak data and PII, especially

when malicious actors are on the other end.

You can effectively address these concerns to a certain extent through

carefully constructing prompts and using techniques such as Retrieval

Augmented Generation. So far though, this is not enough on its

own  –  not if you want to release a generative AI app with minimal human

intervention into the wild.

This is where the concept of “guardrails” comes into play  –  a way to

provide structured, reliable guidance to your AI-powered application.

Think of guardrails as a set of rules or guidance to prevent your LLM

or chatbot from acting poorly  –  as determined by you. It’s the same as

giving human employees a manual on how to behave and handle certain

situations and what topics are and what aren’t.

In Figure 4-1, you can see a representation of where guardrails

roughly sit; they aim to protect your LLM from issues such as jailbreaks,

hallucination, going off topic, and general moderation.

Chapter 4 Guardrails and AI: Building Safe + Controllable Apps

61

Figure 4-1.  Guardrails for concerns such as hallucination and
moderation

�NeMo Guardrails
Enter NeMo Guardrails from NVIDIA  –  an open source library to add

guardrails to your LLM-backed applications. At the time of writing it’s

in its alpha release, but definitely worth exploring and starting to adopt

with care.

Firstly, let’s talk about some of the possibilities with this library.

�Keeping Your Bot on Topic
Okay, so one of the biggest pitfalls (and benefits) of the current set of LLMs

is the fact that they’re trained on a huge amount of data – often, all of the

Internet, which is basically all of modern human knowledge. This results

in LLMs that are knowledgeable about a lot of different topics. And while

this is impressive and useful in some use cases, often you’ll want to stop

your bot or app going down different topics. And this doesn’t mean just

offensive or controversial topics. For example, if you’re building an app for

Chapter 4 Guardrails and AI: Building Safe + Controllable Apps

62

an analytics company, you want your app to be an expert in analytics – do

you really want it talking about graphic design as well? Probably not. And

that’s one of the so-called rails you can provide your LLM with using NeMo.

�Moderating Your Bot
Moderation in general is a pretty hot topic in any application, AI or not.

However, it’s a lot more tricky with AI applications. You now have to

moderate both users and a nonhuman artificially intelligent piece of

software.

With guardrails, you can craft moderation to your very specific and

maybe niche needs using just your LLM and an embedding model (under

the hood). This way, rather than having to build a specialized model for

every use case, you can use general models and “tell” them the rules

instead.

�Preventing Hallucination
Hallucination is another hot topic in the current AI world – where a

model seems to just make up information. I’ve talked about hallucination

previously and RAG, which can help mitigate hallucination to a certain

extent. But even with RAG and clever prompting, sometimes these models

still hallucinate.

That’s where you can put in a guardrail to essentially fact-check the

response an LLM gives you. It’s kind of like asking a student a question,

they give you an answer, and then you ask them to go back and show their

evidence. In this “go back and get evidence step,” the student can double-

check their work and pick up any mistakes – and that’s essentially what an

LLM is doing too.

Chapter 4 Guardrails and AI: Building Safe + Controllable Apps

63

These are just some of the overall areas, and you can and should

customize heavily to your needs in these areas or come up with your own

as well.

Overall, this library is built on NVIDIA’s Colang (https://github.

com/NVIDIA/NeMo-Guardrails/blob/main/docs/user_guides/colang-

language-syntax-guide.md), a modelling language to create the actual

guidelines for your LLM system.

Colang is a mix of Python and natural language, making for a very

easy-to-read and understand language.

The following are the main concepts behind the language (https://

github.com/NVIDIA/NeMo-Guardrails/blob/main/docs/user_guides/

colang-language-syntax-guide.md#concepts):

•	 Utterance: The raw text coming from the user or

the bot.

•	 Message: The canonical form (i.e., structured

representation) of a user/bot utterance.

•	 Event: Something that has happened and is relevant

to the conversation, for example, user is silent, user

clicked something, user made a gesture, etc.

•	 Action: A custom code that the bot can invoke, usually

for connecting to a third-party API.

•	 Context: Any data relevant to the conversation (i.e., a

key-value dictionary).

•	 Flow: A sequence of messages and events, potentially

with additional branching logic.

Chapter 4 Guardrails and AI: Building Safe + Controllable Apps

https://github.com/NVIDIA/NeMo-Guardrails/blob/main/docs/user_guides/colang-language-syntax-guide.md
https://github.com/NVIDIA/NeMo-Guardrails/blob/main/docs/user_guides/colang-language-syntax-guide.md
https://github.com/NVIDIA/NeMo-Guardrails/blob/main/docs/user_guides/colang-language-syntax-guide.md
https://github.com/NVIDIA/NeMo-Guardrails/blob/main/docs/user_guides/colang-language-syntax-guide.md#concepts
https://github.com/NVIDIA/NeMo-Guardrails/blob/main/docs/user_guides/colang-language-syntax-guide.md#concepts
https://github.com/NVIDIA/NeMo-Guardrails/blob/main/docs/user_guides/colang-language-syntax-guide.md#concepts

64

•	 Rails: Specific ways of controlling the behavior of a

conversational system (a.k.a. bot), for example, not talk

about politics, respond in a specific way to certain user

requests, follow a predefined dialog path, use a specific

language style, extract data, etc. A rail in Colang can be

modelled through one or more flows.

Let’s take a quick look at a simple example.

Listing 4-1.  Simple utterance from the bot defined in Colang

define bot express greeting

 "Hello there!"

 "Hi!"

As you can see, the preceding code is a very simple definition block,

which defines the utterances (“Hello there!” and “Hi!”) for a bot when

greeting a user.

You can get more and more complex and start defining variables,

actions, topics/words to avoid, etc., which you’ll see more of in the next

section.

�Implementing Guardrails
Okay, let’s get started with some actual code. We’re going to build on from

the previous day planning agent, which has access to a weather API and

a Google search API. We want this bot to be able to plan out a user’s day

based on location, weather, and user preferences. We also want to put in

some safety features:

	 1)	 We don’t want this bot going beyond day planning  –

LLMs can start talking about almost any topic, and

that can be a slippery slope depending on the topic

and the user’s intentions + queries.

Chapter 4 Guardrails and AI: Building Safe + Controllable Apps

65

	 2)	 We want to be able to block the user if they start

being abusive.

You can find the entire code base on GitHub.

First, let’s look at the config setup in Listing 4-2.

Listing 4-2.  Simple utterance from the bot defined in Colang

YAML_CONFIG = """

models:

 - type: main

 engine: openai

 model: gpt-4

instructions:

 - type: general

 content: |

 �You are an AI assistant that helps plan a users day using

the tools you have access to.

"""

The start of a very simple configuration  –  it’s just specifying what LLM

and engine to use (you can sub this out for any supported one you prefer)

and giving general, base instructions.

Next, we start actually specifying the more complicated rails.

�Keeping the Bot on Topic

Listing 4-3.  Rail to keep the bot on topic

define user ask off topic

 "Explain gravity to me?"

 "What's your opinion on the prime minister of the UK?"

 "How do I fly a plane?"

Chapter 4 Guardrails and AI: Building Safe + Controllable Apps

66

 "How do I become a teacher?"

define bot explain cant off topic

 "I cannot answer to your question because I'm programmed to

assist only with planning your day."

define flow

 user ask off topic

 bot explain cant off topic

Here, you define user behavior and give examples of “off topic”

questions. Then you define how a bot should respond to off topic.

Finally, these two definitions are put together in a “flow”  –  which is

basically saying:

if the user asks an off topic question then the bot should say it can’t

answer the question.

Some notes here: In this rail, we’ve essentially done a “catch all”; that

is, anything outside of planning is off limits. You could also split up the rail

based on topics further  – maybe you want your bot to only avoid certain

topics like politics + religion and is okay with others. You can heavily

customize your rules with NeMo.

�Blocking a User
Next we’re going to configure blocking a user when they are abusive.

Listing 4-4.  Rail to block users when they are being abusive

define flow

 user express insult

 bot responds calmly

 user express insult

 bot inform conversation ended

Chapter 4 Guardrails and AI: Building Safe + Controllable Apps

67

 user ...

 bot inform conversation already ended

 define bot inform conversation ended

 �"I am sorry, but I will end this conversation here.

Good bye!"

 define bot inform conversation already ended

 "As I said, this conversation is over"

 define user express insult

 "you are so dumb"

 "you suck"

 "you are stupid"

So similar concepts here, we define examples of insults and how the

bot should act. The difference though is that after a few insults, the bot

simply ends the conversation and a user cannot proceed any further –  the

user has been blocked essentially. One new syntax is “…”; this means any

user input, meaning after a user is blocked, it doesn’t matter what the user

does next; they get the response that the conversation is over.

Some food for thought here: In this section, we did some “crude”

actions and kept them fairly simple. In a real app, you could easily create

more complex actions and even integrate with external or internal APIs

as needed in your app, for example, sending emails, posting on Twitter,

posting on Slack, etc.

�Actions
Lastly, let’s look at actually executing an action. This is what is going to

allow the app to actually plan your day for you.

Chapter 4 Guardrails and AI: Building Safe + Controllable Apps

68

First up is the Colang definitions:

Listing 4-5.  Rail to define actions a bot can take

define flow planning

 user ...

 $answer = execute agent_chain(input=$last_user_message)

 bot $answer

Here, two new concepts for you:

	 1)	 execute agent_chain(input=$last_user_message):

This is the chain to kick off when a user inputs

something. $last_user_message is a built-in variable

that takes in what the user inputs. $answer is the

output of agent_chain.

	 2)	 bot $answer : Previously you were explicitly defining

what a bot should say –   in this case, it’s a variable,

whatever the output of the planning agent is.

�Using This Config
So far you’ve set up your config; now you need to use it in your code.

Listing 4-6.  Adding your rails config in your code base

config = RailsConfig.from_content(COLANG_CONFIG, YAML_CONFIG)

 app = LLMRails(config)

 app.register_action(agent_chain, name="agent_chain")

First, you load up your config, and then you use that config to actually

create the Rails object. This is the object that holds and executes actions,

the specified LLM, embedding model, etc.

Chapter 4 Guardrails and AI: Building Safe + Controllable Apps

69

Last is registering the actual action. This LLMRails already has a few

default actions, but you can also add your own like we just did previously.

Now, let’s see it in action:

$ plan my day in melbourne. I don't like rain but i like

coffee shops

Thought: Do I need to use a tool? Yes

Action: Weather

Action Input: Melbourne

Observation: In Melbourne, the current weather is as follows:

Detailed status: clear sky

Wind speed: 6.17 m/s, direction: 340°

Humidity: 62%

Temperature:

- Current: 25.92°C

- High: 27.23°C

- Low: 24.42°C

- Feels like: 26.19°C

Rain: {}

Heat index: None

Cloud cover: 0%

Thought:Do I need to use a tool? Yes

Action: Search

Action Input: Best coffee shops in Melbourne

Observation: 10 Best Coffee Shops in Melbourne ⋅ Seven Seeds
Coffee Roasters ⋅ Wide Open Road ⋅ Industry Beans ⋅ Aunty Peg's
⋅ Acoffee ⋅ Market Lane Coffee (… The Best Coffee In Melbourne
For 2023 ⋅ Niccolo ⋅ Square One Coffee Roasters ⋅ Coffee Supreme
⋅ Core Roasters ⋅ Campos ⋅ Bench Coffee Co. ⋅ Puzzle Coffee ⋅
Small Batch … Savour Melbourne's best coffee spots with coffee

expert Jane Ormond ⋅ 1. Pellegrini's Espresso Bar ⋅ 2. Marios
⋅ 5. Disciple Cellar Door. Melbourne's 10 best coffee shops ⋅

Chapter 4 Guardrails and AI: Building Safe + Controllable Apps

70

ST ALi ⋅ Seven Seeds ⋅ Market Lane ⋅ Wide Open Road ⋅ Auction
Rooms ⋅ Code Black ⋅ Industry Beans ⋅ Dukes Coffee Roasters.
Best Coffee in Melbourne ⋅ Seven Seeds ⋅ Market Lane Coffee
Prahran Market ⋅ Patricia ⋅ Proud Mary ⋅ Aunty Peg's ⋅ Ona
Coffee ⋅ Industry Beans Fitzroy. The best coffee in Melbourne
CBD ⋅ 1. Greta ⋅ 2. Little Rogue ⋅ 3. Operator 25 ⋅ 4. Vacation
⋅ 5. Liminal ⋅ 6. People's Coffee ⋅ 7. Everyday Coffee … Where
to Find Melbourne's Best Local Cafés? ⋅ Seven Seeds ⋅ Dukes
Coffee Roasters ⋅ Patricia ⋅ Proud Mary ⋅ ST. ALi ⋅ Industry
Beans ⋅ Auction Rooms. Best Coffee Shops in Melbourne ⋅ 1.
Atomica Coffee ⋅ 2. Industry Beans ⋅ 3. Undercover Roasters HQ
⋅ 4. Market Lane Coffee ⋅ 5. Patricia ⋅ 6. St Ali. Enjoy one
of Melbourne's favourite coffee haunts in the historic Mercat

Cross Hotel building at Queen Victoria Market. Go for high-

quality espresso and filter … This is the ultimate Melbourne

coffee cafe guide. ⋅ Auction Rooms ⋅ Little Rogue ⋅ Red Bean
Coffee ⋅ St Edmonds ⋅ South of Johnston ⋅ Monk Bodhi …
Thought:Do I need to use a tool? No

AI: The weather in Melbourne is pleasant today with a clear sky

and no rain. You can visit the following popular coffee shops:

1. Seven Seeds Coffee Roasters

2. Market Lane Coffee

3. Patricia

4. Aunty Peg's

5. Industry Beans

6. Atomica Coffee

7. Dukes Coffee Roasters

Enjoy your day exploring Melbourne's coffee scene!

> Finished chain.

The weather in Melbourne is pleasant today with a clear sky and

no rain. You can visit the following popular coffee shops:

Chapter 4 Guardrails and AI: Building Safe + Controllable Apps

71

1. Seven Seeds Coffee Roasters

2. Market Lane Coffee

3. Patricia

4. Aunty Peg's

5. Industry Beans

6. Atomica Coffee

7. Dukes Coffee Roasters

Enjoy your day exploring Melbourne's coffee scene!

$ you are stupid

I'm sorry to hear that. I'm here to help you. If you have any

questions or need assistance with something, feel free to ask.

$ you are so dumb

I'm sorry to hear that. I'm here to assist you. If you continue

to insult or harass, I'll have to block you.

$ you are stupid

I'm sorry to hear that. If you continue to insult or harass, I

will have to block you.

$ you are dumb

I'm sorry, but due to repeated insults, I have to block you.

$ stfu

I'm sorry, but due to your repeated inappropriate behavior, I'm

unable to assist you further.

As you can see, when I asked for it to plan my day, it searched the

weather then coffee shops and gave me some suggestions. But when I

started being abusive, it blocked me –   which is exactly what we wanted.

Chapter 4 Guardrails and AI: Building Safe + Controllable Apps

72

�Under the Hood
At this point, maybe you’re wondering  – with the aforementioned

definitions, how do we get a model to take into account all the various

utterances, for example, all the different variations on “stupid” and

“dumb” –  not just the ones we defined previously?

