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Preface 

This book is about electrical measurement techniques with a focus on measurement 
systems in a physics lab. It is also on an ‘advanced’ level, meaning that it assumes the 
reader has math and physics skills corresponding to a bachelor’s degree in science 
or engineering. 

When I started as a Ph.D. student in experimental atomic physics many years 
ago, I was very well prepared ‘physics-wise’, but when I started working in the 
atomic laser lab, I soon realized that there were so many things I needed to know that 
were not included in the physics program’s curriculum. I knew all about Newton 
mechanics, thermodynamics, atomic physics, and wave equations (or at least I 
thought I did), but I knew nothing about instruments’ bandwidth, transmission cables, 
sensors, microchannel plates, vacuum gauges, piezo crystals, probes, filters, spectral 
analyzers, signal processing, analog-to-digital converters, time-to-digital converters, 
uncertainty budgets, lock-in amplifiers, and PID controllers. Every day there was 
something new to learn, and it was quite overwhelming and sometimes a little frus-
trating. I went to graduate school to learn more about physics but spent most of my 
time learning about electrical engineering stuff. 

I had to figure out all these things by myself and it took precious time away from 
the things I really wanted to study, and I remember wishing that there was a book 
that summarized it all, like ‘Electrical engineering for physicists’. Well, now there is. 
This book summarizes what a Ph.D. student in experimental physics needs to know 
from the electrical engineering curriculum to work in a physics lab. 

The book contains many examples and problems. The problems are solved; from  
experience, I know that this is appreciated by the readers. It contains both ‘practical’ 
aspects of the equipment in a physics lab (like bandwidth, probes, transmission 
cables, controllers, etc.) as well as signal processing theory (like transform theory, 
filtering, convolution, correlation, and curve fitting), but the intended focus is always 
on the understanding. According to Bloom’s taxonomy triangle, a student’s first 
encounter with a subject is characterized by remembering, i.e., root learning and 
mechanical solving of standard problems. This is what characterizes bachelor classes. 
Most of the mathematics in this book is not new to you; if you have a bachelor’s
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degree in physics, you have seen the math before, but for most students, that implies 
a cognitive understanding on Bloom’s remember level. 

Remember 
Understand 

Apply 
Analyze 
Evaluate 

Create 

Bloom’s taxonomy (revised) 

In this book, you will see the same math again, but since you have already 
processed this math on the remember level, you are now ready to take it to the 
next level(s), the understanding and application levels. That is the intention of the 
theoretical parts of this book; to take the math you already know to a higher cognitive 
level. That means that exercises are not focused on ‘mechanical procedures’ but are 
designed to promote a deeper understanding. 

Göteborg, Sweden 
October 2023 

Lars Bengtsson



Contents 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.1 Electrical Measurement Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.2 Common and Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.3 Signal-To-Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.4 Decibel Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.5 Differential-Ended Versus Single-Ended . . . . . . . . . . . . . . . . . . . . 4 
1.6 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

1.6.1 Risetime and Falltime . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
1.6.2 Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

1.7 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
1.8 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

2 Noise: Sources and Remedies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
2.2 Internal Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

2.2.1 Johnson Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
2.2.2 Shot Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
2.2.3 1/f-Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
2.2.4 Quantization Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

2.3 Coupling By Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
2.3.1 Electric Dipole Antennas . . . . . . . . . . . . . . . . . . . . . . . . 12 
2.3.2 Magnetic Dipole Antennas . . . . . . . . . . . . . . . . . . . . . . . 16 

2.4 Capacitive Crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
2.5 Inductive Crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
2.6 Common Impedances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
2.7 Summary and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
2.8 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



viii Contents

3 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
3.2 Temperature Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

3.2.1 Thermocouples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
3.2.2 Metal Temperature Sensors . . . . . . . . . . . . . . . . . . . . . . 39 
3.2.3 Measuring Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 
3.2.4 Bandgap Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
3.2.5 Cryogenic Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . 43 
3.2.6 Extremely High Temperatures . . . . . . . . . . . . . . . . . . . . 43 

3.3 The Strain Gauge Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
3.3.1 Strain Gauges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
3.3.2 The Wheatstone Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . 47 
3.3.3 Accelerometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
3.3.4 Pressure Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 
3.3.5 Flow Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 
3.3.6 Fluid Level Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 
3.3.7 Torque Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 
3.3.8 Viscosity Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 
3.3.9 Load Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

3.4 Piezoelectric Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 
3.5 Hall Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 
3.6 Position Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 
3.7 Photo Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 

3.7.1 Light Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 
3.7.2 Photodiodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 
3.7.3 Avalanche Photodiodes . . . . . . . . . . . . . . . . . . . . . . . . . . 63 
3.7.4 Position-Sensitive Detectors . . . . . . . . . . . . . . . . . . . . . . 64 
3.7.5 Photomultipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

3.8 Particle Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 
3.8.1 Channel Electron Multipliers . . . . . . . . . . . . . . . . . . . . . 67 
3.8.2 Microchannel Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 

3.9 Vacuum Gauges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 
3.9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 
3.9.2 The Pirani Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 
3.9.3 Gas Ionization Gauges . . . . . . . . . . . . . . . . . . . . . . . . . . 71 

3.10 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 

4 The Instrumentation Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 
4.2 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 

4.2.1 Classic IA Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 
4.3 CMRR Versus SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 
4.4 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



Contents ix

5 Transmission Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 
5.2 The Characteristic Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 
5.3 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 
5.4 Splitting and Splicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 
5.5 Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 
5.6 Time Domain Reflectometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 
5.7 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 

6 Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 
6.2 Passive Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 
6.3 Active Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 
6.4 Current Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 
6.5 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

7 Transform Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 
7.2 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 

7.2.1 Case 1: Signal is Periodic . . . . . . . . . . . . . . . . . . . . . . . . 125 
7.2.2 Case 2: Signal is Non-Periodic, 

But ‘Time-Limited’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 
7.2.3 Case 3: Signal is Non-Periodic and Infinite . . . . . . . . . 131 
7.2.4 FFT Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 
7.2.5 Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 

7.3 Describing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 
7.3.1 Distortion-Free Systems . . . . . . . . . . . . . . . . . . . . . . . . . 141 

7.4 Complex Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 
7.4.1 Laplace Representation of Systems . . . . . . . . . . . . . . . . 145 
7.4.2 The z Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 

7.5 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 

8 Spectrum Analyzers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 
8.2 Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 
8.3 Resolution Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 

8.3.1 Quantifying the Leakage . . . . . . . . . . . . . . . . . . . . . . . . . 166 
8.3.2 Resolution Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 

8.4 Heterodyne Analyzers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 
8.5 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



x Contents

9 Analog Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 
9.2 First-Order Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 

9.2.1 Passive Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 
9.3 Second-Order Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 

9.3.1 ‘Biquad’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 
9.3.2 Lowpass: b2 = b1 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 
9.3.3 Bandpass: b2 = b0 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 179 
9.3.4 Highpass: b1 = b0 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 180 

9.4 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 
9.4.1 The Double Integral Method . . . . . . . . . . . . . . . . . . . . . 180 
9.4.2 The Sallen–Key Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 
9.4.3 Switched Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 
9.4.4 More About Passive Filters . . . . . . . . . . . . . . . . . . . . . . 185 
9.4.5 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 

9.5 Filter Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 
9.5.1 Butterworth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 
9.5.2 Chebyshev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 
9.5.3 Cauer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 

9.6 Filter Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 
9.6.1 Lowpass to Lowpass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 
9.6.2 Lowpass to Highpass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 
9.6.3 Lowpass to Bandpass . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 
9.6.4 Lowpass to Bandstop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 

9.7 Time Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 
9.7.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 

9.8 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 

10 Digital Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 
10.2 FIR Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 
10.3 IIR Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 
10.4 Designing Digital Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 

10.4.1 FIR Filters: The Inverse Fourier Transform 
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 

10.4.2 IIR Filters: The Bilinear Transformation Method . . . . 220 
10.5 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 

11 ADCs and Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 
11.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 
11.3 Quantization and Quantization Noise . . . . . . . . . . . . . . . . . . . . . . . 230 
11.4 Digital-to-Analog Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 
11.5 SAR ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 
11.6 Flash ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 
11.7 Pipeline ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236



Contents xi

11.8 Dual Slope ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 
11.8.1 The Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 
11.8.2 The Dual Slope Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 241 

11.9 Level-Crossing ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 
11.10 Equivalent Number of Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 
11.11 Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 

11.11.1 As a Means to Reduce Noise . . . . . . . . . . . . . . . . . . . . . 247 
11.11.2 As a Means to Improve Resolution . . . . . . . . . . . . . . . . 250 