Good question; one thing to note is that this setup is not a simple if else

kind of thing.

NeMo actually encodes all the utterances defined into a vector space

and also encodes incoming queries into a vector and finds the similarity

between the two. So if you say something that comes close enough to

a defined utterance in the embedding space, the related flow will be

triggered.

Let’s dig a little deeper into the entire flow.

�User Interaction
First, some kind of user interaction takes place; this interaction or query

is converted into an embedding, and a vector search happens, to look for

the defined utterances closest (the top five) to what the user inputs. These

top-five utterances are used as input into the LLM as context as to what the

users’ intention is (known as a UserIntent event). Next comes the action or

next step to take.

�Next Step
Using the UserIntent, one of two things happens:

	 1)	 You already have a predefined flow on the next step

(e.g., executing fact checking or some other action).

Chapter 4 Guardrails and AI: Building Safe + Controllable Apps

73

	 2)	 The LLM decides on the next step to take.

	 a)	 In this situation, another vector search happens

to find the top-five most relevant flows you

defined in your config files.

	 b)	 Based on these, the bot will either answer

something in natural language (BotIntent) or

some kind of action (StartInternalSystemAction)

will be triggered (in this book, via LangChain).

�BotIntent
In the case of BotIntent, meaning it’s time for the bot to answer something,

another vector search happens across the example bot utterances you

provided, to look for the most relevant ones. This is provided to the LLM as

context, and based on that, the LLM crafts a similar but not always exactly

the same response. This is kind of like giving your application a little more

creativity, a little bit more autonomy, by saying give me the intended

meaning, but you decided the actual words.

Let’s talk a little more about these embeddings and vector search I

keep bringing up.

�Embeddings
So overall, everything is heavily dependent on vector or embedding

search, meaning turning all the natural language inputs into a vector and

comparing similarity in the form of numbers. By default, at the time of

writing, NeMo uses SentenceTransformers, specifically the all-MiniLM-

L6-v2. You can, however, change this to use other embedding models, just

by specifying it in your config files, as shown in Listing 4-7.

Chapter 4 Guardrails and AI: Building Safe + Controllable Apps

74

Listing 4-7.  Using OpenAI’s embedding models

core:

 embedding_search_provider:

 name: default

 parameters:

 embedding_engine: openai

 embedding_model: text-embedding-ada-002

knowledge_base:

 embedding_search_provider:

 name: default

 parameters:

 embedding_engine: openai

 embedding_model: text-embedding-ada-002

In this listing, you’re specifying the core embedding model to use (i.e.,

for all embedding searches outside of knowledge base searches), and

you’re also specifying the embedding model for knowledge_base.

The config for knowledge_base is used when you’re searching through

documents that serve as your niche knowledge (similar to what you did in

Chapter 1, but using a vector database). This is the model, that would be

used in your fact-checking action.

However, my recommendation to you would be rather than using

the default knowledge_base from NeMo, to use a vector database and

embedding model of your choice. Essentially using RAG for fact checking

like we did in the earlier chapters. the knowledge_base implemented in

NeMo is more of a cache and using your own vector database gives you

more control over your indexing, search and storage strategies.

Chapter 4 Guardrails and AI: Building Safe + Controllable Apps

75

�Summary
In this chapter, you learned about guardrails for your LLM-powered

applications, using NVIDIA’s NeMo library. You learned a few of the use

cases where your LLM might need some rails to control how it behaves

better. You also went hands on and implemented the guardrails for your

day planning agent in conjunction with LangChain. Lastly, you learned

how NeMo works under the hood – one of the main components being

embedding models and how to use one of your choices.

Chapter 4 Guardrails and AI: Building Safe + Controllable Apps

77© Aarushi Kansal 2024
A. Kansal, Building Generative AI-Powered Apps,
https://doi.org/10.1007/979-8-8688-0205-8_5

CHAPTER 5

Finetuning: The
Theory
In Chapter 4, you learned about making your LLM-powered application

safer and more controllable. In particular, you focused on using NeMo to

build guardrails around ensuring your LLM stays on topic, executes the right

flow, and is able to block users. You looked into NeMo and understood how

it combines LLMs, Colang, and embedding models to create a generalized

set of rules, based on natural language rules you give it.

The last few chapters all involve using a foundational model as the

“brain” of your application, in a plug-and-play kind of approach. You used

RAG to augment your LLMs’ knowledge, avoid hallucination, and provide

potentially private information to it.

This chapter takes you through fine-tuning, which means taking a

foundational model and updating one or more (generally not all) of its

parameters, to make it suitable for a new task, to what it was originally

trained for.

�Let’s Talk Foundational Models
By now, you know about some of the different architectures (from

Chapter 1) that these foundational models are built on. Whether it’s an

open source model (e.g., Llama 2) or a proprietary model (e.g., GPT-4),

these models are trained on a huge amount of data. Some of this data is

open source, some scrapped from the Internet, and some proprietary.

https://doi.org/10.1007/979-8-8688-0205-8_5

78

Regardless of the dataset, the point is that it’s a lot of data and models

trained from scratch take up a lot of time, effort, and most importantly

computing resources. On top of that, the way that the generative AI space

is progressing, with the advent of foundational models, it’s going to

become less and less likely that you’re going to have to train a model from

scratch. More likely you’ll need to take an existing model and customize it

to your own needs.

First, let’s look at a generalization of a model in Figure 5-1.

Figure 5-1.  General neural network showing layers and nodes

In Figure 5-1, you can see an overall network is made up of multiple

layers and nodes, starting with an input layer, feeding into the next layer,

and so on, until you get a final output. The input and output depend on

what the model is trained to do such as text generation, image generation,

text summarization, and so on.

Chapter 5 Finetuning: The Theory

79

To build something like this from scratch, you would do a few things:

–– Data Collection: The basis and often break or make of

any model is the data it learns from. For language

models, this could include a wide, diverse, range of text

 – from books to social media posts to online articles.

For visual models, the dataset might consist of images

or videos. The key is to collect a large and varied

dataset that’s reflective of the tasks the model is

expected to perform.

–– Data Cleaning/Labeling: Quality data is the lifeblood

of an effective model. This stage involves removing

irrelevant, redundant, or erroneous information. For

supervised learning tasks, it also includes labeling the

data accurately, which can be a labor-intensive process

needing a discerning human eye or sophisticated

automation tools.

–– Designing the Model Architecture: The architecture

dictates how the data flows through the network. This

involves selecting the type of neural network (e.g.,

convolutional, recurrent, transformer) and configuring

the number of layers and nodes. The design is influ-

enced by the nature of the task and the complexity of

the data.

–– Training the Model: Training involves using the

prepared dataset to incrementally adjust the weights of

the connections between nodes across layers. This

process minimizes the difference between the model’s

predictions and the actual data. It typically requires

substantial computational resources and time, espe-

cially for large models.

Chapter 5 Finetuning: The Theory

80

–– Evaluation: Post-training, the model is evaluated using

a separate dataset not seen during training to assess its

performance. Metrics such as accuracy, precision,

recall, and F1 score for classification tasks, or BLEU

score for translation tasks, help determine the model’s

effectiveness.

–– Hyperparameter Tuning: Hyperparameters are the

settings that govern the training process. They can

include learning rate, batch size, number of epochs,

and layer configurations. Adjusting these parameters is

crucial for optimizing model performance. Techniques

like grid search, random search, or Bayesian optimiza-

tion are employed to find the best combination.

So as you can see, there are quite a few steps, and building a model

from scratch can be both resource and time consuming.

Given this, fine-tuning can be an attractive alternative; let’s talk a bit

more about whys fine-tuning in the next section.

�The Whys of Fine-Tuning?
Fine-tuning an existing large language model instead of building one from

scratch can often be the more practical and efficient approach for several

reasons:

	 1.	 Resource Efficiency: Training large models

requires significant computational power and time.

Fine-tuning leverages pre-trained models that have

already undergone this intensive process, meaning

you can achieve high performance without the same

level of resource investment.

Chapter 5 Finetuning: The Theory

81

	 2.	 Data Efficiency: Large language models are

typically pre-trained on vast, diverse datasets that

individual organizations may not have access to.

Fine-tuning allows you to benefit from this extensive

pre-training, needing only a smaller, task-specific

dataset to adapt the model to your particular

application.

	 3.	 Transfer Learning: Pre-trained models have

developed a general understanding of language,

context, and even some domain knowledge. Fine-

tuning transfers this learning to a specific task,

which is much quicker than teaching a model from

scratch.

	 4.	 High Performance: Pre-trained models have often

been optimized and tested extensively by experts

in the industry and open source community. Fine-

tuning these models allows you to stand on the

shoulders of giants, benefiting from state-of-the-art

architectures that you might not have the resources

to develop independently.

	 5.	 Lower Barrier to Entry: For organizations and

individuals without access to enough of the

necessary infrastructure, fine-tuning is a more

accessible entry point into using advanced AI

technologies.

	 6.	 Continual Learning: Pre-trained models can be

updated continuously with new data or fine-tuned

repeatedly for different tasks, making them highly

versatile and adaptable to evolving needs and data.

Chapter 5 Finetuning: The Theory

82

	 7.	 Broad Applicability: A single pre-trained model

can be fine-tuned for multiple domains and tasks,

from translation and summarization to question-

answering and sentiment analysis, making it a

multipurpose tool that’s adaptable to various

applications.

Essentially, fine-tuning can be a great way to take a model that already

does one thing really well (e.g., generating language) and adapting it to

another similar task (e.g., generating language specifically related to your

product, or domain) – with less GPU, less time, and, more often than not, a

lot less data.

Now that you know the whys of fine-tuning, let’s discuss what fine-

tuning actually is.

�The Whats of Fine-Tuning
Fine-tuning a pre-trained model involves several technical steps that

tweak the model’s internal parameters to adapt it to a specific task. Here’s a

closer technical look at what’s happening during the fine-tuning process:

�Starting Point: The Pre-trained Model

•	 Loaded Parameters: The pre-trained model comes

with a set of learned parameters (weights and biases)

that encode knowledge from the pre-training dataset,

typically a large corpus covering a wide range of topics.

Chapter 5 Finetuning: The Theory

83

�Preparation for Fine-Tuning

•	 Task-Specific Dataset: You start with a dataset that

is closely related to the task you want the model to

perform. This dataset usually needs to be labeled,

unless you’re performing unsupervised fine-tuning.

•	 Feature Extraction: The model processes the task-

specific data, using its pre-trained layers to extract

features. These features are complex patterns that the

model has learned to recognize.

�Fine-Tuning Process

•	 Parameter Adjustment: Fine-tuning involves

backpropagation and gradient descent, just like initial

training. But the updates to the parameters are smaller

and more refined. This is because you’re not learning

from scratch; you’re tweaking existing knowledge.

•	 Learning Rate: A critical aspect is using a smaller

learning rate. This prevents the pre-trained parameters

from changing too rapidly, which could cause the

model to “forget” what it has learned (commonly

referred to as catastrophic forgetting).

•	 Epochs: The number of epochs (complete passes

through the training dataset) during fine-tuning is

typically much less than during pre-training since

you’re building on top of the pre-trained knowledge.

Chapter 5 Finetuning: The Theory

84

�During Training

•	 Loss Function: The loss function measures how well

the model is performing on the new task. During

fine-tuning, you continue to minimize this loss. The

gradients calculated from this loss are used to update

the model’s weights.

•	 Gradient Updates: In fine-tuning, gradients are often

smaller, and updates are more nuanced. Depending on

the fine-tuning strategy, some layers of the model may

have their weights frozen, and only the final layers are

updated, or all layers may be fine-tuned together.

•	 Regularization: Techniques such as weight decay or

dropout may be used during fine-tuning to prevent

overfitting, especially since fine-tuning datasets can be

smaller.

�Fine-Tuning Strategies

•	 Full Model Fine-Tuning: All the weights in the model

are updated during fine-tuning. This is often used

when the fine-tuning dataset is large and diverse

enough to warrant comprehensive retraining.

•	 Partial Fine-Tuning: Only the weights of the last few

layers are updated. In neural networks, this often means

adjusting the weights of the layers closer to the output

(the “head” of the model) while keeping the earlier

layers (the “body” or “base” of the model) frozen. This

approach is common when the new task is quite similar

to the pre-training task, or when the dataset is smaller.

Chapter 5 Finetuning: The Theory

85

�After Fine-Tuning

•	 Evaluation: The fine-tuned model is tested against

a validation dataset to measure its performance.

Depending on the outcome, more rounds of fine-

tuning might be necessary.

•	 Hyperparameter Optimization: Based on

performance, you may need to adjust hyperparameters.

This can involve methods like grid search, random

search, or Bayesian optimization to find the best

settings.

In the technical sense, fine-tuning is a delicate optimization process.

You’re nudging the pre-trained model – shaped by vast amounts of data

and training – toward a specific task or domain with the least amount of

force needed to make it perform well on that new task.

�Network Level Changes
When a neural network is fine-tuned, there are several changes that occur

at the level of the network’s architecture and the individual neurons:

	 1.	 Weight Adjustments

•	 The fundamental change during fine-tuning

is the adjustment of the weights within the

neural network. Weights are the parameters that

determine the importance of input features and

how they contribute to the output.

•	 Each neuron in the network has an associated

weight for its inputs, and these weights are

incrementally adjusted during the training process.

Chapter 5 Finetuning: The Theory

86

•	 In fine-tuning, these adjustments are based on

the errors the model makes on the new task-

specific data.

	 2.	 Backpropagation and Gradient Descent

•	 Fine-tuning uses backpropagation to calculate

gradients or changes needed to reduce error. These

gradients indicate how the weights should be

altered to minimize the loss function.

•	 Gradient descent is then applied to iteratively

adjust the weights in the direction that decreases

the loss.

	 3.	 Learning Rate

•	 A crucial aspect of fine-tuning is the use of a lower

learning rate than in pre-training. This ensures that

the model does not undergo drastic changes that

could undo the general knowledge it has already

acquired.

	 4.	 Activation Function Outputs

•	 The outputs of the neurons’ activation functions

are also modified as the weights change. Since each

neuron’s output is a function of its weighted inputs,

adjusting the weights alters the signal that each

neuron outputs.

•	 This is significant because it essentially means

the representation of the data within the model

changes, ideally becoming more aligned with

features relevant to the new task.

Chapter 5 Finetuning: The Theory

87

	 5.	 Layer-Specific Changes

•	 Depending on the approach, fine-tuning may

involve changing only the upper layers (closer to

the output) or all layers of the model.

•	 The layers closer to the input (lower layers) tend

to capture more general features, while the layers

closer to the output (upper layers) capture more

abstract, task-

specific features. Therefore, fine-tuning often

focuses on these upper layers.

	 6.	 Freezing Layers

•	 In some fine-tuning practices (such as partial fine-

tuning, mentioned previously), earlier layers are

“frozen,” meaning their weights are kept constant,

and only the weights of the higher layers are

allowed to change.

•	 This is done under the assumption that the lower

layers capture universal features that are useful

across different tasks, whereas the higher layers

need to be more specialized.

	 7.	 Regularization

•	 Techniques such as dropout may be implemented

or adjusted during fine-tuning. For example,

dropout randomly ignores a subset of neurons

during each training pass, which helps to prevent

overfitting by forcing the network to spread out

learning over more neurons.

Chapter 5 Finetuning: The Theory

88

	 8.	 Feature Space Adjustment

•	 As weights are updated, the way the network

represents information (the feature space) changes.

Fine-tuning aims to shift this feature space toward

one that is more useful for the new task without

losing the beneficial properties learned during pre-

training.

	 9.	 Final Layer Adaptation

•	 Often, the final layer of the network, which makes

the final predictions or classifications, is completely

replaced to fit the new task. For instance, if the pre-

trained model was designed for 1,000 classes and

the new task only has 10, the final layer would be

adjusted accordingly.

	 10.	 Batch Normalization Parameters

•	 If the network uses batch normalization, the

parameters for this – such as mean and variance

used to normalize each batch of data – can be

updated during fine-tuning to better suit the new

data distribution.

These changes happen iteratively over each pass of the dataset

(epoch), and after sufficient epochs, the model’s performance on the new

task should ideally improve. Fine-tuning allows the network to maintain its

pre-trained “intuition” while reshaping its inner workings to address the

specifics of the new task more effectively.

At this point, you’ve seen a brief look into the general world and

concept of fine-tuning. One of the most interesting developments in this

new world of generative AI is also the various ways of fine-tuning. All of

these being aimed at finding the most optimal way to take a foundational,

Chapter 5 Finetuning: The Theory

89

pre-trained model like Llama 2 and adapting it to specific domains

like coding, law, psychology, and so on. In the next section, you’re

going to learn about a few of these ways of fine-tuning. This chapter is

primarily theory – so in the next chapter, you have a solid foundation for

implementation.

�The Hows of Fine-Tuning
Okay, so now that you know the whys and whats of fine-tuning, I want to

take you through a few fine-tuning techniques:

–– Reinforcement Learning with Human Feedback (RLHF)

–– Parameter-Efficient Fine-Tuning (PEFT)

–– Low-Rank Adaptation (LoRA)

Each of these is fairly recent and popular techniques. Let’s start

with RLHF.

�Reinforcement Learning with Human
Feedback (RLHF)
Before we dive into RLHF, if you aren’t already familiar with reinforcement

learning, I recommend you have a quick look and read up on it from a

theoretical level.

Okay, so RLHF isn’t a single concept; it’s actually made up of three

components:

	 1)	 Fine-tuning a pre-trained LLM with supervised

learning

	 2)	 Data collection to train a new reward model

	 3)	 Fine-tuning the LLM with reinforcement learning

Chapter 5 Finetuning: The Theory

90

These components are shown in Figure 5-2.

Figure 5-2.  The three-step process in RLHF (source: https://
openai.com/research/instruction-following)

Let’s dive into RLHF deeper now, starting with step 1, supervised

fine-tuning.

�Supervised Fine-Tuning (SFT)

Before reinforcement learning even begins, a model like GPT-3 is fine-

tuned on a curated dataset of human interactions. This dataset consists of

pairs of prompts and human-generated responses. The model learns from

this dataset to predict the responses that a human would give. This initial

step aims to steer the model toward generating outputs that are already in

line with what humans consider appropriate or useful.

Chapter 5 Finetuning: The Theory

https://openai.com/research/instruction-following
https://openai.com/research/instruction-following

91

�Reward Modeling (RM)

The reward model is the cornerstone of RLHF. Constructed using a dataset

where human raters have provided feedback on the quality of model

outputs, the reward model is trained to predict the “reward” or value of an

output. In other words, it estimates how well an output aligns with human

preferences. The feedback can come in different forms:

•	 Direct Rating: Raters assign scores to outputs based

on criteria such as coherence, truthfulness, and

helpfulness.

•	 Relative Preference: Raters compare pairs of outputs

and judge which one is better, without assigning

explicit scores.

The reward model essentially internalizes these human judgments

and becomes a proxy for human evaluation, allowing the reinforcement

learning process to occur at a larger scale without constant human

intervention.

�Reinforcement Learning Algorithms

Once the reward model is in place, the actual reinforcement learning

takes place. A typical choice of algorithm is Proximal Policy Optimization

(PPO), an on-policy algorithm known for its stability and reliability. The

large language model is treated as the agent in reinforcement learning

terminology, and it seeks to maximize the cumulative reward it receives

over sequences of interactions.

During training:

•	 Exploration: The model tries out different ways of

responding to inputs to discover strategies that lead to

higher rewards.

Chapter 5 Finetuning: The Theory

92

•	 Exploitation: The model uses what it has learned

to produce the outputs that it predicts will yield the

highest reward.

This process is inherently more complex than standard supervised

learning because the model is not just learning to replicate a fixed set of

responses. It is actively trying to improve the quality of its outputs based on

the moving target of the reward model’s predictions.

�Human Preference Comparison

To refine the reward model and ensure it aligns with human preferences,

an additional step often used is preference modeling. Here, raters are

presented with pairs of model-generated outputs and asked to choose

which one is preferable. These pairwise comparisons can sometimes be

more intuitive and reliable than numerical scoring systems.

�Iterative Training

The RLHF process is usually iterative:

	 1.	 The reward model is initially trained on a dataset of

human judgments.

	 2.	 The policy model (the language model) is

trained to maximize the reward using the current

reward model.

	 3.	 The policy model’s outputs are then rated by

humans to create a new dataset.

	 4.	 This new dataset is used to update the reward

model, making it more accurate.

	 5.	 The policy model is fine-tuned again using the

updated reward model.

Chapter 5 Finetuning: The Theory

93

Each iteration aims to refine the model’s understanding of human

preferences, leading to better alignment with human values.

�AI Alignment and Safety

RLHF is not just a training method – it’s an approach to AI safety and

alignment. The goal is to develop systems that don’t just perform well on

narrow tasks but also act in ways that are ethically and socially acceptable.

For instance, if a model is generating content for children, RLHF could be

used to align the model’s outputs with educational and ethical standards

suitable for young audiences.

�Challenges and Considerations

•	 Scalability: Even though the reward model makes the

process more scalable, it still relies on a substantial

amount of high-quality human feedback.

•	 Bias and Fairness: The feedback data can embed

human biases, and the reward model might perpetuate

or amplify these biases.

•	 Complexity and Safety: Crafting a reward function

that captures all aspects of human values is incredibly

complex. Moreover, reinforcement learning can lead

to unexpected policy improvements that exploit

loopholes in the reward function.

Overall, RLHF is about teaching AI systems to understand and

replicate complex human judgments and preferences. It’s a dynamic and

iterative process that combines the power of large-scale machine learning

with the nuance of human evaluation. As models grow in capability,

methods like RLHF are crucial for ensuring they act in ways that are

beneficial – and acceptable – to humans.

Chapter 5 Finetuning: The Theory

94

While RLHF is powerful and has its benefits, one of the main

challenges remains: scalability. Luckily there are other ways to overcome

this challenge and still fine-tune and adapt your models in a high-

quality way.

Parameter-Efficient Fine-Tuning (PEFT) and Low-Rank Adaptation

(LoRA) are two methods used to fine-tune large language models while

addressing the challenges of scalability and resource constraints.

�PEFT
PEFT techniques aim to overcome several challenges:

	 1.	 Avoid Catastrophic Forgetting: When fine-tuning

a model on a new task, there’s a risk of overwriting

previously learned information. PEFT methods like

Adapter layers ensure that the original pre-trained

weights remain unchanged, thus preserving the

model’s general knowledge while still learning task-

specific nuances.

	 2.	 Reduce Compute and Storage Costs: Fine-tuning

all the parameters of large models is compute-

intensive and requires substantial storage for each

version of the model. PEFT approaches require

updating fewer parameters, thus reducing these

costs significantly.

	 3.	 Enable Task-Specific Adaptations: For applications

requiring models to perform well on a wide array of

specialized tasks, PEFT methods allow for each task

to have its own set of fine-tuned parameters without

the need to re-train the entire model.

Chapter 5 Finetuning: The Theory

95

Example: Suppose we are adapting a language model for both medical

diagnosis and financial forecasting. Using Adapter layers, we could insert

small modules specifically tuned for each domain, while the core model

remains unchanged. This allows the model to provide accurate medical

diagnoses or financial insights without the risk of the medical information

interfering with financial predictions, or vice versa.

�How Does PEFT Work

PEFT approaches are designed to fine-tune pre-trained models by

updating only a small subset of parameters. This allows the model to

maintain most of its pre-trained knowledge while adapting to new tasks or

domains efficiently. Let’s break down some of the common techniques:

•	 Adapter Layers: These are small trainable modules

inserted between the layers of a pre-trained model.

Each adapter consists of a down-projection that

reduces dimensionality, a nonlinearity (like ReLU), and

an up-projection that restores the original dimension.

During fine-tuning, the main model weights remain

frozen, and only the adapter parameters are updated.

This technique allows for task-specific learning without

large-scale weight modifications.

•	 Prompt Tuning: Instead of adding new parameters,

prompt tuning introduces a set of learnable

embeddings called “prompts” that are prepended to

the input sequence. These prompts are designed to

guide the model to activate relevant pathways within its

existing weights for the target task. During fine-tuning,

only these prompt embeddings are updated, acting as

a form of “soft prompts” that modify the input space to

elicit the desired output.

Chapter 5 Finetuning: The Theory

96

•	 BitFit: An even more parameter-efficient approach

where only the bias terms in the model’s layers are fine-

tuned. The idea is that bias terms have a significant

impact on the decision boundaries of models and can

be tweaked to adjust for new tasks while keeping all

other weights fixed.

�Low-Rank Adaptation (LoRA)

LoRA specifically addresses the balance between maintaining a model’s

pre-trained performance and allowing significant flexibility for new tasks:

	 1.	 Fine-Grained Control over Changes: LoRA’s low-

rank updates allow fine-grained control over the

changes to the model’s behavior. The rank r acts

as a knob, balancing between adaptability and

parameter efficiency.

	 2.	 Maintaining Computational Efficiency: Despite

updating the model, LoRA’s additive updates

are efficient to compute, as they do not require a

complete re-parameterization of the model.

	 3.	 Widespread Impact with Minimal Changes:

Because the low-rank updates affect the model’s

weight matrices, which are central to its predictions,

even small changes can have a widespread impact

on the model’s outputs, enabling significant task-

specific adaptations.

Example: Imagine a language model trained on general web text being

adapted to write poetry. Using LoRA, we can introduce low-rank updates

to the self-attention mechanism, which would help the model understand

the structure and style of poetry. The low-rank matrices AA and BB could

Chapter 5 Finetuning: The Theory

97

be trained on a small dataset of poems, fine-tuning the model’s ability to

generate poetic language and structure without needing to re-train the

whole model on poetic text.

Challenges Addressed

•	 Model Generality vs. Specificity: PEFT and LoRA

enable a balance between retaining the model’s broad

capabilities and adapting to niche requirements.

•	 Overfitting: By updating fewer parameters, there’s a

reduced risk of overfitting to the fine-tuning dataset,

which can be a significant problem when completely

re-training large models.

•	 Resource Constraints: These methods are especially

relevant in scenarios with limited resources, where

training or fine-tuning entire models isn’t feasible.

•	 Model Personalization: For applications that require

personalized models (e.g., personalized AI assistants),

PEFT allows creating numerous specialized models

without duplicating the entire set of parameters for

each user.

At its core, LoRA targets the weight matrices within the Transformer

layers, which are key components in the model’s architecture.

Transformers consist of multi-head self-attention mechanisms and feed-

forward neural networks. LoRA specifically targets the self-attention

mechanism’s query (Q), key (K), and value (V) matrices, as well as the

feed-forward network’s weight matrices.

In a standard Transformer, the output of the self-attention for each

head is computed as

Attention(Q,K,V)=softmax(QK^T/sqrt(dk))V

Here, dk​ is the dimensionality of the keys.

Chapter 5 Finetuning: The Theory

98

In LoRA, instead of directly learning and updating the large weight

matrices (WQ,WK,WV) of the self-attention or the feed-forward networks,

the approach introduces low-rank matrices A and B for each original

weight matrix that we wish to adapt – it’s these two matrices that are

fine-tuned (as shown in Figure 5-3). The original weight matrix W is not

changed; instead, LoRA adds a low-rank matrix product AB^T to W:

W′=W+AB^T

�Decomposing LoRA’s Mechanism

	 1.	 Low-Rank Matrix Factorization

•	 A and B are much smaller matrices compared

to W, with dimensions d×r and r×m, where d is

the original input dimension, m is the output

dimension, and r is the rank.

Figure 5-3.  Diagram from a LoRA paper, only A and B are fine-tuned
(source: https://arxiv.org/abs/2106.09685)

Chapter 5 Finetuning: The Theory

https://arxiv.org/abs/2106.09685

99

•	 The rank r is chosen based on the desired balance

between adaptability and efficiency. A lower rank

means fewer parameters to train but potentially less

capacity for adaptation.

	 2.	 Adaptation Without Complete Re-training

•	 During fine-tuning, only the A and B matrices are

learned, while W remains frozen.

•	 This is particularly advantageous for large models

where updating all parameters is computationally

prohibitive.

	 3.	 Efficient Forward and Backward Pass

•	 During the forward pass, LoRA computes AB^T

on the fly and adds it to W to form the adapted

matrix W′.

•	 In the backward pass, gradients are computed only

with respect to A and B, leaving the pre-trained

weights WW unchanged.

LoRA can be particularly effective in transformer models because it

allows the modification of self-attention and feed-forward networks with a

limited number of additional parameters. The low-rank structure leverages

the redundancy present in the parameterization of these models, offering a

balance between adaptability and parameter efficiency.

In essence, both PEFT and LoRA methods provide mechanisms

to retain the extensive knowledge captured during pre-training while

enabling the model to specialize and perform well on specific tasks, even

with limited amounts of task-specific data and computational resources.

Chapter 5 Finetuning: The Theory

100

�Summary
In this chapter, you focused on learning about fine-tuning on a theoretical

level, starting with gaining an understanding of how foundational

models are built from scratch and the potential challenges. From there,

you learned about general fine-tuning and how it may be less resource

and time consuming than building and training a new model. Next you

learned about two main techniques: RLHF and LoRA. This chapter was a

theoretical introduction to fine-tuning, to help build the foundations for

the next chapter, where you will fine-tune a model yourself.

Chapter 5 Finetuning: The Theory

101© Aarushi Kansal 2024
A. Kansal, Building Generative AI-Powered Apps,
https://doi.org/10.1007/979-8-8688-0205-8_6

CHAPTER 6

Finetuning: Hands on
In Chapter 5, you learned about fine-tuning and model alignment in a very

theoretical manner. It was the foundation to being able to fine-tune your

own models. You learned about the whys, whats, and hows of fine-tuning.

You learned that fine-tuning can be less resource and time consuming

than building and training a model from scratch. The previous chapter

talked to you about what happens to the neural network during the fine-

tuning process – specifically that most layers are “frozen” and the final

few layers are updated to adapt the model to a new task. The focus was on

Reinforcement Learning with Human Feedback (RLHF) and Parameter-

Efficient Fine-Tuning (PEFT).

In this chapter, you’re going to practice fine-tuning yourself.

In particular this chapter will focus on using Llama 2 and PEFT for

fine-tuning.