11.12 Dithering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 
11.13 Sigma-Delta ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 

11.13.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 
11.13.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 

11.14 Extreme Sampling Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 
11.14.1 Interleaved SARs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 
11.14.2 Equivalent-Time Sampling . . . . . . . . . . . . . . . . . . . . . . . 258 

11.15 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 

12 Time-to-Digital Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 
12.2 The Vernier Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 

12.2.1 Vernier TDC with no Reference Clock . . . . . . . . . . . . . 270 
12.2.2 Vernier TDC with a Reference Clock . . . . . . . . . . . . . . 271 

12.3 Delaylines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 
12.4 Time Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 
12.5 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 

13 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 
13.2 Expectation and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 
13.3 Unbiased Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 
13.4 Interval Estimations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 
13.5 The Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 
13.6 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 

14 Uncertainty Budgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 
14.2 Signal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 
14.3 Uncertainty Budgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 

14.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 
14.4 ‘Guesstimating’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 
14.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 
14.6 Solved problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305



xii Contents

15 The Lock-In Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 
15.2 Phase Sensitive Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 

15.2.1 PSDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 
15.2.2 Analog PSDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 
15.2.3 Multiplying PSDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 

15.3 Phase-Locked Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 
15.4 LIAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 
15.5 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 

16 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 
16.2 Cross-Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 

16.2.1 Implementation: Matched Filters . . . . . . . . . . . . . . . . . . 326 
16.3 Auto-Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 

16.3.1 Auto-Correlation Applications . . . . . . . . . . . . . . . . . . . . 331 
16.4 Discrete-Time Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 

16.4.1 Cross-Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 
16.4.2 Auto-Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 
16.4.3 Circular Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 

16.5 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 

17 Curve Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 
17.2 The Orthogonality Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 
17.3 Curve Fitting to Exponential Functions . . . . . . . . . . . . . . . . . . . . . 355 
17.4 MATLAB Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 
17.5 Matrix Uncertainties and Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . 357 

17.5.1 Error Propagation in Matrices . . . . . . . . . . . . . . . . . . . . 357 
17.5.2 Ill-Conditioned Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 358 

17.6 The Sampling Theorem Revisited . . . . . . . . . . . . . . . . . . . . . . . . . 360 
17.7 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 

18 Introduction to Control Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 
18.1 Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 
18.2 Feedback Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 
18.3 Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 
18.4 The PI Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 
18.5 The PD Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 
18.6 The PID Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 
18.7 Identifying the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 

18.7.1 First-Order Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 
18.7.2 Second-Order Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 382 

18.8 Finding the Control Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384



Contents xiii

18.8.1 Ziegler–Nichol’s Rule of Thumb . . . . . . . . . . . . . . . . . . 384 
18.8.2 Using Phase and Gain Margin Criteria . . . . . . . . . . . . . 385 

18.9 Discretizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 
18.9.1 Euler Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 
18.9.2 Bilinear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 389 

Appendix: Operational Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401



Acronyms 

AC Alternating Current 
ACF Auto-Correlation Function 
ADC Analog-to-Digital Converter 
BAG Bayard–Alpert Gauge 
BIPM Bureau International de Poids et Mesures 
BNC Bayonet Neill-Concelman 
CAN Controller Area Network 
CEM Channel Electron Multiplier 
CJC Cold Junction Compensation 
CMRR Common Mode Rejection Ratio 
CMOS Complementary Metal Oxide Semiconductor 
CLT Central Limit Theorem 
CW Continuous Wave 
DAC Digital-to-Analog Converter 
DAQ Data Acquisition 
DC Direct Current 
dB decibel 
DCV Direct Current Voltage meter 
DFT Discrete Fourier Transform 
DLS Dynamic Light Scattering 
DMM Digital Multimeter 
ECG Electro Cardio Gram 
EM Electro Magnetic 
EMC Electromagnetic Compatibility 
emf electromotive force 
ENOB Equivalent Number of Bits 
FIR Finite Impulse Response 
FFT Fast Fourier Transform 
GUM Guide to the expression of Uncertainty in Measurement 
HV High Vacuum 
IA Instrumentation Amplifier

xv



xvi Acronyms

iid independent and identically distributed 
IIR Infinite Impulse Response 
LIA Lock-In Amplifier 
LC Level Crossing 
lm lumen 
LTI Linear and Time-Invariant 
LV Low Vacuum 
LVDT Linear Variable Differential Transformer 
lx lux 
MCP Microchannel Plate 
MEMS Micro Electro Mechanical Systems 
NIM Nuclear Instrumentation Module 
NIST National Institute of Science and Technology 
op amp Operational amplifier 
OS Overshoot ratio 
OSR Oversampling Rate 
pcb Printed circuit board 
PCS Photon Correlation Spectroscopy 
PIN P-doped, Intrinsic, N-doped 
PLL Phase-locked loop 
PMT Photomultiplier Tube 
ppm Parts per million 
PSD Phase-Sensitive Detector 
PSD Position-Sensitive Detector 
PTAT Proportional To Absolute Temperature 
PWM Pulse Width Modulation 
RBW Resolution Bandwidth 
rms root mean square 
RTD Resistance Temperature Detector 
S&H Sample and Hold 
SAR Successive Approximation Register
∑∆ Sigma Delta 
SNR Signal-to-Noise Ratio 
SoC Start of Conversion 
TDC Time-to-Digital Converter 
TDR Time Domain Reflectometry 
TP Twisted-Pair 
TTL Transistor–Transistor Logic 
UAF Universal Active Filter 
VLSI Very Large-Scale Integration 
VM Voltage Meter



Chapter 1 
Introduction 

Abstract This chapter describes some basic concepts like common and normal 
mode voltages, common mode rejection ratio, and signal-to-noise ratio. The dB 
unit is defined, differential- and single-ended signals and rise and fall times versus 
bandwidth are discussed. Finally, the propagation of a signal through a measurement 
system is considered and each component’s influence on the signal is highlighted. 

1.1 Electrical Measurement Systems 

A successful ‘measurement’ depends on a long chain of components and their inter-
actions. It typically starts with a ‘sensor’ that converts some physical quantity (like 
temperature, acceleration, sound, etc.) to an electrical quantity (like voltage, current, 
resistance, etc.). After the sensor comes the ‘signal conditioning’. The signal condi-
tioning processes the ‘raw’ sensor signal in hardware (mostly analog). The signal 
conditioning electronics’ job is to convert the sensor signal to a ‘standard format’, like 
0 –  + 5 V or 4–20 mA. This usually includes both passive (resistors and capacitors) 
and active (operational amplifiers) components. 

Next, for several reasons, the signal-conditioned signal is ‘filtered’. The main 
reasons are to a) suppress unwanted interferences (see Chap. 2) and b) to prevent 
‘aliasing’ in sampling systems (see Chaps. 7 and 9). After the filter, the signal 
is ‘sampled’ by an ‘analog-to-digital converter’ (see Chap. 11); this is where the 
signal is ‘digitized’, i.e., transferred to the system computer. From here on, all 
signal processing is ‘digital’ (as in ‘computer algorithms’). Digital signal processing 
includes digital filters (Chap. 10), spectral analysis (Chap. 8), and correlation 
(Chap. 16). You also need to know some ‘post-processing’ techniques (non-real 
time), such as uncertainty analysis and confidence interval estimations (Chap. 14), 
and curve fitting (Chap. 17). 

Throughout the entire ‘chain’, from the sensor to the computer sampling, the 
signal is exposed to ‘noise’, and it is important that you know a) where it comes 
from, i.e., the most common noise sources (see Chap. 2) and how to protect your 
measurement signal from the most common noise sources (see Chaps 2, 5, and 6).
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2 1 Introduction

Before we get into the details of the different measurement chain components, 
we need to define some basic concepts to make sure we have the right vocabulary. 

1.2 Common and Normal Mode 

Voltages (and currents too) can be in either ‘common’ or ‘normal’ mode. To under-
stand the difference, we should probably use ‘potentials’ rather than ‘voltages’; 
voltage is a difference in potential. If we measure the voltage across a pair of conduc-
tors, the ‘normal mode’ voltage is the potential difference between the conductors, 
and the ‘common mode’ voltage is the potential that is ‘common’ on both conductors. 
This is illustrated in Fig. 1.1. 

A better name for the ‘normal mode’ voltage would be ‘differential mode’, which 
is indeed used in some contexts, but ‘normal mode’ seems to be the most used name. 
In a typical measurement, we measure the normal mode voltage, with a voltage 
meter, and if the voltage meter (VM) is ‘perfect’ it will measure only the potential 
difference, i.e., the normal mode voltage. The voltage meter subtracts the potential 
on one wire from the other. 