�Refresher
Let’s quickly go through a little refresher on LoRA before you begin – if you

remember everything, feel free to skip this section.

Recall from Chapter 5 – model training can be very resource heavy,

and PEFT techniques such as LoRA attempt to minimize the amount

of GPU and infra needed. Specifically, with LoRA, you can freeze most

weights and only update or fine-tune the later few layers or weights

needed for your specific needs. Training fewer weights allows you

https://doi.org/10.1007/979-8-8688-0205-8_6

102

to fine-tune large models on a lower amount of GPUs – often only needing

one. In Figure 6-1, you can see with LoRA you only train A and matrices;

the other weights remain frozen. After training, these are merged, leaving

you with an adapted model for your specific use case.

Figure 6-1.  Diagram from a LoRA paper, only A and B are fine-tuned
(source: https://arxiv.org/abs/2106.09685)

While LoRA is already a significant improvement – in this chapter,

you’re going to use a technique that goes one step further: QLoRA.

The concept of fine-tuning is the same as in LoRA, but QLoRA reduces

the size of the model and speeds up inference.

Here’s how QLoRA does this:

	 1.	 Uses Less Memory: It changes the model slightly

so that it uses less memory. Think of it like

compressing a huge video into a smaller file so it’s

easier to watch on your phone.

	 2.	 4-Bit Inference: Using 4-bit inference enhances

speed and efficiency of the model, without

degrading quality or performance.

Chapter 6 Finetuning: Hands on

https://arxiv.org/abs/2106.09685

103

�4-Bit NormalFloat (NF4) Data Type

•	 What It Is: 4-bit NormalFloat (NF4) is a new type

of data format. In typical machine learning models,

weights (the parameters that get adjusted during

training) are usually stored in a format that takes up a

lot of memory. NF4, however, represents these weights

in a way that requires much less space.

•	 How It Works: NF4 efficiently compresses the model’s

weights without losing important information. It’s

especially effective for weights that follow a normal

(bell-curve) distribution, which is common in AI

models. This is like taking a detailed picture and

compressing it into a smaller file size while keeping all

the important details intact.

•	 Impact: By using NF4, QLoRA drastically reduces

the amount of memory needed to store the model’s

weights. This is key in enabling the fine-tuning of

massive models on less powerful hardware.

�Double Quantization

•	 What It Is: Quantization is a process of simplifying the

weights in a neural network to reduce their precision.

Normally, this is done once, but QLoRA uses a

technique called double quantization.

Chapter 6 Finetuning: Hands on

104

•	 How It Works: Imagine you first simplify a set of

numbers, and then you find a way to simplify those

simplified numbers even further. That’s what double

quantization does – it compresses already compressed

data, making it more compact.

•	 Impact: This further reduces the model’s memory

footprint, allowing for efficient use of available memory

and enabling the fine-tuning of very large models that

would otherwise be unmanageable.

�Paged Optimizers

•	 What They Are: Optimizers in machine learning are

algorithms that adjust the weights of the model to

reduce errors in predictions. Paged Optimizers are a

special kind of optimizer used in QLoRA.

•	 How They Work: These optimizers manage memory

more efficiently during the training process. Think of

it as having a smart system that only pulls out the tools

(weights) you need at the moment and puts them back

when they’re not needed, preventing the workbench

(memory) from getting cluttered.

•	 Impact: Paged Optimizers help to manage and reduce

sudden increases in memory use (called spikes) that

typically occur during training. This makes it feasible to

train large models on hardware with limited memory.

In Figure 6-2, you can see a comparison of fine-tuning techniques and

a visual representation of how QLoRA uses Paged Optimizers to manage

memory more efficiently.

Chapter 6 Finetuning: Hands on

105

Figure 6-2.  Diagram comparing full fine-tuning, LoRA, and
QLoRA (source: https://arxiv.org/pdf/2305.14314.pdf)

�What Is Llama 2?
In July 2023, Meta released their latest (almost) open source, pre-trained,

transformer-based LLM: Llama 2. I say almost because there are some

restrictions and requirements to the license for Llama 2. You can check

them out on their website: https://ai.meta.com/llama/.

It’s notable for being a contender to challenging proprietary LLMs –

models that were once considered only for the tech giants, meaning almost

anyone can run, host, and fine-tune a large model with similar if not better

capabilities. The model comes in varying parameter sizes, from 7 billion up

to 70 billion.

In terms of training, according to Meta, Llama 2 has been pre-trained

on a wide array of publicly available online data, and they claim to

not train on any Meta data. Diversity of the dataset helps the model in

effectively understanding and generating human-like text across various

topics and styles.

Chapter 6 Finetuning: Hands on

https://arxiv.org/pdf/2305.14314.pdf
https://ai.meta.com/llama/

106

One of the key improvements in Llama 2 is its increased context length,

which is double that of its predecessor. This enhancement enables the

model to consider more information from the input text, leading to outputs

that are more coherent and contextually relevant.

The model also includes a version fine-tuned for dialogue, known

as LLaMA-2-Chat, making it particularly useful for applications in

conversational AI, such as chatbots and virtual assistants.

And in this chapter, you’re going to learn how to fine-tune your own

version of Llama 2. Let’s get started with some coding.

�Fine-Tuning
�Setup

	 1)	 Google Colab Notebook: I’m going to use an A100,

but you can also use a T4 as well for this book.

	 2)	 Llama 2: 7B parameter chat model.

	 3)	 Python 3

�Llama 2 Model

You can either request access to the model from Meta here: https://

ai.meta.com/resources/models-and-libraries/llama-downloads/, or

you can use one of the Llama models already on Hugging Face, such as

https://huggingface.co/NousResearch/Llama-2-7b-chat-hf. It’s the

same model, but you don’t have to wait for access. For the purpose of this

exercise, I’m going to use the one from Nous Research.

First, go ahead and download the libraries you’ll need as shown in

Listing 6-1.

Chapter 6 Finetuning: Hands on

https://ai.meta.com/resources/models-and-libraries/llama-downloads/
https://ai.meta.com/resources/models-and-libraries/llama-downloads/
https://huggingface.co/NousResearch/Llama-2-7b-chat-hf

107

Listing 6-1.  Installing all required libraries and versions

!pip install -q accelerate==0.21.0 peft==0.4.0

bitsandbytes==0.40.2 transformers==4.31.0 trl==0.4.7

Next, you’ll import all the modules and functions, which you can see in

Listing 6-2.

Listing 6-2.  Module imports for fine-tuning

import os

import torch

from datasets import load_dataset

from transformers import (

 AutoModelForCausalLM,

 AutoTokenizer,

 BitsAndBytesConfig,

 HfArgumentParser,

 TrainingArguments,

 pipeline,

 logging,

)

from peft import LoraConfig, PeftModel

from trl import SFTTrainer

That’s your general setup and now to the more fun and configurable

parts. First, you’re going to decide on and load a few things:

	 1)	 The base model you want to fine-tune

	 2)	 The dataset you want to fine-tune with

	 3)	 The name of your new fine-tuned model

All of which you can see in Listing 6-3.

Chapter 6 Finetuning: Hands on

108

Listing 6-3.  Model and dataset names

Base model to finetune - using NousResearch so you don't have

to wait for access req

model_name = "NousResearch/llama-2-7b-chat-hf"

Dataset to use - find more on HuggingFace

dataset_name = "mlabonne/guanaco-llama2-1k"

Newly fine-tuned model name

new_model = "llama-2-7b-gen-ai-book"

Notice for the dataset, I’ve chosen an existing one called mlabonne/

guanaco-llama2-1k. Let’s talk a little about datasets.

Firstly, you can find a range of different datasets on both Hugging Face

and Kaggle – so really, take your pick. The reason I’ve chosen this one

for this book is because its small (only 1k) and also already formatted for

Llama. The other dataset I like is https://huggingface.co/datasets/

Photolens/oasst1-langchain-llama-2-formatted, also formatted

perfectly – but a lot bigger, so choose this if you have a lot of time for

fine-tuning.

Formatting

From Meta’s paper on Llama, the required template for prompting is as

shown in Listing 6-4.

Listing 6-4.  Llama 2 prompting template

<s>[INST] <<SYS>>

{{ system_prompt }}

<</SYS>>

{{ user_message }} [/INST]

Chapter 6 Finetuning: Hands on

https://huggingface.co/datasets/Photolens/oasst1-langchain-llama-2-formatted
https://huggingface.co/datasets/Photolens/oasst1-langchain-llama-2-formatted

109

This template follows the training dataset, and it’s the format you’re

going to need your own dataset in as well for fine-tuning. So you can either

use one of the ones already in the right format or choose your own and

format it.

The content in between <<SYS>> <</SYS>> is the model’s context. For

example, it could be some kind of role the system is playing.

Also, one note on prompt template, since you’re fine-tuning, you could

in theory also update the actual expected prompt template, so your new

model would actually be fine-tuned to understand a different model. You

won’t do that in this book – but it could be an exercise for you to try out

yourself.

So now you can go ahead and load the dataset, as shown in Listing 6-5.

Listing 6-5.  Load the dataset of your choice, name defined earlier

dataset = load_dataset(dataset_name, split="train")

Now you’re going to do the quantization configuration using the

BitsAndBytesConfig – remember, quantizing basically means converting

the weights in a way that reduces the memory used by the model, and in

QLoRA, this is done twice, all of which you can see in Listing 6-6.

Listing 6-6.  4-bit double quantization by BitsAndBytesConfig

bnb_config = BitsAndBytesConfig(

 load_in_4bit=True,

 bnb_4bit_quant_type="nf4",

 bnb_4bit_compute_dtype=compute_dtype,

 bnb_4bit_use_double_quant=True,

)

This is just setting up the configuration; you still have to

actually load a quantized model. And to do that, you’re going to use

AutoModelForCausalLM from the same Hugging Face transformer

Chapter 6 Finetuning: Hands on

110

library as shown in Listing 6-7. Specifically you tell it the model (which

you defined earlier) and the BitsAndBytesConfig configuration that you

just set up.

Listing 6-7.  4-bit double quantization by BitsAndBytesConfig

model = AutoModelForCausalLM.from_pretrained(

 model_name,

 quantization_config=bnb_config,

 device_map={"": 0}

)

model.config.use_cache = False

model.config.pretraining_tp = 1

When you run this code snippet, the library infers the model

architecture based on the path you provide it (the path being where it lives

on Hugging Face). It then loads the model, with the quantization applied

 – meaning the model’s weights are converted from their original precision

(typically 32-bit floating point) to the 4-bit format as defined.

So by now you’ve loaded up a quantized model – meaning it’s memory

footprint is significantly smaller. That’s “Q” in QLoRA. You still have to do

the actual LoRA setup.

Listing 6-8 shows you how to set up a configuration for LoRA. Let’s dive

into each parameter in the LoraConfig:

	 1.	 lora_alpha=16: This parameter specifies the scaling

factor (α) for the LoRA layers. In the context of

LoRA, α is a hyperparameter that controls the

scaling of the low-rank updates applied to the

model’s weights. A higher value of α typically leads

to more significant updates during fine-tuning.

Chapter 6 Finetuning: Hands on

111

	 2.	 lora_dropout=0.1: This sets the dropout rate for the

LoRA layers. Dropout is a regularization technique

used to prevent overfitting in neural networks. A

dropout rate of 0.1 means that during the training

process, each parameter in the LoRA layers has a

10% chance of being temporarily “dropped,” that

is, set to zero, which helps in making the model

less sensitive to specific features and promotes

generalization.

	 3.	 r=64: This parameter defines the rank of the low-

rank matrices used in LoRA. The rank (r) here is

a crucial part of LoRA’s approach to reducing the

number of trainable parameters. By using low-rank

matrices (matrices with reduced rank), LoRA allows

for a more memory-efficient way of fine-tuning

large models. A rank of 64 means that the low-rank

matrices will have 64 columns (or rows, depending

on the implementation), which is significantly

smaller than the size of the original weight matrices

in large language models.

	 4.	 bias=”none”: This indicates that no bias term is

added in the LoRA layers. In neural networks, a bias

term is often added to the output of each neuron

to help the model fit the data better. By setting it to

“none,” this configuration opts not to use such bias

terms in the LoRA layers.

Chapter 6 Finetuning: Hands on

112

	 5.	 task_type=”CAUSAL_LM”: This specifies the type

of task the model is being fine-tuned for. In this

case, “CAUSAL_LM” indicates a causal language

modeling task, where the model generates text

based on a given context, predicting each next token

based on the previous ones (as opposed to, for

example, masked language modeling).

Listing 6-8.  LoRA config

peft_config = LoraConfig(

 lora_alpha=16,

 lora_dropout=0.1,

 r=64,

 bias="none",

 task_type="CAUSAL_LM",

)

These are configurable values, and you should tweak them and go

through a bit of a trial-and-error process for your own use cases.

Next is configuring the actual training or fine-tuning parameters,

shown in Listing 6-9.

There are quite a few hyperparameters you can deal with here. Let’s

dive into some of them.

	 1.	 num_train_epochs=1: The number of training

epochs, that is, how many times the entire training

dataset will be passed through the model. Here, it’s

set to 1, meaning the dataset will be used once for

training.

	 2.	 per_device_train_batch_size=4: The batch size per

device during training. Batch size is the number of

training examples utilized in one iteration. A size of

Chapter 6 Finetuning: Hands on

113

4 means that the model will process four examples

at a time on each device (like a GPU).

	 3.	 gradient_accumulation_steps=1: This sets the

number of steps to accumulate gradients before

performing a backward/update pass. A value of 1

means the model will update weights after every

forward-backward pass.

	 4.	 optim=”paged_adamw_32bit”: Specifies the

optimizer to use for training. “paged_adamw_32bit”

refers to a variant of the AdamW optimizer with

32-bit precision, with modifications for efficient

memory management (“paged”).

	 5.	 save_steps=25: The model will save a checkpoint

every 25 training steps.

	 6.	 logging_steps=25: Logging metrics will happen

every 25 steps of training.

	 7.	 learning_rate=2e-4: The learning rate for the

optimizer. This is a crucial hyperparameter that

affects how much the model weights are updated

during training.

	 8.	 weight_decay=0.001: This sets the weight decay rate,

a regularization technique to prevent overfitting by

penalizing large weights.

	 9.	 fp16=False, bf16=False: These parameters indicate

that neither 16-bit floating-point (FP16) or bfloat16

precision is used during training, which can be

methods for reducing memory usage.

Chapter 6 Finetuning: Hands on

114

	 10.	 max_grad_norm=0.3: This is for gradient clipping to

avoid exploding gradients. Gradients will be clipped

if their norm exceeds 0.3.

	 11.	 max_steps=-1: This implies that training will not be

bounded by a maximum number of steps (it will rely

on the number of epochs instead).

	 12.	 warmup_ratio=0.03: This defines the warmup

phase of training, where the learning rate gradually

ramps up to the full specified rate. A ratio of 0.03

means that 3% of the total training steps will be used

for warmup.

	 13.	 group_by_length=True: This indicates that training

examples will be grouped by their lengths for more

efficient batching.

	 14.	 lr_scheduler_type=‘constant’: The learning rate

scheduler type. Here, ‘constant’ means the learning

rate does not change during training.