UVM = (u0 + u1) − u0 = u1 = unm (1.1) 

However, subtractions in electronics are never perfect and in a non-perfect voltage 
meter, there will be a ‘cm residual’ in UVM: 

UVM = unm + Fcm · ucm (1.2) 

Fcm is the ‘common mode suppression number’ and is an important parameter for 
any voltage meter; the lower the better is the voltage meter (and the more expensive 
it is). Manufacturers don’t specify the Fcm number though, they specify the CMRR,

Fig. 1.1 Signal model 
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the Common Mode Rejection Ratio of the voltage meter. CMRR is defined as 

CMRR = 20log 
1 

Fcm 
dB (1.3) 

A ‘good’ desktop DMM (digital multimeter) has a CMRR of 140 dB (for example, 
Keysight model 34461A), but this number typically drops rapidly with frequency; the 
‘AC’ CMRR for the 34461A model is 70 dB. A ‘good’ handheld DMM has a typical 
CMRR of 120 dB (for example, Fluke 179). Finally, even if the CMRR decreases 
with frequency, they are almost always designed to suppress the power line frequency 
(50/60 Hz), because that is where the common mode noise comes from in most cases; 
for 50/60 Hz, the CMRR is usually as good as the DC suppression. 

1.3 Signal-To-Noise Ratio 

In the general case, the measurement signal will always be a complex of ‘signal’ 
and ‘noise’, or the ‘good’ part and the ‘bad’ part. The noise is what will prevent us 
from measuring our quantity with perfect (infinite) accuracy, the more noise, the less 
accuracy. Actually, we can live with a lot of noise if we also have a lot of ‘signal’; 
it is the magnitude of the noise compared to the signal level that is the interesting 
number. We quantify the ‘signal situation’ with the ‘signal-to-noise’ ratio: 

SNR = 20log 
signal rms 

noise rms 
dB (1.4) 

In Eq. (1.4), it is usually understood that it is the ‘normal mode’ noise we mean; 
if we refer to the common mode noise, we will specify that explicitly. 

1.4 Decibel Units 

Equation (1.4), the ‘dB’ unit is really ‘dimensionless’; it is a logarithmic measure 
of a relation between two voltages. However, the dB unit is also sometimes used 
to express absolute voltages. For example, 1 dBm corresponds to the voltage that 
develops exactly 1 mW in a resistor R. R is usually, but not necessarily, a 50 Ω

resistor. Since P = U·I = U2/R, we have that 

1 mW  = 
U 2 

50 
⇒ U = √

0.05 = 0.2236 V (1.5) 

Hence, 5 V equals 20·log(5/0.2236) = 27 dBm. Sometimes, you also see the 
‘dbV’ unit. The dBV unit relates the voltage to 1.00 V.
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Fig. 1.2 a A differential-ended signal. b A single-ended signal 

1.5 Differential-Ended Versus Single-Ended 

In electrical measurement laboratories, the terms ‘differential-ended’ and ‘single-
ended’ signals are used regularly. A ‘differential-ended’ signal has two wires and 
none of them are ground. The signal is delivered as a potential difference between 
two wires, see Fig. 1.2a. A differential-ended signal is also sometimes called ‘non-
referenced’. 

A ‘single-ended’ signal, on the other hand, is a single wire; it is understood that 
the signal is the potential on this wire relative ground. 

1.6 Signals 

1.6.1 Risetime and Falltime 

We have already used the term ‘signal’ repeatedly, but we have not yet properly 
defined it. A ‘signal’ could be a lot of things, but in this context, it will be understood 
to be a variation of voltage in time. An AC voltage if you like, but ‘AC signals’ are 
generally interpreted as sinusoidal voltages and our scope of signals is much wider 
here. 

One of the most basic properties of a signal (and one of the most important ones 
to us), is its risetime. A signal’s risetime is defined as the time it takes for the signal to 
go from 10 to 90% of its maximum voltage. Correspondingly, the falltime is defined 
as the time it takes to go from 90 to 10% of the maximum (Fig. 1.3). 

Fig. 1.3 Risetime and falltime
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If only the risetime is specified, you may assume that the falltime equals the 
risetime. 

1.6.2 Bandwidth 

So why is the risetime of a signal so important? It is important because, from the 
signal’s risetime, we can calculate its bandwidth. We will talk a lot  about frequen-
cies in this book (for both signals and systems) and knowing a signal’s bandwidth 
is paramount for how you design your ‘measurement chain’. We will define ‘band-
width’ properly later (for both signals and systems), but for now, we settle with the 
following definition: A ‘signal’ is in the general case ‘complex’, it consists of several 
components, where a ‘component’ is understood to be a sinusoidal signal. A signal is 
in general a sum of a lot of sines, and the signal’s bandwidth is simply the frequency 
of the sinusoidal with the highest frequency. 

There is a simple relationship between a signal’s bandwidth and risetime: 

B = 
0.35 

trise 
(1.6) 

We don’t derive that expression here (but it is just straightforward electricity 
calculus). 

1.7 Systems 

You can’t talk about ‘signals’ without also talking about systems. A ‘system’ is 
anything that the signal passes through in the measurement chain. ‘Systems’ are 
not only amplifiers and filters but also include the transmission lines and the instru-
ments. All systems are typically specified by their bandwidth, and it is important 
to understand what impact each system has on the signal. Filters and amplifiers are 
designed to have a specific impact on the signal, but transmission lines and instru-
ments should ideally have no impact on the signal. However, ‘no impact’ implies 
infinite bandwidth, and we never have that. 

If the system’s bandwidth is < ∞ (which it always is), it will slow down the 
signal. ‘Slow down’ as in ‘the signal’s rise time will increase’ for each system it 
passes. When a signal propagates through a measurement chain, it is slowed down 
by the chain components, and risetimes are added in squares. Figure 1.4 illustrates 
a signal chain.

First, we get each system’s risetime from their bandwidth (use Eq. (1.6)) and then 
we add the squares: 

t2 rise,out = t2 rise,in + t2 1 + t2 2 + t2 3 + t2 4 (1.7)
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Fig. 1.4 Measurement chain: Risetime propagation

where tn = 0.35/Bn. In the general case, 

trise,out =
 
|
|
|t2 rise,in +

∑

i

(
0.35 

Bi

)2 

(1.8) 

1.8 Solved Problems 

Problem 1.1 The voltage meter in Fig. 1.5 is a 6½ digit DMM with a CMRR of 
130 dB. (a) What voltage will the voltage meter display? (b) How much of this 
voltage is due to the NM and CM parts, respectively? 

Solution (a) In Fig. 1.5, we have a common mode voltage of 30.43916 V and a 
normal mode voltage of 30.47325–30.43916 = 0.03409 V. A CMRR of 130 dB is 
translated to a CM suppression of 10−130/20 = 3.162 · 10−7 . 

The voltage meter will measure 

Um = 0.0340900 + 3.162 · 10−7 · 30.43916 = 0.0340900 + 0.000009625 = 

= 0.034099625 volts 

But the question was: ‘What voltage will the voltage meter display?’. We have a 
6½ digit DMM; the range will be 100 mV, so the display will show 034.0996 mV. 
(A ‘½ digit’ means that the first digit (the most significant digit) can only be ‘0’ or 
‘1’. In our example, it must be ‘0’, since we use the 100-mV range). 

(b) Of the 34.0996 mV on the display, 0.009625/34.09966 = 0.03% is due to the 
CM residual.

Fig. 1.5 DC voltage 
measurement 
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Fig. 1.6 Our standard problem; a sine with noise 

Problem 1.2 Figure 1.6 illustrates a problem that we will treat repeatedly in this 
book: A sinusoidal signal with ‘white’ noise. In Fig. 1.6, the amplitude of the sine 
is 1 V and the white noise is ‘gaussian’ with a zero mean and a variance of 0.01 V2. 
What is the signal-to-noise ratio in this signal? 

Solution A sine with amplitude A volts has an rms voltage of A/ 
√
2, and the rms of 

Gaussian (‘normal’) noise is the square root of the variance: 

SNR = 20log 
1/ 

√
2 √

0.01 
= 17 dB 

Problem 1.3 Convert the voltages 30 dBm and 15 dBV to voltages [V]. 

Solution In the dBm case, we assume that a 50 Ω resistor is used as reference: 

U = 0.2236 · 1030/20 = 7.07 V 

15 dBV corresponds to 

15 = 20log 
U 

1 
⇒ U = 1015/20 = 5.62 V 

Problem 1.4 Figure 1.7 illustrates a ‘perfect’ square signal (risetime = 0). What 
would it look like on a 100 MHz oscilloscope? 

Solution The scope will ‘slow down’ the signal with 0.35/0.1 ns = 3.5 ns (Fig. 1.8).
If the input signal has risetime 0 s, we will only see the scope’s ‘reaction time’ on 

the screen.

Fig. 1.7 A ‘perfect’ 25 MHz square wave 



8 1 Introduction

Fig. 1.8 The oscilloscope 
slows down the signal

3.5 ns 3.5 ns 

20 ns 

Problem 1.5 In an experiment, the signal risetime is expected to be approximately 
5 ns. What bandwidth does the oscilloscope need not to have any significant impact 
on the result? 

Solution First, we need to define exactly what we mean by ‘significant impact’. 
The exact definition depends on the circumstances; here we require that the scope’s 
contribution to the total risetime must be less than 10%; tout ≤ 5.5 ns: 

5.52 = 52 + t2 scope ⇒ tscope = 2.3 ns  = 
0.35 

B 
⇒ B = 152 MHz 

The oscilloscope needs a bandwidth of at least 150 MHz.



Chapter 2 
Noise: Sources and Remedies 

Abstract This chapter illustrates how noise can couple to a measurement system 
in different ways and how noise can be prevented from entering the measurement 
system by de-coupling techniques. Noise sources are described, different kinds of 
crosstalk are discussed, and the importance of grounding and shielding is highlighted. 
This chapter also explains why Faraday cages are used and the advantages of coax 
cables and twisted-pair cables. 

2.1 Introduction 

Noise is omnipresent in all measurements. It may or may not be a problem; it may be 
too small compared to other sources of uncertainty to have any significant impact on 
the result, or it may have a frequency that is outside the measurement signal’s band-
width. However, in the general case, noise is significant in the signal’s bandwidth, 
and we must ‘deal with it’. The first action should not be to apply signal processing 
(in hardware or software), the first action is to try to prevent the noise from entering 
the system. To prevent noise from entering the system, we must understand how 
it got there in the first place. Three conditions must be fulfilled for noise to be a 
problem in a measurement system: (a) There must be a noise source, (b) there must 
be a coupling between the noise source and the system, and (c) the noise frequency 
must be within the signal’s bandwidth. 

Obviously, the first action should be to try to identify the noise source; if we can 
identify it, maybe we can eliminate it. For example, the signal wire might just be too 
close to some unshielded, high-frequency power cable (like the spark plug cable in 
a car); rearranging the setup may be all we need to do. In other situations, we can 
identify the source, but we can’t do anything about it (like the 50/60 Hz interference 
from the local power line). 

In such cases, where we can’t do anything about the source (or may not even be 
able to identify it), we are left with the only option of trying to break the coupling 
between the source and the system. To do that, we need to understand how noise 
couples to our system and that can only be done in a handful of ways.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 
L. Bengtsson, Electrical Measurement Techniques, 
https://doi.org/10.1007/978-981-99-8187-8_2 
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However, some noise cannot be ‘de-coupled’ since it is ‘internal’, it is generated 
by the system itself and that noise we will have to learn to live with. There are some 
things we can do to reduce it, but we will always have some internal noise. We will 
look at the internal noise first. 

2.2 Internal Noise 

2.2.1 Johnson Noise 

Johnson noise is an omnipresent source of noise. It is a natural phenomenon that was 
first described by John B. Johnson at Bell Labs in 1926. Johnson noise is ‘bandlimited 
white noise’ that originates in ‘anything with an ohm-resistance’. The rms of the white 
noise is 

urms =
√
4πkRTB (2.1) 

where k is Boltzmann’s constant (1.38·10−23 J/V), R is the resistance, T is the 
temperature (in Kelvin), and B is the bandwidth of the instrument (Fig. 2.1). 

From Eq. (2.1), we can see that we can reduce the Johnson noise in three different 
ways; (a) it depends on temperature so cooling the system will reduce the noise, (b) it 
depends on the resistance which implies that we shouldn’t use excessive impedances 
unless necessary. We learned in basic electricity that ‘good’ voltage meters should 
have a high input impedance. Well, Eq. (2.1) contradicts that; high input impedances 
increase the white Johnson noise. 

And (c), we can limit the instrument’s bandwidth. For that reason, high-bandwidth 
instruments, like oscilloscopes, almost always have a ‘bandwidth-limiting’ option, 
see Fig. 2.2. Intuitively, a ‘high-bandwidth instrument’ sounds good, but keep in 
mind that the Johnson noise increases with the bandwidth.

We can re-write Eq. (2.1) as  

urms = 
√
4πkRT  · √

B = α
√
B ⇒ α = 

urms √
B

[
V √
Hz

]
(2.2)

Fig. 2.1 Johnson noise is 
omnipresent wherever we 
have a resistance 

R ACV 
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Fig. 2.2 The Johnson noise in an oscilloscope (open input) for 20 MHz bandwidth (top) and 
200 MHz bandwidth (bottom). (The offset for the 20 MHz waveform was added in MATLAB)

where α is the noise factor. Manufacturers of sensors and amplifiers always specify 
the noise factor. They can’t know the bandwidth of your application, so the noise 
factor is all they provide. The end user must multiply the noise factor with the square 
root of the measurement system’s bandwidth to estimate the noise in the sensor/ 
amplifier. So, whenever you see a number with the unit V Hz−1/2, you must multiply 
with the square root of your bandwidth. 

2.2.2 Shot Noise 

Another kind of noise is the shot noise that appears in low-current measurements, 
nA or less. Shot noise is caused by the fact that current involves the transportation 
of electrons which have a quantized charge (1.6·10−19 As) and shot noise is simply 
random variations of the charge density. Just like the Johnson noise, the shot noise 
increases with the bandwidth of the instrument. 

2.2.3 1/f-Noise 

1/f -noise (or ‘flicker noise’) is a strange phenomenon that we really don’t know 
where it comes from. It decreases with frequency (as 1/f ) and has been observed 
in applications far from electronic systems, such as music, biology, and economics 
[1]. One of its most characteristic properties is that the noise power per decade is 
constant: There is as much noise power in the interval 10–100 Hz as in the interval 
10–100 MHz. Obviously, this noise will only be a problem when you measure low 
voltages (sub-μV) at low frequencies. Because it is dominated by low frequencies, 
it is sometimes called ‘pink noise’ (as in ‘red-shifted’).
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2.2.4 Quantization Noise 

Since our measurement data is (usually) sampled by a computer, the samples must 
be ‘quantized’ and there is always some information loss in the quantization process. 
This noise is called ‘quantization noise’ and depends on the quantizer’s resolution. 
We will treat quantization noise in detail in Chap. 11. 

2.3 Coupling By Radiation 

2.3.1 Electric Dipole Antennas 

An electromagnetic field propagating in the z direction, emits an electric and magnetic 
field in the x and y directions, respectively, both perpendicular to the direction of 
propagation. For now, we focus on the electric field only, see Fig. 2.3. 

In Fig. 2.4, we have placed an electric dipole antenna in the electric field, oriented 
so that it points in the direction of the E-field variation.

In Fig. 2.4, the E-field direction points upwards, and hence the electrons in the 
antenna conductor are driven downwards; there will be an accumulation of negative 
charges at the bottom end of the antenna and a lack of negative charges at the top 
end. Also, the charge transportation will be registered as a short current transient by 
the amp meter. 

Figure 2.5 illustrates the same dipole antenna a moment later, when the E-field 
over the antenna points in the other direction. The electrons will be driven to the other 
end of the antenna and the amp meter will again register a short current transient, 
now with the opposite sign.

Fig. 2.3 A propagating electromagnetic wave emits an electric field 
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Fig. 2.4 An electric dipole 
antenna along the E-field 
direction

Fig. 2.5 The E-field moves 
the electrons back and forth 
in the antenna 

We can see that this will repeat as long as the wave exists; the propagating elec-
tromagnetic wave will induce an AC current in the dipole antenna with a frequency 
that depends on the wavelength λ of the wave: f = c0/λ. We get a maximum current 
in the antenna if the length of the antenna is λ/2. 

However, our objective here is not to design antennas, but to understand how noise 
can couple to our measurement system. From Figs. 2.4 and 2.5, we can see how the 
presence of an electric field could induce a current in one of our signal wires in the 
system. Figure 2.6a–g illustrate how an AC current in one wire (‘transmitter’) emits 
an electric field and how it is picked up by an adjacent wire (‘receiver’). This is an 
example of crosstalk by E-radiation.