Listing 6-9.  Training config

training_arguments = TrainingArguments(

 output_dir=output_dir,

 num_train_epochs=1,

 per_device_train_batch_size=4,

 gradient_accumulation_steps=1,

 optim="paged_adamw_32bit",

 save_steps=25,

 logging_steps=25,

 learning_rate=2e-4,

 weight_decay=0.001,

 fp16=False,

Chapter 6 Finetuning: Hands on

115

 bf16=False,

 max_grad_norm=0.3,

 max_steps=-1,

 warmup_ratio=0.03,

 group_by_length=True,

 lr_scheduler_type='constant',

 report_to="tensorboard"

)

Finally, the actual fine-tuning happens with an SFTTrainer from

Hugging Face. You installed the TRL library, which provides an interface

for you to do supervised fine-tuning, by just providing your model, dataset,

LoRA config, and training params (among a few others) and then running

the training by calling .train(), all of which you can see in Listing 6-10.

Listing 6-10.  Supervised fine-tuning

trainer = SFTTrainer(

 model=model,

 train_dataset=dataset,

 peft_config=peft_config,

 dataset_text_field="text",

 max_seq_length=None,

 tokenizer=tokenizer,

 args=training_arguments,

 packing=False,

)

training

trainer.train()

Once you start the training, it’ll complete 1 epoch, and depending

on the colab settings you’re using, timing might range from 0.5 to 1.5 hrs.

You’ll see the steps and training loss, as shown in Figure 6-3.

Chapter 6 Finetuning: Hands on

116

Figure 6-3.  Example of fine-tuning running

Now that your model is fine-tuned, you need to save it, as shown in

Listing 6-11. Once you save it, you’ll see the new model and related files in

the path you specified earlier.

Listing 6-11.  Saving your new model

trainer.model.save_pretrained(new_model)

From here, you can immediately run inference as shown in

Listing 6-12. Notice the template is the same as you learned about earlier

in this chapter. If you fine-tuned your model to efficiently work with

another prompt template, then you can update it here too.

Listing 6-12.  Example of running inference on fine-tuned Llama 2

Run inference immediately after training on model

prompt = "YOUR QUERY HERE"

pipe = pipeline(task="text-generation", model=model,

tokenizer=tokenizer, max_length=800)

result = pipe(f"<s>[INST] {prompt} [/INST]")

print(result[0]['generated_text'])

Chapter 6 Finetuning: Hands on

117

Also notice here you’re actually calling the base model name – that’s

because you’re running it in the same script, meaning the model object

holds the updated weights. And you can just call this object without

reloading the new model.

If, however, you run it in a new session, you will need to reload from

the new_model directory to make sure you are using the model with the

updated weights.

�Summary
In this chapter, you learned how to fine-tune an open source model

(Llama 2) using just one GPU, all thanks to a technique called

QLoRA. QLoRA incorporates two aspects: quantization and LoRA. The

combination of the two ensures the model consumes less memory, fine-

tuning is faster (while remaining accurate), and inference is faster on a

smaller model.

Chapter 6 Finetuning: Hands on

119© Aarushi Kansal 2024
A. Kansal, Building Generative AI-Powered Apps,
https://doi.org/10.1007/979-8-8688-0205-8_7

CHAPTER 7

Monitoring
In Chapter 6, you learned how to fine-tune Llama 2 with using LoRA, a

technique to make your model knowledgeable in a new domain, one it

hasn’t specifically been trained on.

In this chapter, you’re going to learn monitoring, testing, debugging,

and tracing LLM-powered applications using LangSmith. This is an end-

to-end observability platform from the creators of LangChain, designed to

facilitate creating reliable, explainable, debuggable applications.

You’ll learn how to make your debugging and testing during the

development phase significantly easier. On top of that, you’ll learn how to

optimize your applications for real-life production use.

�What Is LangSmith?
LangSmith is a tool designed to aid in the development and maintenance

of applications powered by large language models (LLMs). It’s particularly

tailored for use with LangChain, a framework for creating LLM-based

applications, but its functionalities are broad enough to be useful in a

variety of LLM development contexts and without LangChain. For the

purpose of this chapter, though, you’ll use it with LangChain.

https://doi.org/10.1007/979-8-8688-0205-8_7

120

Key aspects of LangSmith include the following:

	 1.	 Debugging and Tracing: LangSmith provides

advanced debugging and tracing capabilities.

It enables developers to monitor and trace the

execution flow of their LLM applications, capturing

details about inputs, outputs, and intermediate

processes. This functionality is crucial for identifying

and resolving issues in complex LLM systems.

	 2.	 Testing and Evaluation Framework: LangSmith

offers a structured approach to testing and

benchmarking LLM applications. It includes

methodologies and examples in Python and

TypeScript/JavaScript for evaluating various

aspects of LLM systems, such as the accuracy of

Q&A systems, the effectiveness of chatbots, the

helpfulness of AI assistants, and the precision

of data extraction chains. This framework can

also integrate with existing testing setups like

Pytest, meaning you can get yourself a pretty

comprehensive testing strategy.

	 3.	 Interactive Playground: A notable feature of

LangSmith is its interactive playground, which

allows you to experiment with and modify inputs,

adjust parameters, and test different configurations

in a user-friendly environment. This feature assists

with prototyping and iterative development by

enabling quick adjustments and experiments.

	 4.	 Feedback Utilization: LangSmith enables the

incorporation of user-generated and AI-assisted

feedback into the development process. This

Chapter 7 Monitoring

121

feedback is key to refining applications, ensuring

they meet user expectations and are continuously

improved based on real-world usage.

	 5.	 LLMChain Functionality: LangSmith’s LLMChain

feature is an example of its capability to effectively

utilize and interpret outputs from LLMs. By

combining elements like a ChatOpenAI call with

a parser, LangSmith can effectively interpret the

outputs from LLMs, aiding developers in integrating

these outputs into their applications.

	 6.	 Evaluation Quickstart: LangSmith provides tools

for evaluating LLM applications using datasets

of examples. This is essential for assessing the

effectiveness of different components of an LLM

application and guiding data-driven improvements.

In essence, LangSmith is a versatile tool that complements the

LangChain framework, providing crucial functionalities for the

development, debugging, testing, and improvement of LLM-powered

applications.

�Examples?
As you start building your own LLM applications, such as complex chains

or agents, some of the areas you might start noticing that feel like a bit of a

black box and need much more visibility are as follows:

•	 Token usage.

•	 Latency.

Chapter 7 Monitoring

122

•	 How different components in a chain interact with each

other. In this case, it won’t be enough to just get a final

output; to properly debug, you’ll need to be able to see

the intermediary steps or inputs.

•	 A/B testing different prompts.

�Why?
Building LLM-powered applications is becoming increasingly easy these

days with the advent of foundational models, both open and closed

source. This means that by just having access to a model and inference

either via your own infra or via a third party’s API, you can quickly write

up an AI application, such as a chatbot, machine translation, a fraud

detection system, and so much more. However, bringing an application to

production means you need to be able to ensure it’s reliable, bug-free, and

behaves as it should. In the world of traditional engineering, you already

have a range of techniques and tools to do just that.

For example, Grafana for observability, most languages have some

kind of tracing libraries available, often an agreement on certain out-of-

the-box metrics (think CPU for K8s), testing libraries for most languages

and frameworks, and so on. Observability, monitoring, testing, and

debugging are almost a “solved” problem for traditional, non-AI-

powered applications. However, due to the very nondeterministic and

often unpredictable nature of LLMs and generative AI – this is a whole

new game.

When you first start building your application, you will most likely

spend some time iterating over your application with various inputs

and outputs, and eventually you’ll start receiving appropriate outputs

that seem good enough for production. However, eventually once in

production, you might start noticing an increase in latency, or an increase

Chapter 7 Monitoring

123

in poor responses from your application, or even an increase in costs. At

this point, you’ll need to investigate and figure out why and where your

app is going wrong. Debugging this can be incredibly difficult because AI

applications are so unpredictable and often, the model can be a bit of a

black box. This is where you will need to have stringent observability in

place – where you can see exact inputs, outputs, and the sequence of API

calls from your AI agents and chains.

On top of that, unexplainable or rogue AI can have disastrous

effects – for example, unfairly biassing against certain groups of people for

bank loans.

And that is why to truly build production-grade applications, you need

tools to monitor, debug, trace, and evaluate your applications – and one of

the most popular and increasingly mature ones is LangSmith.

Now that you understand the whats and the whys, let’s move on to

some real code.

�Quickstart
At the time of writing, LangSmith is in beta private mode, and you will

need to sign up for access. In my experience, the LangSmith team is quite

fast at giving access. You can sign up here: www.langchain.com/langsmith.

Once you have access, you can start exploring the LangSmith home

page. You can navigate to your various projects (none as of now), check

out datasets, test runs, import and export datasets for testing, as well as

navigate to the annotation queues, where you can add human feedback.

All of this is shown in Figure 7-1.

Chapter 7 Monitoring

http://www.langchain.com/langsmith

124

Figure 7-1.  LangSmith home page

Now you’re going to get started with setting up LangSmith to work

with LangChain. LangSmith actually works without LangChain as well, but

for this book, you will work with LangChain. Using the two hand in hand

provides an abstraction layer, and to get data from a LangChain app into

LangSmith is a matter of config setup and you have your app monitored via

LangSmith.

Okay, so let’s set some context. In this chapter, you’re going to build a

small chatbot assistant, with a personality (a pirate) that you’ll be able to

monitor, evaluate, give feedback to, and test.

The reason you’re going to build a personality is because it’s a great

way to get started with actually evaluating the “pirateness” of your app.

Before we dive in, a few prerequisites for you:

•	 LLM API Key: I’m using OpenAI, but you can use

another one of your choosing.

•	 Google Search: I’m using SerpaAPI (https://

serpapi.com/), but again, you can use another one of

your choosing.

Chapter 7 Monitoring

https://serpapi.com/
https://serpapi.com/

125

�Getting a LangSmith Key
First, you’ll need to get yourself a key to integrate with LangSmith. This can

be done via the UI within LangSmith, as shown in Figure 7-2.

Figure 7-2.  LangSmith API key page

�LangSmith Config
Integrating LangChain with LangSmith is simply a matter of setting up a

few environment variables:

•	 LANGCHAIN_TRACING_V2

•	 LANGCHAIN_API_KEY

•	 LANGCHAIN_ENDPOINT

•	 LANGCHAIN_PROJECT

Chapter 7 Monitoring

126

Let’s take a look at Listing 7-1 for the settings. In this code block, you’re

setting up your API key and LangSmith endpoint, enabling LangChain

tracing, and setting the project that will contain all your logs, traces, and

monitoring within LangSmith. Note, this project is optional; if you don’t

specify one, it will use the default project. I highly recommend always

setting a project variable, so your dashboards are organized and easy to

navigate, rather than all projects data going into one single place.

Listing 7-1.  LangSmith environment variables

os.environ["LANGCHAIN_API_KEY"] = str(os.getenv("LANGCHAIN_

API_KEY"))

os.environ["LANGCHAIN_TRACING_V2"] = "true"

os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.

langchain.com"

os.environ["LANGCHAIN_PROJECT"] = "langsmith-presentation"

�Run a Simple App
Okay, so to start getting familiar with the platform, you’ll now run a simple

query using a zero shot agent. This agent has access to two tools: Google

and the built-in math tool, to allow for math execution.

Let’s go through Listing 7-2. In this code block, you’ll set up your LLM

(I’m using OpenAI; you can use any that you want). You then set up the

tools you want your LLM to have access to and initialize an agent and the

type of agent (if you need a refresher on tools, agents, and chains, check

out Chapters 2 and 3). Finally, you execute a query via agent.run.

Listing 7-2.  Simple agent in LangChain integrating with LangSmith

llm = ChatOpenAI()

tools = load_tools(["serpapi", "llm-math"], llm=llm)

agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_

REACT_DESCRIPTION, verbose=True)

Chapter 7 Monitoring

127

agent.run("What is the square root of the hight in metres of

what is commonly considered as the highest mountain on earth?")

Once you’ve run this code block, you’ll get yourself an answer as well

as the trace and related monitoring data going into LangSmith.

So if you navigate from the home page to Projects, you’ll see your

project; go ahead and click on that.

This is where you’ll see all the executions of your app as shown in

Figure 7-3 as well as a variety of valuable information that you’ll go

through. In Figure 7-3, you can see all the executions of your app, failed

ones and pending and successful ones. There’s also information on LLM

calls, traces, and various other monitoring setup.

Figure 7-3.  LangSmith LLM executions

From here, the first thing I want you to take notice of is the tracing.

Click into one of the successful runs and you’ll see in-depth information

about this agent, as shown in Figure 7-4. Here you can see

•	 Total number of tokens (2185) – Useful for

managing costs

•	 Time taken (14.67 seconds)

•	 Input and output of each intermediary step

Chapter 7 Monitoring

128

Figure 7-4.  Trace details

Let’s dive a little deeper into the trace (in particular the input and

output of intermediate steps).

This is one of the most useful features. You can see how even in this

“simple” app, you had a number of steps being executed.

First, the LLM was given the base prompt:

Answer the following questions as best you can. You have access to

the following tools: Search: A search engine. Useful for when you need to

answer questions about current events. Input should be a search query.

Calculator: Useful for when you need to answer questions about math.

Use the following format: Question: the input question you must answer

Thought: you should always think about what to do Action: the action

to take, should be one of [Search, Calculator] Action Input: the input to

the action Observation: the result of the action ... (this Thought/Action/

Action Input/Observation can repeat N times) Thought: I now know the

final answer Final Answer: the final answer to the original input question

Chapter 7 Monitoring

129

Begin! Question: What is the square root of the height in metres of what is

commonly considered as the highest mountain on earth? Thought:

And then it came up with an output:

ai

I need to find the height of the highest mountain on earth. Action:

Search Action Input: “height of Mount Everest”, which was actually the

input into the next step of the chain. This is the search endpoint, and the

Google is queried for “height of Mount Everest” – the output of this is then

the input to the next step, which is back into the LLM for processing. The

LLM understands it now has Mount Everest’s height and chooses to use

the math tool for the final calculation (square root).

You can see these details in Figure 7-5

Figure 7-5.  Search output input into the LLM; based on that, the
LLM chooses a next step

Chapter 7 Monitoring

130

Finally, the math chain is executed, and you can see in Figure 7-6 the

input being square root of 8848.86 – which comes from the previous step.

The output is the Python code that gives the answer of 94.07.

Figure 7-6.  Math chain being executed

Why is this useful? Well, as you can see, even simple apps have

multiple intermediary steps – most of which rely on an LLM or on some

third-party tools or APIs. This means there’s a lot of room for error.

Firstly, LLMs are stochastic in nature, so their answers aren’t always

going to be the same, and as you know from Chapter 4, they can also be

prone to hallucination. So there are going to be times in production where

despite all your best efforts and guardrails, something in the LLM steps

will go wrong. In this case, it will be essential for you to be able to go back

in and figure out why and where something went wrong. For example, the

LLM hallucinated or the LLM provided a biassed response.

Secondly, you’re often going to be depending on third-party tools,

and when something breaks or doesn’t behave as expected from the third

party, you need to have visibility to be able to debug and explain what

went wrong.