The remedy could be quite simple; from Figs. 2.4, 2.5, and 2.6, we can see that 
for a current to be induced, the receiver ‘antenna’ (our signal wire) must be aligned 
with the E field direction. Hence, rearranging the signal transmission wires might 
help (unless there are multiple and multidirectional sources).
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Fig. 2.6 a At t = 0, the AC current ‘peaks’. b At t = T /8, E-field has not reached the receiver. 
c E-field is sinusoidal. d At t = 3 T /8, the field reaches the receiver. e E-field decreases at receiver. 
f E-field is zero at receiver. g E-field is reversed. h The negative E-field peak
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Secondly, we should also realize that this may not be a significant problem at 
all. The wave frequency must also match the wire length (λ/2) for any significant 
currents to be induced. For ‘centimeter cables’ that indicates GHz frequencies which 
is outside the bandwidth of most measurement systems (see Problem 2.1). If you 
have transmission cables ‘tens of meters’ long, the matching frequency could very 
well be within your system’s bandwidth (the longer the cable, the more likely it is 
that it will pick up a frequency that interferes with your system). 

When the frequency/wire length relation is ‘right’ and rearranging the transmis-
sion lines doesn’t help (or is not possible), you need to prevent the electric field from 
interacting with your transmission line in the first place. How do you do that? The 
answer is a Faraday cage. 

The Faraday cage was invented by Michael Faraday in 1836 to prove his hypothesis 
that there is no electric field inside a closed metal surface. The reason is that the 
electric field will redistribute the surface charge to produce an electric field in the 
opposite direction, canceling the field inside the surface. This is illustrated in Fig. 2.7. 

Hence, we can protect our signal wire by an enclosing, conducting shield. The 
shield doesn’t have to be perfect; it can be a grid. The general rule is that the grid 
holes’ diameter should be < one-tenth of the wavelength of the radiation it is intended 
to block. For example, to block radiation from a 5G cell phone, operating at 39 GHz, 
a grid size of less than 1 mm is required. (On the other hand, 39 GHz is most likely 
outside your measurement system’s bandwidth.)

Fig. 2.7 a An external E-field will redistribute the charge on the surface. b An E-field in the opposite 
direction is created that cancels the field inside 
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Fig. 2.8 A coax cable is a 
Faraday cage 

RG-58 

PVC jacket Copper braid 

Polyethylene insulator 

Center conductor 

Fig. 2.9 Coax cables have 
BNC connectors 

BNC connector 

Coax cable 

This is also one of the reasons why we use coax cables in the lab. Coax cables 
have a surrounding copper braid that forms a Faraday cage for the center conductor. 
A lot of instruments also have a metal casing to block E-field interferences. 

Notice a few details about the Faraday cage. First, it is easily breached; all it 
takes is that you penetrate it with a conducting wire, which of course could be a 
problem in an electrical measurement system. The general rule is that the entire 
system should be in a cage, all the way from the sensor to the sampling computer 
interface (see Fig. 2.35). That is why coax cables have a BNC connector (Bayonet 
Neill-Concelman) to make sure that nothing leaks in (or out!) (Fig. 2.8 and 2.9). 

Second, it doesn’t need to be grounded for the shielding to work. (However, due 
to other noise sources, we will later find a reason to ground it anyway). 

2.3.2 Magnetic Dipole Antennas 

Figure 2.10 illustrates a magnetic dipole antenna; a magnetic dipole is a circuit loop.
According to Faraday’s law, an electromotive force, emf, will be induced across 

the loop ends if there is a change in the magnetic flux Φ = B·A, through the loop 
area: 

|ε| = 
dΦ 
dt  

= A · dB  

dt  
(2.3) 

The polarity of the emf is given by Lenz’s law: The polarity is such that it creates 
a magnetic field that opposes the change of flux. What is important for us, and 
our electrical measurement system, is that a change in the magnetic field induces a 
voltage across the ends of an open circuit (and a current in a closed loop) which will 
add to our measurement signal. Just like an electromagnetic wave carries an electric
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Fig. 2.10 Magnetic dipole 
antenna

field, it also carries a magnetic field. Figure 2.11 illustrates the magnetic field of the 
electromagnetic wave in Fig. 2.3. 

Figure 2.12a and b illustrate how this field can induce an interference in a circuit. 
Magnetic fields cannot be blocked by a Faraday cage unless it is made of ‘mu-
metal’ which is a nickel–iron ferromagnetic alloy. Mu-metal shields are expensive 
and usually not your first option.

Apart from electromagnetic waves in space, there are other sources of magnetic 
fields. Figure 2.13 illustrates the magnetic field around a current conducting wire.

Fig. 2.11 A propagating electromagnetic wave also emits a magnetic field 
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Fig. 2.12 a An opposing 
current is induced. b An 
opposing current is induced

The B-field varies with the current and the distance x from the wire as 

B(t) = 
μ0 I (t) 
2πx 

(2.4) 

Figure 2.14 illustrates how this could generate crosstalk by B-field radiation.
Also, in this case, we can see that the interference depends on the geometric 

setup; the circuit must be perpendicular to the B field to induce a current in the loop 
and therefore, rearranging the loop might help. If that doesn’t help, and assuming we
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Fig. 2.13 Magnetic field around a current conductor

Fig. 2.14 Magnetic field crosstalk

can’t afford a mu-metal shield, we need another solution. The solution is in Eq. (2.3): 
If we can’t make dB/dt = 0, we can try to make A = 0. That is what we do when we 
use a twisted pair cable (TP cable), see Fig. 2.15.

In a TP cable, not only do we make the loop area ≈0, if there are any remaining 
areas they will cancel each other, since the induced current in two adjacent loops will 
have opposite direction. A TP cable is a very efficient way to protect your signal wire 
from B-field interferences. NB. If you also place the TP cable close to the ground 
plane, you also cancel potential common mode interferences induced by the magnetic 
field.
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Fig. 2.15 A twisted-pair cable cancels the B-field interferences

2.4 Capacitive Crosstalk 

Capacitive crosstalk occurs because of the capacitance between conducting surfaces. 
First, between two conducting wires with diameter d and a distance D apart, there is 
a capacitance C12 (per unit length) (Fig. 2.16): 

C12 = πε0 

ln
(
2D 
d

) [F m−1] (2.5) 

There is also a capacitance between the center wire and its metallic shield (see 
Fig. 2.17): 

Ccyl = 
2πε0εr 

ln(R/r )

[
F m−1

]
(2.6)

In Eq. (2.6), r is the radius of the center wire, R is the radius of the cylinder shield 
and εr is the dielectricity constant for the material between the shield and the center 
wire (usually polyethylene in the coax case, see Fig. 2.8). 

To see how this enables crosstalk, we first place two unshielded wires next to 
each other, see Fig. 2.18. According to Eq. (2.5), there is a capacitance between the 
wires and hence an AC current in Wire 1 has a way into Wire 2. This will cause an 
interfering voltage across the load impedance in Wire 2. Figure 2.19 illustrates the 
equivalent circuit.

To remedy the capacitive crosstalk, we first apply a Faraday shield, see Fig. 2.20. 
However, according to Eq. (2.6), there is also a capacitance between the wire and the

Fig. 2.16 Two conductors 
are a capacitance 
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Fig. 2.17 Capacitance 
between shield and center 
wire

Ccyl

2r

2R 

Fig. 2.18 Capacitive 
crosstalk 

1 2 

C12 

u(t) 

Z 

Fig. 2.19 Signal model of 
capacitive crosstalk

u(t) Z 

C12

shield, so the only thing we accomplish is an extra capacitor in series, see Fig. 2.21; 
the current in Wire 1 can still find a way into Wire 2.

So, a Faraday cage does not protect your system from capacitive crosstalk (only 
against E-field crosstalk). The trick that enables the shield to protect your system 
also against capacitive crosstalk is to ground the shield, see Fig. 2.22.
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Fig. 2.20 A Faraday cage 
doesn’t help 

Fig. 2.21 Crosstalk path is 
still open

Fig. 2.22 Ground the 
shield! 

The shield surface is the mid-point between the capacitors in Fig. 2.21 and by 
grounding the shield, currents from Wire 1 trying to ‘sneak in’ to Wire 2 are effectively 
short-circuited to ground, see Fig. 2.23.