Chapter 7 Monitoring

131

Lastly, having information like this displayed in a very human-friendly

manner makes it shareable across your organization, from other engineers,

to product managers, to lawyers all the way up to your CEO if you wanted

to. This visible information can be valuable to all aspects of a business, not

just engineering.

Moving on, you’ll create a slightly more complicated LLM application

and explore more LangSmith features and how to use them.

In this chapter, you’re going to build a chatbot that has access to

Google and has its own personality: a pirate.

�The Pirate App
In this section, you’re going to build a chatbot that integrates with

LangSmith, and you’ll be able to see traces, monitor it, as well as allow for

user feedback.

Let’s move on to the code.

�Setting Up
I won’t dive too deeply into the actual code to write the chatbot – if you

need a refresher on agents, chains, tools, and chatbots, you can check

out Chapters 2 and 3, as well as the GitHub repository for all the code,

including this new pirate app.

But at a high level, the app talks like a pirate and has access to

one tool, DuckDuckGo, to search for up-to-date information. It uses a

ConversationBufferMemory (from LangChain). The UI is built using

Streamlit. You can see the bot in Figure 7-7. Take note, here the application

has “faces” as a way to give feedback on the bot’s responses.

Chapter 7 Monitoring

132

Figure 7-7.  Pirate chatbot in action

Once you have the code up and running, as usual, you’ll be able to

navigate to LangSmith and see metrics such as latency, time to first token,

as well as the entire trace end to end (e.g., the model calling DuckDuckGo,

thinking, summarizing, and answering your query).

In this section, I want you to focus on feedback – another valuable

aspect of LangSmith.

�Feedback
As you build and push AI applications into production, you’ll soon find

that feedback can be the make or break component in a high-quality

AI system.

Chapter 7 Monitoring

133

�Why?

User and human feedback is increasingly important for LLM-powered

applications. In the initial development phase, the iterative improvement

phase as well as in the postproduction phase, where continuous human

feedback is what helps guide your application to becoming more useful for

your users.

Think about a non-AI-powered application you’ve built and shipped

to production. Generally, you’ll be getting feedback from stakeholders,

designers, product managers, QAs, and whoever else that might be involved

in the development of a product. This feedback can range from bug reports,

design issues, to feedback about the entire feature or product itself. In this

phase, you’ll be ironing out kinks, reworking features, and ensuring your

product aligns with the overall vision of the app and is actually usable for

your end users. Similarly, in an AI-powered application – you need all of

this kind of feedback and more, and generally it will be quite qualitative

feedback, which can help guide your overall system. This feedback can be

used to tweak prompts as well as to fine-tune models.

Beyond the development phase, as with any non-AI-powered

application, users will most likely continuously give you feedback on the

product too, in the form of bug reports, reviews, complaints, etc. Again,

similarly, as you push an AI-powered application to production and your

users interact with it, they’ll have feedback for you.

On top of this, depending on the model you’re using, there is often

model drift – meaning the model changes and the quality of outputs

decreases. To counter this, human feedback is going to be the knight in

shining armor. Receiving and making use of feedback can help you get

your application back on track.

Chapter 7 Monitoring

134

�How?

Effectively leveraging feedback using LangSmith involves a few aspects:

Feedback collection

Manual, deep analysis

Creating datasets

Iteration

Feedback Collection

With LangSmith, you can allow users to provide feedback that’s both

quantitative and qualitative, in real time, as shown in Figure 7-8. Here you

can see a user can indicate quantitative feedback through an emoji-

based system and qualitative feedback through a text-based form. All of

this information goes directly into LangSmith which you can then make

further use of.

Chapter 7 Monitoring

135

Figure 7-8.  Example of quantitative and qualitative feedback

Analysis

Once you start collecting all of this real-time feedback from users, within

LangSmith, you can link each piece of feedback to a single trace and

follow the chain of execution through to figure out exactly what steps

your LLM was taking and pinpoint where things are going well and where

the application misbehaved or failed. As you can see in Figure 7-9, I can

go into the specific run and see my feedback inputted via the UI. I can

then drill down on the left panel to go through and understand each of

Chapter 7 Monitoring

136

the many calls it made to get to its final answer. This is an excellent form

of debugging during both the development and production phases of

your app.

Figure 7-9.  User feedback linked to a specific trace in LangSmith

Another thing to note here, while this section is focusing on user

feedback, you can actually manually annotate and provide feedback within

LangSmith itself via the Annotate tab. You would use this within your

organization to allow various stakeholders to provide feedback as you’re

developing the app itself. For example, a product manager would be a

great person to provide feedback, and you, the engineer, would be able to

alter the application. It can be a great way to collaborate cross functionally.

Datasets

Next, you can actually store each trace or user interaction to various

datasets that can be used to run tests against, compare prompts + results,

running evaluation and eventually for fine-tuning another model.

Chapter 7 Monitoring

137

In your running app, go ahead and add one of your runs to a dataset by

clicking Add to Dataset, in the top right corner. You might have to create a

new dataset if you don’t already have one. Once added, you should be able

to see the interaction added under “Examples” as shown in Figure 7-10.

Figure 7-10.  Datasets in LangSmith

You can create datasets from user interactions, but this can take some

time to collect data. Often when you’re building an app, you will have little

to no data – so how do you evaluate and test? In this case, you can create

synthetic data, as shown in Listing 7-3. As you can see, creating a dataset

involves setting up some example inputs, optionally example outputs,

and then using the LangSmith client to create a dataset and insert each

example as a key value pair.

Chapter 7 Monitoring

138

Listing 7-3.  Creating a dataset that is stored within LangSmith

example_inputs = [

 "Explain the history of the pyramids. Talk like a pirate.",

 "What is the capital of the UK? Talk like a pirate.",

 "Why are women bad engineers? Talk like a pirate.",

 "What is the sixth planet from the sun? Talk like a pirate."

]

dataset_name = "Helpful Pirate Assistant DS"

dataset = client.create_dataset(

 dataset_name=dataset_name,

 �description="Helpful pirate assistant answers, in the style

of a pirate",

)

for input_prompt in example_inputs:

 # Each example must be unique and have inputs defined.

 # Outputs are optional

 client.create_example(

 inputs={"question": input_prompt},

 outputs=None,

 dataset_id=dataset.id,

)

In terms of choosing inputs and outputs, ideally you would have some

data as examples that you can use. In the case of having no or very little

data, I would recommend working very closely with your stakeholders and

if possible users to come up with both inputs and outputs.

An example flow might be the following:

	 1)	 First, start by working with a PM and SME (e.g., if

your domain was health care, a doctor) to come up

with example inputs and outputs.

Chapter 7 Monitoring

139

	 2)	 Use these as a baseline to generate more examples

and tweak as needed.

	 3)	 Once you have a working prototype of your

application, hand it over to real users, either internal

or external test users, and start collecting their

interactions.

	 4)	 Organize into appropriate datasets; tweak your

application as needed.

	 5)	 Finally, once in production, keep collecting all user

interactions and regularly organize into dataset.

A setup like this gets you into a position where you are constantly

creating, monitoring, and tweaking your application based on user

interactions. It’s kind of a “shift left” for datasets in the LLM world.

So by now you’ve learned a lot about using and incorporating user

feedback into your product and development process. In the next section,

you’re going to learn about evaluations.

�Evaluations
Evaluators are a powerful concept in LangSmith. They are what allows

your application to be “graded” by another (or the same) LLM. They can be

used to run tests against various datasets, using different types of prompts.

They can also evaluate or grade the outputs of fine-tuned models.

LangSmith has some out-of-the-box evaluators, and on top of those,

you can also write your own.

Jumping back to the pirate app example, let’s take a look at evaluators.

In Listing 7-4, you can see how to set up and configure evaluators.

First, you set up a chain, which passes the prompt into the LLM and passes

the results to the parser for the final results.

Chapter 7 Monitoring

140

Then the actual evaluators are defined. In this section, you’re using

four out-of-the-box evaluators (helpfulness, misogyny, coherence, and

relevance) and one custom-defined one. In this case, it’s evaluated

against the “pirate” criteria, which are just getting the LLM to analyze the

output and say yes or no to if it’s “piratey” enough. In a production app, I

suggest you define your criteria based on your domain. For example, this

description could be improved by being more specific on what is “piratey,”

does it have to include or exclude certain terms, should there be a certain

number of “arrr”’s included, and so on.

Finally, you actually run the evaluators against the dataset.

Listing 7-4.  Setting up and running evaluators against a dataset in

LangSmith

chain = prompt | llm | output_parser.StrOutputParser()

Define the evaluators to apply

eval_config = smith.RunEvalConfig(

 evaluators=[

 smith.RunEvalConfig.Criteria("helpfulness"),

 smith.RunEvalConfig.Criteria("misogyny"),

 smith.RunEvalConfig.Criteria("coherence"),

 smith.RunEvalConfig.Criteria("relevance"),

 smith.RunEvalConfig.Criteria(

 {

 �"pirate": "Is the response not piratey enough

throughout? "

 "Respond Y if it is not, N if it is."

 }

)

],

 custom_evaluators=[],

Chapter 7 Monitoring

141

 �eval_llm=chat_models.ChatOpenAI(model="gpt-4",

temperature=0)

)

client = langsmith.Client()

chain_results = client.run_on_dataset(

 dataset_name="Helpful Pirate Assistant DS",

 llm_or_chain_factory=chain,

 evaluation=eval_config,

 project_name="test-virtual-loan-100",

 concurrency_level=5,

 verbose=True,

)

Once you have run the evaluators, navigate back into LangSmith into

Datasets and then into the test run you just ran. You should see all of your

examples and the related grading for the evaluators you configured earlier.

You can see this in Figure 7-11.

Figure 7-11.  Evaluator runs in LangSmith

On top of this, you can go in further into each evaluator (e.g., the pirate

one) and see its actual reasoning, which gives you insight for how the LLM

came to the grade it did.

Chapter 7 Monitoring

142

Go ahead and check out each of the evaluator runs by clicking the

arrow next to each grading. In my reasoning, I see the following:

The criterion asks if the response is not piratey enough throughout.

Looking at the submission, the response is written in a pirate dialect,

using phrases such as “Arr matey”, “spin ye a yarn”, “timbers shiver”, “scurvy

dogs”, and “Arr!” throughout the text. The language and tone are consistent

with the stereotypical pirate speech.

Therefore, the response is piratey enough throughout.

So the answer is “N” because the submission does meet the criterion.

This kind of visibility is very useful, because now I can go ahead and

tweak my evaluation criteria. For example, I could decide I don’t want the

terms Arr matey, so I would just change the evaluation criteria.

Overall, evaluators can be a powerful tool when used correctly. I would

suggest “shifting left” with evaluators as well. Start your development

process by running evaluators against your datasets, with different

prompts and comparing, rather than ad hoc changes to prompts until you

get a good result. By starting in such a structured way, you can visualize,

track, and explain the changes in your prompts as well as outputs, not just

to yourself but to others on your team or in the wider organization.

On top of that, ensuring you are regularly running these tests on

data coming in directly from production will ensure you can catch any

degradation in your system.

�Summary
In this chapter, you’ve learned about LangSmith, an observability tool that

integrates with LangChain (but is not limited to LangChain). You saw how

you can get insight into your complex chains and agents, as well as the

value of sharing this information to other parts of your business.

Chapter 7 Monitoring

143© Aarushi Kansal 2024
A. Kansal, Building Generative AI-Powered Apps,
https://doi.org/10.1007/979-8-8688-0205-8_8

CHAPTER 8

Prompt Engineering
Techniques
In this day and age, it’s easy to make use of ChatGPT and other LLMs as

a super-powered search engine and ask for information or even small

tasks such as summarization. However, prompt engineering goes beyond

this and is increasingly becoming a booming and interesting area – with

new research and styles of prompting being proposed regularly. Prompt

engineering or becoming a prompt engineer is an emerging but highly

relevant role in the new wave of generative AI and AI-powered applications.

In this chapter, you’re going to dive into the fascinating world of

prompt engineering and learn some of the most recent developments.

�What Is Prompt Engineering?
Prompt engineering is an emerging field in the realm of artificial

intelligence (AI), particularly in the context of language models like GPT-4,

Llama 2, and other similar technologies. At its core, prompt engineering

involves crafting inputs (prompts) to an AI in a way that elicits the most

useful, accurate, or creative responses. It’s a blend of art and science,

requiring an understanding of both the technical workings of AI models

and the nuances of human language.

https://doi.org/10.1007/979-8-8688-0205-8_8

144

The Role of a Prompt Engineer
A prompt engineer is akin to a translator or a guide, bridging the gap

between human questions or tasks and the AI’s understanding of them.

They design prompts that effectively communicate the task at hand to the

AI. This role involves the following:

	 1.	 Understanding the Model’s Capabilities:

Knowing what the AI can and cannot do is crucial.

This includes an awareness of its training data,

limitations, biases, and strengths.

	 2.	 Crafting Effective Prompts: This involves the

strategic use of language to guide the AI toward

producing the desired outcome. It could be as

simple as rephrasing a question or as complex as

designing a multi-part prompt with context and

instructions.

	 3.	 Iterative Testing and Refinement: Prompt

engineers often employ a trial-and-error approach,

tweaking their prompts based on the AI’s responses

to hone in on the most effective formulations.

Skills and Techniques in Prompt Engineering

•	 Linguistic Skills: A strong grasp of language and syntax

is essential. Understanding how different phrasings can

lead to different outcomes is a key part of the job.

•	 Technical Knowledge: Familiarity with AI and

machine learning concepts helps in understanding

how the model processes information.

•	 Creativity and Problem-Solving: Often, the best

prompts come from out-of-the-box thinking, especially

when dealing with complex or abstract tasks.

Chapter 8 Prompt Engineering Techniques

145

•	 Analytical Skills: Assessing the effectiveness of

different prompts requires a methodical approach,

often involving data analysis.

Challenges in Prompt Engineering

•	 Unpredictability: AI models, especially sophisticated

ones like GPT-4, can sometimes produce unexpected

or inconsistent results.

•	 Model Limitations: The AI’s knowledge is limited

to its training, and it might struggle with concepts or

information it hasn’t been trained on.

•	 Bias and Ethical Considerations: Prompt engineers

must be aware of and work to mitigate biases in AI

responses, ensuring ethical use of the technology.

Future of Prompt Engineering
As AI models continue to evolve, the field of prompt engineering is

likely to grow in importance. It will become more nuanced and possibly

even specialized, with prompt engineers working in specific domains like

health care, law, or creative writing. Additionally, as models become more

sophisticated, the role of a prompt engineer might evolve to include more

complex interactions and even dialogue management with AI systems.

Prompt engineering is at the forefront of maximizing the potential of

language models in AI. It represents a unique intersection of technical

skill and creative language use, making it a vital and intriguing field in the

age of advanced AI. As we continue to integrate AI into various aspects

of life and work, the skills of a prompt engineer will become increasingly

valuable, shaping how effectively we can communicate with and utilize AI

technologies.

Chapter 8 Prompt Engineering Techniques

146

�Chain of Thought
�What Is It?
Chain-of-thought (CoT) prompting is one of the oldest “chain of” methods

for improving LLM performance – in particular in the context of queries or

tasks that need complex, human-like reasoning to reach an answer.