Finally, please note that capacitive crosstalk is a high-frequency problem; the 
impedance of a capacitor is 1/jωC , it decreases with frequency and hence high-
frequency signals have an easier way into the neighbor wire than low-frequency
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Fig. 2.23 Grounding the 
shield will short-circuit the 
crosstalk path

signals. As a matter of fact, this is true for most crosstalks; the problem increases 
with frequency. 

2.5 Inductive Crosstalk 

Capacitive crosstalk is based on the existence of a capacitance between two 
conducting surfaces. Inductive crosstalk is based on the fact that every conducting 
wire has a certain, non-zero, inductance per length unit, see Fig. 2.24. For example, 
a common RG-58 coax cable has a series inductance of approximately 250 nH/m. 

From basic electricity, we also know that two coils close to each other form a 
transformer, see Fig. 2.25, and the mutual inductance M between them is a measure 
of how much of the voltage over the primary coil that is transferred to the secondary 
coil: 

M = k · √L1 · L2 (2.7)

where k is a constant depending on ‘geometric and environmental’ parameters. 
The voltage induced in the secondary coil is

Fig. 2.24 A conductor has 
some inductance l H/m per 
unit length 
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Fig. 2.25 A transformer

u2 = M 
di1 
dt  

(2.8) 

If we assume that the current i1 in Wire 1 is sinusoidal, i1(t) = i0 sin ωt , the  
derivative is ωi0 cos ωt and 

u2 = Mωi0 cos ωt (2.9) 

Notice in Fig. 2.25 that there is also a current i2 induced in the secondary coil and 
its direction is determined by Lenz’s law; its direction is such that it counteracts its 
origin. 

Now we have all we need to explain inductive crosstalk. If we place two conductors 
close to each other, they will form a transformer because of their inherent inductance 
per unit length, see Fig. 2.26, and Eq. (2.8) tells us that a current (i.e., a current 
change) in Wire 1 will induce a voltage in Wire 2, (which according to Eq. (2.9) 
increases with frequency; inductive crosstalk is also a high-frequency problem). 

The remedy in this case is a little more sophisticated than earlier. First, we place a 
new conductor between Wire 1 and Wire 2. We will call it the ‘shield conductor’, or 
just the ‘shield’, see Fig. 2.27. Just like there is a mutual inductance between Wires 1 
and 2, there will be a mutual inductance between Wire 1 and the shield, and between 
Wire 2 and the shield.

Fig. 2.26 Two parallel conductors are a transformer 
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Fig. 2.27 There are mutual 
inductances between each 
pair of wires 

Just like the current in Wire 1 induces a current i12 in Wire 2, it will also induce a 
current i1S in the shield conductor. But because there is a mutual inductance between 
the shield and Wire 2, the current i1S will induce a current iS2 in Wire 2, and because 
i1S is in the opposite direction of i1, the induced current from the shield will be in 
the opposite direction of i12, see Fig. 2.27. 

So, the shield induces a current in Wire 2 that has the same frequency as the 
current induced by wire 1, but it has a phase shift of 180°, which means that it will 
interfere ‘destructively’ with i12. iS2 will cancel i12 completely if M12·i1 = MS2·i1S. 
i1 > i1S, but  MS2 > M12, so there is a good chance that they will cancel. If we do it 
right. 

How do we do it ‘right’? As a matter of fact, how do we do it at all? First, it 
doesn’t seem very practical to just place an extra ‘dummy’ wire next to our signal 
wire. Second, it probably wouldn’t work anyway. An absolute condition for this trick 
to work is that the shield wire can conduct a current; it needs to be a closed loop. 

We can achieve that without adding an extra ‘dummy’ cable. From Fig. 2.22, we  
learned that we need a grounded shield anyway to protect our system from E-field 
radiation and capacitive crosstalk. Well, there is our ‘dummy’ shield already! All we 
must do is to ground it in both ends (make it a closed loop) to also protect us against 
inductive crosstalk, see Fig. 2.28.

However, grounding the shield at both ends might introduce new noise and we 
will investigate that in the next section. 

2.6 Common Impedances 

A current must always have a return path; what goes out must come back. Current will 
always find a way back and it will choose path(s) according to Kirchhoff’s current 
law. A current carrying wire must always have a return path to ‘close the loop’. When
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Fig. 2.28 If we ground the shield at both ends, we are protected against E-field, capacitive, and 
inductive crosstalk

you use a coax cable, the shield (the copper braid surrounding the center wire) is the 
return path for the current, see Fig. 2.29. 

In the general case, we use a ‘common ground’ as the return path for the current, 
see Fig. 2.30. 

Using common ground as the return path in a measurement system is in general 
not a good idea. Two circumstances, which are quite common, can make the ground 
itself a source of crosstalk and noise. First, suppose that the ground path conductor is 
not ‘perfect’, i.e., it has a resistance > 0 ohms (which it almost always has). Second, 
since it is a common ground, other signals also use it for current return (ix), see 
Fig. 2.31 (where Rwire is the resistance in the wire).

If we apply Kirchhoff’s voltage law in Fig. 2.31, we get

Fig. 2.29 What goes out must come back; the shield is also the return path 

Fig. 2.30 ‘Ground’ is a common return path 
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Fig. 2.31 Common ground as return path

Fig. 2.32 Multi-signal system with common return path 

u0 − i0 Rwire − umeas − (i0 + ix )Rground = 0 

umeas = u0    
‘True’ 
signal 
value 

− i0
(
Rwire + Rground

)
    

cable loss 

− ix Rground    
crosstalk 

(2.10) 

In Eq. (2.10), i0
(
Rwire + Rground

)
is the ‘cable loss’ in the circuit. We always have 

some of that. This is not ‘noise’. After all, it is caused by the signal itself, and it is 
predictable (we can compensate for it). The problem in Eq. (2.10) is the  term  ixRground 

which is caused by an external current that has nothing to do with u0 or our system. 
ixRground represents ‘crosstalk by common impedance’.1 

This explains why the shield against inductive crosstalk in Fig. 2.28 is a potential 
problem; both ends of the return path are grounded which is an invitation to other 
currents using the common ground to enter our system. 

Example 2.1 In a multi-signal system, a signal wire carrying a small sinusoidal 
signal shares return wire with a fast TTL clock signal, see Fig. 2.32. The TTL signal 
wire is ‘50-Ω terminated’ to reduce pulse reflections (see Chapter 5), which means 
that the current in the clock wire (during the 5-V pulses) is 5/50 = 100 mA. Make a 
prediction of the clock signal’s impact on the measurement of the sine if the resistance 
of the return wire is 1 Ω.

1 Sometimes called ‘common ground crosstalk’. 
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Fig. 2.33 A ‘real case’ example 

Fig. 2.34 A shielded TP cable 

Solution The ixRground voltage in Eq. (2.10) is 100 mA × 1 Ω = 100 mV. Hence, 
according to Eq. (2.10), we will measure a signal that is 100 mV lower than expected 
during the positive duty cycles of the clock signal. Figure 2.33 illustrates a real 
example recorded with an oscilloscope, using three 4.5 m wires with a cross-sectional 
area of 0.08 mm2. 

When it comes to the use of shields, like the ones we have been using in Figs. 2.22 
and 2.28, to protect our system against capacitive and inductive crosstalk, there are 
two cases that need to be treated differently; whether the shield is ‘just a shield’ or if 
it also carries the return current. This difference is paramount because it determines 
how you can use it. 

If the shield is also the return path, as in a coax cable, the shield should only be 
grounded at one end. Never ground a coax cable at both ends. If you have problems 
with inductive crosstalk and need to ground the shield at both ends, you can’t use a 
coax cable: you must use a ‘shielded pair-cable’, where the shield is not the return 
path. That also has another advantage; you can twist the signal pair wires to also get 
B-field protection.2 

A shielded TP cable, grounded at both ends, protects your system against ‘every-
thing’, but coax cables have higher bandwidth and support longer cable lengths 
(Fig. 2.34).

2 You don’t ‘twist’ the cables yourself; you buy a ‘shielded twisted-pair’ cable. 
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Fig. 2.35 Keep the signal in a Faraday cage all the way 

2.7 Summary and Recommendations 

When you plan the setup of an electrical measurement system, you need to keep 
external crosstalk interference in mind. Some of them you need to consider from the 
outset, because they are omnipresent in almost all environments, while with others, 
you just wait and see if they show up. 

Of all the potential crosstalk sources we have presented in this chapter, capac-
itive crosstalk and common impedance crosstalk are the most common problems. 
(Protecting your system against capacitive crosstalk takes care of E-field crosstalk at 
the same time.) You should take deliberate actions to prevent capacitive and common 
impedance crosstalk when you plan a measurement setup. 