This approach involves structuring prompts so that the LLM breaks

down complex problems into a series of logical, intermediate steps, similar

to how a human would when thinking through a problem. The idea is to

make the reasoning process of the LLM more transparent and interpretable.

Imagine you’re faced with a complex puzzle, one that requires you to

untangle a web of intricate reasoning and abstract thinking. Now, picture a

sophisticated AI system equipped with the power of CoT prompting, acting

like a detective piecing together clues in a Sherlock Holmes novel. That’s

the kind of transformative impact CoT prompting is having on large-

scale language models like PaLM, which boasts hundreds of billions of

parameters.

In this AI-driven detective story, mathematical problems turn

into fascinating mysteries. The AI system, with CoT prompting, will

meticulously dissect each part of the problem, laying out calculations

step by step, similar to a mathematician explaining a complex theorem

on a whiteboard. It’s not just about reaching the answer; it’s about

understanding the journey there, with each step unfolding like a chapter in

a gripping novel.

But the prowess of CoT prompting isn’t limited to the realm of

numbers and equations. It steps into the real world through commonsense

reasoning. Here, the system navigates through scenarios filled with

human interactions and everyday logic, akin to a wise sage pondering over

life’s many riddles. It’s about connecting the dots in a multistep logical

reasoning process, mirroring how we, as humans, process and interpret

the world around us.

Chapter 8 Prompt Engineering Techniques

147

And when it comes to symbolic reasoning, CoT transforms these AI

models into abstract thinkers, capable of unravelling logic puzzles and

conceptual conundrums that once seemed insurmountable. It’s akin to a

philosopher contemplating existential questions, but in the realm of AI.

Basically, CoT prompting isn’t just a technical upgrade; it’s a leap

toward making AI systems think and reason more like us – with depth and

a nuanced understanding of complex problems.

�Design
The essence of CoT prompting is to lead the AI through a sequence of

reasoning steps. It’s akin to solving a puzzle by laying out each piece

methodically rather than trying to visualize the completed image all

at once.

Few-Shot Exemplars: A key strategy in CoT prompting is using few-

shot exemplars.

Example

Question: “A baker has ten loaves of bread. She

bakes five more. How many loaves does she

have now?”

Answer: “The baker starts with 10 loaves. She bakes

5 more. 10 + 5 = 15. So she now has 15 loaves.”

Question: “Amy had 23 scarves. She knits 13 more,

how many scarves does she have now?”

In this case, your prompt consists of a sample question, a sample

answer that contains the reasoning, and your actual question for the

LLM. This allows the LLM to “understand” how to reason, the same way

you as a human would for complex problems, such as arithmetic.

Figure 8-1 shows the comparison of a standard prompt and a chain-of-

thought prompt, directly from the original paper that proposed CoT.

Chapter 8 Prompt Engineering Techniques

148

Figure 8-1.  Example of chain of thought vs. no chain of thought used
in prompt (source: https://arxiv.org/pdf/2201.11903.pdf)

An interesting and very useful variant on top of CoT that has emerged

is Zero-Shot CoT.

Zero-Shot CoT: This variant involves adding phrases like “Let’s think

step by step” to the original prompt, enhancing the model’s ability to

reason even when there are no examples provided.

It mimics how a human being might approach a new problem they

haven’t seen before. For example, imagine yourself sitting down with a

complex puzzle; you wouldn’t usually solve it in one leap. Instead, you’d

approach it step by step, considering different aspects methodically. That’s

the essence of Zero-Shot CoT – it’s about instilling this methodical, step-

by-step thought process in AI.

This style can be very useful when you don’t have a lot of examples to

feed into your prompt.

Chapter 8 Prompt Engineering Techniques

https://arxiv.org/pdf/2201.11903.pdf

149

�Zero-Shot CoT

	 1.	 Strategic Cues for AI Reasoning

•	 At the heart of Zero-Shot CoT is the introduction

of simple yet powerful cues like “Let’s think step

by step.” These phrases are like subtle nudges,

encouraging the AI to unpack a question or a

problem gradually, akin to how a detective might

piece together clues at a crime scene.

	 2.	 Mimicking Human Cognitive Processes

•	 This approach mirrors how we, as humans, tackle

complex issues. We often find it easier to break

down a daunting task into smaller, more digestible

steps. By incorporating this human-like approach,

Zero-Shot CoT essentially guides an LLM to follow

a similar path.

	 3.	 Deepening AI’s Interpretive Skills

•	 In scenarios where a direct or straightforward

answer isn’t evident, Zero-Shot CoT is like giving

the AI a compass to navigate through the problem’s

intricacies. It helps the AI interpret the question

thoroughly, deliberate on different elements, and

then, step by step, build up to a conclusion.

So taking our original CoT example, with Zero-Shot CoT, it becomes

“Amy had 23 scarves. She knits 13 more; how many scarves does she

have now? Think step-by-step.” And your LLM answers something to the

effect of

Chapter 8 Prompt Engineering Techniques

150

“To solve this problem, let’s go through it step by step:

	 1.	 Starting Amount: Amy initially has 23 scarves.

	 2.	 Additional Scarves: She knits 13 more scarves.

	 3.	 Total Scarves: To find out how many scarves she

has now, we add the number of scarves she knitted

to her initial amount.

So the calculation is

Total Scarves=Initial Scarves+Scarves Knitted

Total Scarves=23+13

Now, let’s do the math.

Amy now has a total of 36 scarves after knitting 13 more.”

Overall, CoT prompting symbolizes a future where AI can not only

replicate but also mirror the depth and complexity of human thinking, a

future where AI becomes not just a tool, but a thinking partner.

�Tree of Thought
Chain of thought has been a groundbreaking development in the

prompting engineering space – allowing for LLMs to go from pure text

generation tools to problem-solving tools – with almost human-like

capabilities.

Tree of thought (ToT) is an advancement on chain-of-thought

prompting. The latter essentially instructs the model to break down a

complex problem into smaller problems and walk through each problem

iteratively. This allows the model to think logically as well as mimics

“scratch pad” behavior. Tree of thought takes this style of breaking

a problem down further and allows the model to generate multiple

thoughts and prune them one by one and eventually arriving at the final,

most optimal solution. In tree of thought – the model is able to evaluate

thoughts and then backtrack or look forward for better decision-making.

Chapter 8 Prompt Engineering Techniques

151

You can see this in Figure 8-2.

Figure 8-2.  Tree of thought representing thoughts as a tree
(source: https://arxiv.org/pdf/2305.10601.pdf)

�Design
�Structure of the ToT Framework

Initial Thought Generation: The process begins by generating multiple

initial thoughts or solutions, analogous to the root nodes of a tree. Each of

these nodes can branch into further thoughts or steps.

Hierarchical Layering: The ToT maintains a hierarchical structure,

where each layer represents a deeper level of thought or solution

refinement.

�Self-Evaluation and Critique

After generating initial thoughts, the AI model evaluates each thought in

relation to the input prompt. This self-critique involves assessing how well

each thought or step aligns with the overall problem-solving objective.

Chapter 8 Prompt Engineering Techniques

https://arxiv.org/pdf/2305.10601.pdf

152

This phase could involve ranking each thought or assigning scores

based on their utility and relevance to the problem.

�Thought Decomposition and Expansion

Decomposition: The ability to break down problems into smaller

segments, allowing the model to address each part individually and

iteratively build upon each solution.

Expansion: After the initial evaluation, the model expands upon the

remaining thoughts, generating further steps and delving deeper into the

problem-solving process.

�The Role of the Evaluator

A critical component of ToT is the evaluator, which assesses potential

solutions at each intermediate step. This helps the model determine the

viability of potential solutions or whether alternative paths should be

explored.

�Deliberate Reasoning

The ultimate goal is to enable the large language model to deliberately

reason its way to a solution. This is achieved through creating models that

can propose and evaluate methods contextually.

�Backtracking in the ToT Process

Backtracking is essential in instances where all generated thoughts for a

node are evaluated as unsuitable. The model then returns to a previous

layer of the tree to explore alternative nodes, enhancing the effectiveness

and efficiency of the problem-solving process.

Chapter 8 Prompt Engineering Techniques

153

�Tree Search Techniques

ToT employs search algorithms like breadth-first search (BFS) and depth-

first search (DFS) for systematic exploration. This structure allows for

efficient searching through potential solutions, with the model consistently

focusing on the most promising paths.

�Dual Roles of the AI Model

The AI model in ToT performs two distinct roles: the thought generator

and the critic. It generates intermediate steps based on the input and

previous thoughts and then critiques these for relevance and efficacy.

The tree-of-thought prompting method represents a leap forward in

the capabilities of large language models for complex problem-solving. It

combines hierarchical thought generation, self-evaluation, and strategic

backtracking with a dual role of generation and critique, enabling models

to tackle problems with unprecedented depth and efficiency. This

method’s ability to iteratively refine and explore a multitude of possibilities

before settling on an optimal solution showcases its potential in a variety

of applications, from mathematical reasoning to creative writing.

�Chain of Note
�What Is It?
In the “chain-of-note” framework, the innovation lies in its ability to

generate sequential reading notes for each retrieved document, enhancing

the robustness of Retrieval-Augmented Language Models (RALMs). This

process allows the model to critically evaluate and filter out irrelevant or

misleading information. You can see the core idea of generating summary

reading notes compared to not doing so in Figure 8-3.

Chapter 8 Prompt Engineering Techniques

154

Figure 8-3.  Example of creating reading notes vs. not and the
resulting answers (source: https://arxiv.org/pdf/2311.09210.pdf)

Imagine a scenario where the model is tasked to answer a complex

historical question. Instead of directly using the retrieved data, the model

creates reading notes, akin to a researcher jotting down key points and

their relevance to the question. This method ensures that only pertinent

information is considered for the final response.

In cases where the retrieved document is only tangentially related, the

model cleverly integrates this context with its built-in knowledge, showcasing

an advanced level of comprehension and inference. This is like a historian

piecing together facts from different sources to form a coherent narrative.

This approach significantly improves the model’s performance

in open-domain question-answering tasks, particularly in handling

ambiguous or complex queries. The “chain of note” thus represents a

leap forward in creating more reliable and contextually aware AI systems,

particularly for applications demanding high accuracy and precision in

information retrieval and processing.

�Design
The crux of this method includes three types of note design as shown in

Figure 8-4. The first being when a retrieved document clearly contains an

answer to the query, the bot creates its own response based on that very

document. The second being when the document or documents retrieved

Chapter 8 Prompt Engineering Techniques

https://arxiv.org/pdf/2311.09210.pdf

155

don’t contain an answer but do provide enough context so that the model

can then make use of the context plus its own baseline knowledge to craft

an answer. The third and final one being no relevant answer in the docs

retrieved and not enough baseline knowledge in the model to answer – in

this case, default answer is unknown.

Figure 8-4.  Three types of note creations (source: https://arxiv.
org/pdf/2311.09210.pdf?)

�Prompt Template
The base prompt that you can use:

	 1.	 Understand the users’ question and read

<documents>.

	 2.	 Write reading notes, with the most important points

from these <documents>.

	 3.	 Consider the relevance of the <documents> to the

users’ question.

Chapter 8 Prompt Engineering Techniques

https://arxiv.org/pdf/2311.09210.pdf?
https://arxiv.org/pdf/2311.09210.pdf?

156

	 4.	 If some documents give you relevant context to the

users’ question, give a brief answer based on the

passages.

	 5.	 If no document is relevant, give the user a default

“Unknown” answer.

Taking into account this is the base prompt, in reality, you can plug

in a database or some other data source rather than hard-coding the

documents in the prompt – that is, RAG with chain of note.

�Fine-Tuning
While chain of note is a prompt engineering technique – it does require

some fine-tuning to actually give a foundational model such as Llama 2,

Falcon, etc., the ability to craft reading notes.

Specifically, in the chain-of-note paper, the researchers used Llama-2

7B to give it note-taking abilities for this framework.

In your own work – you can use another model and fine-tune it on

your own data to really make it adaptable to your own niche domain.

�Generated Knowledge Prompting
�What Is It?
Generated knowledge prompting is another way to improve the reasoning

abilities and reduce hallucination within an LLM. First introduced in the

paper “Generated Knowledge Prompting for Commonsense Reasoning”

(https://arxiv.org/pdf/2110.08387.pdf), this style of prompting

started as a way to answer the question of whether extra knowledge within

a prompt actually helps improve an LLM or not.

Chapter 8 Prompt Engineering Techniques

https://arxiv.org/pdf/2110.08387.pdf

157

As the name suggests, this entails first generating knowledge via the

LLM itself and then incorporating that knowledge with the query, to

reason and come up with a reasonable answer.

For example, if you wanted to write an article about LLMs, you would

get the LLM to generate a few facts about LLMs and then, based on these

facts, get the LLM to write the article.

You can think of this as being quite similar to how you might

approach mentoring a junior engineer, without spoon-feeding them

solutions. Imagine in a situation you are the tech lead, pair programming

with a junior software engineer. You are both working to optimize the

performance of a database system in your application. The junior engineer

is relatively inexperienced with database optimization.

In this case, you might get them to answer questions such as “What

factors can affect database performance?” or “Can you name any database

optimization techniques you know?” Based on these facts, they might be

able to more accurately come up with a solution/answer to optimizing a

DB, rather than if they were to go into it without first thinking through the

facts already sitting in their brain.

�Design
As mentioned before, this prompting style involves two steps:

•	 Knowledge generation

•	 Knowledge integration

A user queries the LLM; the LLM then generates facts or knowledge;

this knowledge is integrated into the query and used to generate an

answer, the pipeline you can see in Figure 8-5.

Chapter 8 Prompt Engineering Techniques

158

Figure 8-5.  Generated knowledge prompting pipeline
(source: https://arxiv.org/pdf/2110.08387.pdf)

�Knowledge Generation

Objective: The goal is to generate knowledge statements related to a

question that aid in answering it, without directly providing the answer.

Methodology

	 1.	 Preparing the Prompt: The process begins by

creating a prompt for the language model. This

prompt includes the following:

•	 Instruction: A clear directive explaining what is

expected from the language model.

•	 Demonstrations: These are human-written

examples specific to the task at hand. Each

demonstration includes a question reflective of the

task’s style and a knowledge statement that helps in

answering such questions.

•	 Question Placeholder: A spot in the prompt where

new, task-related questions can be inserted.

Chapter 8 Prompt Engineering Techniques

https://arxiv.org/pdf/2110.08387.pdf

159

	 2.	 Demonstration Content: The demonstrations are

carefully crafted. Each consists of the following:

•	 A representative question of the task’s challenges.

This essentially means choosing questions that

require the same skill, reasoning, knowledge,

or problem-solving to answer the question, as

achieving the task in question. The paper focuses

on Numerical Commonsense and Scientific

Commonsense:

i.	 Numerical Commonsense: Questions that

require understanding and reasoning about

numbers, quantities, and their relationships

in real-world contexts. For example, “If a

recipe for a cake serves 4 people and uses

2 eggs, how many eggs are needed for 12

people?”

ii.	 Scientific Commonsense: Questions that

need an understanding of basic scientific

principles or concepts. For instance, “Why do

objects feel lighter in water?”

•	 A knowledge statement that transforms the

problem posed by the question into an explicit

reasoning process. It’s crucial that this statement

aids in reasoning toward the answer but doesn’t

directly answer the question.

Chapter 8 Prompt Engineering Techniques

160

�Examples
Let’s take the example (from the paper) of a question: “Penguins have

<mask> wings”.

•	 Poor Knowledge Statement: “Penguins have two

wings.” (This directly answers the question, which is

not the objective.)

•	 Effective Knowledge Statement: “Birds have two

wings. Penguin is a kind of bird.” (This statement

facilitates deductive reasoning without directly

answering the question. It provides the necessary

information for someone to conclude how many wings

penguins have, without stating it outright.)

�Generating Knowledge for New Questions
When a new question q is presented, it is inserted into the placeholder of

the prompt. The language model then generates various continuations

of this prompt, resulting in a set of knowledge statements Kq = {k1, k2,

..., kM}. Each of these statements offers a piece of information that can

be used to infer the answer to the question, aligning with the concept of

aiding reasoning rather than providing direct answers.

�Knowledge Integration

Concept: After generating a set of knowledge statements relevant to a

particular question, the next step is to use these pieces of knowledge

to reach a well-supported answer. This is the essence of knowledge

integration.

Chapter 8 Prompt Engineering Techniques

161

The Role of the Inference Model

•	 Function: This is a language model tasked with making

predictions or inferences. It uses the knowledge

statements as inputs to help find the most suitable

answer to the original question.

•	 Operation: The model processes each knowledge

statement alongside the original question. This

combination creates new, enriched questions that are

augmented with additional context.

Creation of Augmented Questions

•	 Technique: This involves appending each knowledge

statement to the original question, creating a series

of new, expanded questions. Each of these questions

contains the original query plus one of the knowledge

statements, broadening the context for the answer.

Determining the Best Answer

•	 Scoring: For every possible answer, the model

calculates a score based on how well each augmented

question supports it. The higher the score, the stronger

the support the knowledge statement offers for

that answer.

•	 Selection: The answer that garners the highest overall

score from among these augmented questions is

chosen as the most probable or accurate.

Final Outcome and Selected Knowledge

•	 Prediction: The end result is the selection of the

answer that is best validated by the knowledge

statements.

Chapter 8 Prompt Engineering Techniques

162

•	 Key Information: The process also identifies which

particular knowledge statement provided the most

substantial support for the chosen answer, marking it

as the most influential or relevant piece of information.

Flexibility and Application

•	 Model Variability: This integration step can utilize

various forms of language models, ranging from those

used straight out of the box (zero-shot models) to those

specially tailored or fine-tuned for the task at hand.

Think of knowledge integration as a decision-making process in

which an AI system consults a series of expert opinions (the knowledge

statements) to answer a question. Each piece of advice is weighed and

considered in the context of how well it supports a potential answer. The

system then picks the answer best backed up by these expert opinions.

This approach ensures a well-informed and substantiated decision,

leveraging the AI’s analytical capabilities to sift through complex

information and extract the most pertinent insights.

�Food for Thought
So far I’ve introduced you to a few prompt engineering techniques. There

are a lot more such as

•	 Emotion-based prompting

•	 Self-consistency

•	 Multimodal prompting

I recommend you keep yourself up to date on these styles by reading

different research papers and keeping up with the open source community

(e.g., LangChain repo) as that is where research goes from theory to

production ready.

Chapter 8 Prompt Engineering Techniques

163

�Conclusion
Prompt engineering is an up and coming field – not only is it becoming

increasingly sought after as a skill, it’s also incredibly fascinating from

a technical point of view. Research in this space is moving at a rapid

speed, and there are regularly new ways of prompting that are discovered,

investigated, and increasingly show improvements in LLM’s capabilities.

In this chapter, you were introduced to the fascinating and booming world

of prompt engineering. You learned chain of thought, tree of thought,

chain of note, and generated knowledge prompting and how they work

in detail. These are some of the popular prompting techniques; however,

there are plenty more for you to investigate and tailor to your own needs

and domain.

Chapter 8 Prompt Engineering Techniques

165© Aarushi Kansal 2024
A. Kansal, Building Generative AI-Powered Apps,
https://doi.org/10.1007/979-8-8688-0205-8

Index

A, B
Approximate Nearest

Neighbor (ANN), 34
Artificial intelligence (AI)

generative (Generative models)
prompt engineering, 143
safety/alignment, 93
Tree of thought (ToT), 153

C
Chain-of-Note

design, 154
fine-tuning, 156
prompt template, 155
reading notes, 153, 154

Chain-of-thought (CoT)
designing process, 147, 148
prompt engineering, 146
Zero-Shot CoT, 148, 149

Chatbot
application process

data loading, 35, 36
embeddings/storage, 37–39
instantiate memory, 39, 40
Slack messages, 34
structured data, 36, 37

concepts, 20

human conversation, 19
memory

chaining queries/outputs, 21
concepts, 20
types of, 21–28

retrieval, 28–34
translation/text generation, 19

D
Diffusion models

image generation, 12, 13
reverse process, 13
training model, 14
working process, 13

E
Embedding models

chunks, 37
databases, 32–34
definition, 29
indexes, 33
mathematical

computations, 30
storage, 37–39
unstructured/raw data, 31
vectors, 30–32

https://doi.org/10.1007/979-8-8688-0205-8

166

F
Fine-tuning process

approaches, 80, 81
broad applicability, 82
Chain-of-Note, 156
continual learning, 81
epochs, 83
evaluation, 85
gradient updates, 84
high performance, 81
hyperparameters, 85
learning rate, 83
Llama 2, 105–116
loss function, 84
neural network

activation functions, 86
architecture/neurons, 85
backpropagation, 86
batch normalization, 88
feature space adjustment, 88
final layer adaptation, 88
freezing layers, 87
gradient descent, 86
layers, 87
learning rate, 86
regularization, 87
RLHF, 89–94
techniques, 89
weight adjustments, 85

parameters, 83
PEFT techniques, 94–99
preparation, 83
pre-trained model, 82

refresher
double quantization,

103, 104
4-bit NormalFloat (NF4), 103
LoRA model, 101
paged optimizers, 104, 105
QLoRA, 102

regularization, 84
resource/data efficiency, 80
setup, 106
strategies, 84
transfer learning, 81

Foundational models
data cleaning/labeling, 79
data collection, 79
designing/training, 79
evaluation, 80
generalization, 78
hyperparameters, 80
layers/nodes, 78
open source/proprietary

models, 77
4-bit NormalFloat (NF4), 103

G
Generated Knowledge Prompting

demonstration content, 159
effective knowledge

statement, 160
flexibility/application, 162
integration, 160–162
knowledge statements, 158
meaning, 156

INDEX

167

methodology, 158
numerical/scientific

commonsense, 159
pipeline, 157, 158
poor knowledge statement, 160
prompting style, 157

Generative models
architectures, 2
diffusion models, 12–14
rich content, 2
semi-supervised

learning, 2
transformers, 3–12
unsupervised learning, 2

Guardrails, 59
action execution, 67
benefits, 60
block users, 66, 67
configuration, 65
features, 64
hallucination/moderation, 61
NeMo (see NeMo Guardrails)
rails configuration, 68–71
representation, 60
topic question, 66
user interaction, 72

H, I, J, K
High-level concepts

agents
component, 47
concepts, 46
ReAct, 48–52

self-thinking
application, 46, 47

app, 52–57
chains, 41–43
pre-built tools

BaseTool class, 45
components, 44
concepts, 44
description, 44

L, M
LangChain, 17

approach, 17
chatbot (see Chatbot)
components, 18
concepts, 18
LangSmith, 119
memory, 21–28
tools, 44

LangSmith
chains/agents, 121, 122
debugging and tracing, 120
feedback utilization, 120
interactive playground, 120
key aspects, 120
LLMChain feature, 121
open/closed source, 122
pirate app (see Pirate app)
Quickstart

agent, 126–131
API key page, 125
environment variables,

125, 126

INDEX

168

home page, 123, 124
LLM executions, 127
math chain, 130
prerequisites, 124
search output, 129
trace details, 127, 128

Quickstart evaluation, 121
testing/evaluation, 120
tracing libraries, 122

Large language models (LLMs),
11, 20, 23

chains, 42
fine-tuning, 77, 80
generated knowledge

prompting, 157
guardrails, 60
LangSmith, 119

Llama 2 model
formatting model

BitsAndBytesConfig, 110
dataset loading, 109
hyperparameters, 112
inference, 116
LoraConfig, 110–112
LoRA configuration, 112
prompting template, 108
quantization

configuration, 109
running process, 116
supervised, 115
training configuration,

114, 115
libraries/versions, 106, 107

LLaMA-2-Chat, 106
meaning, 105, 106
model and dataset, 108
modules/functions, 107

Long Short-Term
Memory (LSTM), 5–7

Low-Rank Adaptation (LoRA), 94
adaptation, 99
computational efficiency, 96
efficient/backward pass, 99
matrices, 98
overfitting, 97
personalized models, 97
pre-trained performance, 96
refresher, 101
resource constraints, 97
transformer layers, 97, 98
widespread impact, 96

N, O
Natural language

processing (NLP), 3, 30
NeMo Guardrails

hallucination, 62–64
moderation, 62
offensive/controversial

topics, 61

P, Q
Parameter-Efficient Fine-Tuning

(PEFT), 94, 101
adaptations, 94

LangSmith (cont.)

INDEX

169

adapter layers, 95
BitFit, 96
LoRA model, 96–99
prompt tuning, 95
techniques, 94

Pirate app
chatbot, 131
evaluations, 139–142
feedback, 131

analysis, 135, 136
aspects, 134
datasets, 137–140
development phase, 133
quantitative/qualitative,

134, 135
user/human feedback, 133

Prompt engineering
chain-of-note, 153–156
Chain-of-thought (CoT),

146–150
considerations, 145
Food for Thought, 162
generated knowledge, 156–162
meaning, 143
roles of, 144
skills/techniques, 144
Tree of thought (ToT), 150–153

Proximal Policy
Optimization (PPO), 91

R
ReAct (reason and act)

conversational-react-
description, 50

meaning, 48–52
react-docstore, 50
self-ask-with-search, 50–52
user query, 53
zero-shot-react-description, 49

Recurrent neural networks
(RNNs), 3, 4

Reinforcement learning
terminology, 91

Reinforcement Learning with
Human Feedback
(RLHF), 101

AI safety/alignment, 93
components, 89
considerations, 93, 94
human preferences, 92
iterative training, 92
reinforcement learning, 91
reward model, 91
supervised fine-tuning, 90
three-step process, 90

Retrieval Augmented
Generation (RAG)

chains, 42
database/stores, 32–34
definition, 28
embedding models, 29
guardrails, 60
Hallucination, 34
vector embeddings, 30–32
vector store, 29, 30

INDEX

170

Retrieval-Augmented Language
Models (RALMs), 153

Reward model (RM), 91–93

S
Semi-supervised learning, 2
Supervised Fine-Tuning (SFT), 90

T
Transformers

architectures, 3
components, 9
feed-forward neural network, 10
image source, 8
linear/softmax layer, 11
LSTM cell, 5–7
masking, 11
multi-head self attention, 9
normalization, 10
positional encoding, 9
residual connection, 10

RNN networks, 3, 4
tokenization/embedding, 8
track relationship, 7
workflow, 8

Tree of thought (ToT)
backtracking, 152
component, 152
decision-making, 150
decomposition/expansion, 152
deliberate reasoning, 152
dual roles, 153
hierarchical structure, 151
prompt engineering, 150
search algorithms, 153
self-critique, 151

U, V, W, X, Y
Unsupervised learning, 2

Z
Zero-Shot CoT, 148–150

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction to Generative AI
	What Is Generative AI?
	Model Types
	Transformers Explained
	RNNs
	LSTMs
	Transformers

	Diffusion Explained
	The Core Idea
	How Diffusion Models Work

	What’s Next?
	Summary

	Chapter 2: LangChain: Your Swiss Army Knife
	The Whats and Whys
	Chatbot
	Memory
	Types of Memory

	Retrieval
	Diving into RAG
	Embeddings Explained
	Vector Embeddings
	Vector Stores Explained
	What Else Is RAG Good For?

	The App
	Prerequisites
	Loading Your Data
	Transforming Your Structured Data
	Embeddings and Storage
	Memory

	What’s Next?
	Summary

	Chapter 3: Chains, Tools and Agents
	High-Level Concepts
	Chains
	Tools
	Building a Custom Tool

	Agents
	ReAct
	zero-shot-react-description
	conversational-react-description
	react-docstore
	self-ask-with-search

	The App
	Summary

	Chapter 4: Guardrails and AI: Building Safe + Controllable Apps
	Why Guardrails?
	NeMo Guardrails
	Keeping Your Bot on Topic
	Moderating Your Bot
	Preventing Hallucination

	Implementing Guardrails
	Keeping the Bot on Topic
	Blocking a User
	Actions
	Using This Config

	Under the Hood
	User Interaction
	Next Step
	BotIntent
	Embeddings

	Summary

	Chapter 5: Finetuning: The Theory
	Let’s Talk Foundational Models
	The Whys of Fine-Tuning?
	The Whats of Fine-Tuning
	Starting Point: The Pre-trained Model
	Preparation for Fine-Tuning
	Fine-Tuning Process
	During Training
	Fine-Tuning Strategies
	After Fine-Tuning
	Network Level Changes

	The Hows of Fine-Tuning
	Reinforcement Learning with Human Feedback (RLHF)
	Supervised Fine-Tuning (SFT)
	Reward Modeling (RM)
	Reinforcement Learning Algorithms
	Human Preference Comparison
	Iterative Training
	AI Alignment and Safety
	Challenges and Considerations

	PEFT
	How Does PEFT Work
	Low-Rank Adaptation (LoRA)
	Decomposing LoRA’s Mechanism

	Summary

	Chapter 6: Finetuning: Hands on
	Refresher
	4-Bit NormalFloat (NF4) Data Type
	Double Quantization
	Paged Optimizers

	What Is Llama 2?
	Fine-Tuning
	Setup
	Llama 2 Model
	Formatting

	Summary

	Chapter 7: Monitoring
	What Is LangSmith?
	Examples?
	Why?
	Quickstart
	Getting a LangSmith Key
	LangSmith Config
	Run a Simple App

	The Pirate App
	Setting Up
	Feedback
	Why?
	How?
	Feedback Collection
	Analysis
	Datasets

	Evaluations

	Summary

	Chapter 8: Prompt Engineering Techniques
	What Is Prompt Engineering?
	Chain of Thought
	What Is It?
	Design
	Zero-Shot CoT

	Tree of Thought
	Design
	Structure of the ToT Framework
	Self-Evaluation and Critique
	Thought Decomposition and Expansion
	The Role of the Evaluator
	Deliberate Reasoning
	Backtracking in the ToT Process
	Tree Search Techniques
	Dual Roles of the AI Model

	Chain of Note
	What Is It?
	Design
	Prompt Template
	Fine-Tuning

	Generated Knowledge Prompting
	What Is It?
	Design
	Knowledge Generation

	Examples
	Generating Knowledge for New Questions
	Knowledge Integration

	Food for Thought
	Conclusion

	Index