What remains is B-field and inductive crosstalk. In my experience, they are not 
a major problem in most physics labs; don’t make any special plans to protect your 
system against B-field and inductive crosstalk, just keep them in mind if you still 
have interference problems after taking precautions against capacitive and common 
impedance crosstalk. 

That means that we don’t start with a shielded twisted-pair cable, you start with a 
coax cable and one signal ground point only (if necessary). If you have two different 
ground points, you open up for common impedance crosstalk. 

Figure 2.35 illustrates what should be your first option (‘plan A’). 
The signal should preferably be transported as a ‘non-referenced’ differential 

signal to the receiving DAQ (Data AcQuisition) system’s differential amplifier input. 
If the source is inherently ‘referenced’ (ground related), you might have to ‘de-

reference’ it, either using an opto coupler (if the signal is digital) or an isolation 
transformer (if the signal is analog), see Fig. 2.36.

Only when the coax system in Fig. 2.35 fails, you consider a shielded TP cable. If 
the shielded TP cable system also fails (or if its bandwidth is too small or if it can’t 
offer long enough cables), an alternative solution could be a fiber optics solution. 
Fiber optic transmission cables are immune to all the above crosstalk interferences. 
They also have extreme bandwidth and allow long cable lengths but are expensive 
and somewhat more complicated to handle. Fiber optics are not perfect though, they 
have their own issues (like dispersion, for example).
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Fig. 2.36 a De-referencing with opto-coupler. b De-referencing with isolation trafo

However, whatever you do, there will almost always be some unwanted signal 
component(s) in your measurement signal that you want to get rid of and when you 
have set up your system according to the recommendations above and still have some 
noise (you always have the ‘internal’ noise), then, but only then, you will have to 
start the ‘signal processing’, which is what most of this book is about. 

2.8 Solved Problems 

Problem 2.1 Assuming a common trace length on a pcb (printed circuit board) is 
5 cm (two inches). For what EM frequencies would such a board be particularly 
vulnerable to electric field interferences? 

Solution It is particularly vulnerable if the pcb trace length equals λ/2, i.e., for EM 
waves with a wavelength of 10 cm. That corresponds to a frequency of 

f = 
3 · 108 
0.1

= 3 GHz 

Problem 2.2 A desktop DMM with an input impedance of 10 MΩ has an open input 
(no input signal). When set to DCV range and ‘statistics mode’ it displays a standard 
deviation of 16 μV. Estimate the instrument’s bandwidth in the DCV range. 

Solution Assuming room temperature (300 K), we solve for B in Eq. (2.1): 

B = 
u2 rms 

4πkRT  
=

(
16 · 10−6

)2 
4π · 1.38 · 10−23 · 10 · 106 · 300 = 500 Hz 

Problem 2.3 A typical kitchen microwave oven operates at 2.45 GHz. What grid 
size would you recommend for a protective metal mesh in a microwave oven?
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Solution An electromagnetic wave with a frequency of 2.45 GHz has a wavelength 
of 3·108/2.45·109 = 12 cm. One-tenth of 12 cm is 1.2 mm. (Compare that to the size 
of the grid in the front door of your microwave oven.) 

Reference 

1. Kiely, R. 2017. Understanding and eliminating 1/f noise. In Analog Dialog, p. 4.



Chapter 3 
Sensors 

Abstract This chapter first describes thermocouples starting from the famous exper-
iments by Seebeck and Thomson. The basic concepts of thermocouples are described 
such as hot and cold junctions, the Seebeck coefficient, and thermocouple ‘types’ are 
explained. This chapter also explains what the ‘cold junction compensation’ is and 
the law of intermediate temperatures is illustrated. Resistance temperature detectors 
(such as Pt-100) are described, and the necessity of accurate resistance measure-
ments is explained (the ‘4-wire method’). The measurement of extremely high and 
extremely low temperatures is covered at the end of Sect. 3.2. Section 3.3 introduces 
the versatile strain gauge principle and its many applications. It is also explained 
why strain gauges are (almost) always connected to a Wheatstone bridge and how 
it can be used to measure a wide range of physical quantities (like force, pressure, 
liquid level, torque, etc.). Piezoelectric crystals and Hall sensors are explained and 
light sensors (photodiodes, position-sensitive detectors, and photomultipliers). In the 
particle detector section, channeltrons and microchannel plates are explained and in 
the final Sect. 3.9, the most common vacuum gauges are presented. 

3.1 Introduction 

In this context, a ‘measurement’ refers to the measurement of a physical quantity, 
like temperature, pressure, acceleration, sound intensity, or light intensity. Most of 
these physical quantities can be measured using mechanical gauges (for example, 
we can measure temperature using a mercury thermometer) but in a physics lab, the 
destination for data is almost always a computer (of some kind) and that requires 
that we have access to the measurand in electrical form. The device that transforms 
a variation in a physical quantity into a variation in an electrical quantity is called 
the sensor. The words ‘gauge’ and ‘transducer’ are also common in this context, but 
we will mostly use the word ‘sensor’ here. 

The preferable electrical quantity is (almost) always volts [V], because, first, we 
know how to measure voltage very accurately and, second, the ‘analog-to-digital’ 
elements that ‘sample’ the signal need voltage as the input quantity (see Chap. 11).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 
L. Bengtsson, Electrical Measurement Techniques, 
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However, a lot of sensors do not produce voltage as the primary output (they may 
produce a current or a change in resistance or capacitance), and in those cases we 
need some ‘supporting’ electronics to generate a voltage output. This supporting 
electronics is referred to as the ‘signal conditioning’ electronics. 

There are a lot  of physical quantities and, for most sensors, there are more than one 
sensor technique available, so learning about sensors appears to be quite a challenge. 
However, if you count all sensors in all physics labs, you will find that there is one 
kind of sensors that dominates completely: Temperature sensors. No matter what 
the ‘physics’ is about, temperature must almost always be measured somewhere. 
So, if you only have time to learn about one sensor technique, you should start with 
temperature sensors. (Then you understand maybe as much as 30% of all sensors in 
a lab.) Hence, temperature sensors are what we will start with. 

If you have time to learn one more sensor technology, I recommend you learn 
about the ‘strain gauge principle’ since this versatile sensor technique is the basis for 
a lot of sensors for different physical quantities. 

3.2 Temperature Sensors 

3.2.1 Thermocouples 

Thermocouples are one of the most common sensors in a physics lab and this is 
probably the first sensor you should learn about as a physicist. In 1821, the German 
physicist Thomas Johann Seebeck discovered that if you make a closed circuit of 
two different conductors and keep the two junctions at different temperatures, there 
will be a current in the circuit (Fig. 3.1). 

In most textbooks, the Seebeck effect is used to explain thermocouples. In this 
book, I will instead use the Thomson effect (since I think it makes the understanding 
a little less mysterious). The Thomson effect was discovered in 1854 by the British 
physicist William Thomson (Lord Kelvin). He did similar experiments on a single 
wire and found that when current was flowing in a conductor, one end got warm, 
and one end got cold. He also found that this process was reversible; if the two 
ends of a conductor are held at different temperatures, a current will be induced in 
the conductor. If we don’t have a closed loop, the regrouping of charge will induce

Fig. 3.1 The Seebeck effect 
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Fig. 3.2 The Thomson 
effect 

a voltage across the ends, an emf . We will denote this emf EA(TH → TC) (‘from 
temperature TH to temperature TC along material A) (Fig. 3.2). 

Next, we need to figure out how to use the Thomson effect to measure temperature. 
Figure 3.3 illustrates a (naïve) experiment. A voltage meter is used to measure the 
emf across a single wire. We connect the voltage meter to the end points using a wire 
of (unknown?) material C. The Thomson effect is as valid for the wires of material 
C as it is for the wire of material A. The voltage meter will measure the voltage 

Um = EC(T0 → TH) + EA(TH → TC) + EC(TC → T0) (3.1) 

(T 0 is the temperature of the voltage meter.) From expression (3.1), we can see that 
we would have to consider the contribution from the voltage meter wires, and that 
would make this solution impractical (to say the least); we would always have to 
make sure we have the right wires to the voltage meter. For that reason, we use a 
pair of wires of dissimilar materials (a thermocouple) as illustrated in Fig. 3.4. This  
straightforward design eliminates the voltage measurement’s dependence on the C 
wires.

We can see that by writing out the expression for the voltage Um: 

Um = EC(T0 → TC) + EA(TC → TH) + EB(TH → TC) + EC(TC → T0) (3.2) 

And since EC(T0 → TC) of course = −EC(TC → T0) the EC terms will cancel 
and we can write Eq. (3.2) as  

Um = EA(TC → TH) + EB(TH → TC) = EB(TH → TC) − EA(TH → TC) (3.3)

Fig. 3.3 A simple  
Thompson effect experiment 
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Fig. 3.4 A thermocouple

Table 3.1 Thermocouple data 

Type Metal pair Seeb. coef. [μV/°C] Range [°C] Accuracy [°C] 

E Chromel/Const 59 −270 … +870 ±1.7 

J Fe/Const 50 −200 … +760 ±2.2 

K Chromel/Alumel 39 −270 … +1260 ±2.2 

S Pt–Rh/Pt 5 −50 … +1600 ±1.5 

T Cu/Const 39 −270 … +370 ±1.0 

With the design in Fig. 3.4, the voltage we measure is independent of the C wires 
and the temperature of the voltage meter, and that is what we need for the Thomson 
effect to be a useful sensor technique. 

There are some things we need to know before we use thermocouples. First, we 
notice from Eq. (3.3) that the voltage Um (the thermo emf ) represents a temperature 
difference; we must  know the temperature TC at the cold junction. The cold junction 
temperature is measured separately by another sensor (see next section). Second, the 
thermo emf is exceedingly small, typically a few or tens of μV/°C (see Table 3.1). 
Third, the thermo emf is not a linear function of the temperature. In fact, NIST1 

recommends that they are best described by a ninth-order polynomial. Figure 3.5 
illustrates the emf of a ‘type K’ thermocouple in the range –10 to +40 °C (‘ ’) 
and a linear approximation; notice the deviation at higher temperatures. (We will 
explain the ‘type’ letter later.)

Even though thermocouples are not linear, they are often characterized by a sensor 
coefficient called the Seebeck coefficient, which has the unit μV/°C. This number 
stands for the derivative of the emf graph at ∆T = 0 °C. NB. This number is only 
for comparison between thermocouples. Don’t try to use it to derive a temperature 
from an emf; you must use a thermocouple table for that! 

Materials A and B are not paired arbitrarily in a thermocouple. The metal pairs 
have been standardized and each metal pair has a ‘type’ letter. It is also common 
to use an alloy as one (or both) metal. Three alloys are particularly common. First, 
we have Constantan2 which consists of 45% nickel and 55% copper. Then there is

1 National Institute of Science and Technology, nist.gov. 
2 This is not the last time we will hear about Constantan in this book; it is also the most common 
material in strain gauges, see Sect. 3.3. 

http://www.nist.gov
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Fig. 3.5 Temperature dependence of a type K thermocouple

Alumel which is 95% nickel and 5% aluminum and Chromel which has 90% nickel 
and 10% chromium. 

Figure 3.6 compares the five most common thermocouples’ emf graphs in the 
range −10 °C to +50 °C and Table 3.1 summarizes their parameters. 

A common question in the physics lab is: ‘What thermocouple type should I 
use?’. Well, first, it must of course cover your temperature range. The type S ther-
mocouple can measure the highest temperatures and type K, or T, are usually used 
for exceptionally low temperatures. The type E and type J thermocouples can be 
used in oxidizing atmospheres (type E also in inert atmospheres). Type K is the 
most common of all thermocouples; it is inexpensive and accurate, and it can also be 
used in nuclear applications because of its radiation ‘hardness’. Type T thermocou-
ples have the smallest range but are the most accurate and have excellent reliability/ 
repeatability. If you don’t know or don’t care, you start with a type K thermocouple. 
In fact, a lot of DMMs have thermocouple inputs and that is almost always for a type 
K thermocouple.

Fig. 3.6 Comparing the most common thermocouples between −10 °C and +50 °C (type K and 
type T overlap in this range) 
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Figure 3.7 illustrates an interesting (and common) thermocouple arrangement. It 
consists of two AB junctions, where one of the junctions is the ‘hot’ junction and 
the other junction is submerged into ice water (= 0 °C). To understand why this is a 
clever trick, we need the following thermocouple law. 

The thermocouple law of intermediate temperatures: 

In Fig. 3.8a, a temperature difference TH − T IM generates an emf EA(TH → T IM) 
across conductor A, and similarly, a temperature difference T IM − TC generates an 
emf EA(T IM → TC). In this case, T IM is an ‘intermediate’ temperature and can be 
eliminated: 

EA(TH → TIM) + EA(TIM → TC) = EA(TH → TC) (3.4) 

This is illustrated in Fig. 3.8b. 
Back to Fig. 3.7. The voltage meter will measure the thermo emf 

Um = EA(TC → TH) + EB(TH → 0 ◦C) + EA(0 ◦C → TC) (3.5)

Fig. 3.7 The ice water trick 

Fig. 3.8 a ‘Intermediate’ temperature. b The law of intermediate temperatures 
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If we use the law of intermediate temperatures on the emfs across the A conductors, 
TC will be the ‘intermediate temperature’, and we get 

EA(0 ◦C → TC) + EA(TC → TH) = EA(0 ◦C → TH) = −EA(TH → 0 ◦C) 

And hence, we can write Eq. (3.5) as  

Um = EB(TH → 0 ◦C) − EA(TH → 0 ◦C) (3.6) 

In expression (3.6), Um is independent of the cold junction temperature; we have 
turned the temperature measurement into an absolute measurement. In general, ther-
mocouples only measure a temperature difference, but that doesn’t mean that you can 
just add the cold junction temperature to the temperature you get from the thermo 
emf. The proper way to do it is to convert the cold junction temperature to voltage, add 
that voltage to the thermo emf, and then convert the summed voltage to a temperature 
(using a table). This is called ‘cold junction compensation’ (see Problem 3.5). 

3.2.2 Metal Temperature Sensors 

Temperature sensors based on pure metals are called resistance temperature detectors 
or just ‘RTDs’. The resistance of all metals has a positive temperature dependence3 ; 
the resistance increases when the temperature increases. So, we could use any metal 
as a temperature sensor, but only three are really used, platinum, copper, and nickel. 
In fact, in industrial applications, only (almost) platinum sensors are used, so that is 
what we will be focusing on here. It is highly unlikely that you will ever see anything 
else in your physics lab. 

A platinum temperature sensor is denoted ‘Pt-100’ or ‘Pt-1000’. ‘Pt’ is of course 
for ‘Platinum’ and the number, 100 and 1000, respectively, is the sensor’s resistance 
at 0 °C. Unlike thermocouples, the temperature dependence of metals is very linear. 
The resistance’s dependence on the temperature is given by Eq. (3.7): 

R = R0(1 + γ T ) (3.7) 

where T is the temperature in °C, R0 is the resistance at 0 °C, and γ is the sensor 
coefficient, and for platinum, γ = 3.85 · 10−3 °C−1. Hence, for a Pt-100 RTD, we 
can write Eq. (3.7) as  

R = 100
(
1 + 3.85 · 10−3 T

) = 100 + 0.385T (3.8)

3 Germanium and silicon have negative temperature coefficients, but they are not ‘metals’, they are 
‘metalloids’, and there are also non-metals with negative temperature coefficients (like carbon). 
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Fig. 3.9 RTDs come in different shapes 

From Eq. (3.8), we can see that the sensitivity is 0.385 Ω/°C (and hence ten times 
higher for a Pt-1000 RTD). Platinum RTDs are mainly used in the temperature range 
−50 °C to +500 °C. They can operate outside this range, but outside this range, 
thermocouples typically perform better. 

A Pt-100 RTD is usually made of thin platinum wires that are wrapped around 
some heat-resisting material and then encapsulated in a protective housing, see 
Fig. 3.9. They have become very popular in industrial applications in ranges below 
600 °C because of their excellent accuracy and long-term stability. 

RTDs are also often used to measure the cold junction temperature in thermo-
couple applications. 

RTDs are more accurate and reliable than thermocouples, but they have one 
inherent disadvantage compared to thermocouples; the output quantity is resistance, 
not voltage, and we simply have better instruments to measure voltage compared 
to resistance. Measuring resistance can be a little precarious and needs to be done 
carefully. Since this is an especially important aspect of RTDs, we investigate the 
details in the next section. 

3.2.3 Measuring Resistance 

Figure 3.10 illustrates the simplest way to measure resistance using a common, 
portable DMM. Handheld DMMs usually only have two connectors and, when 
you set the unit selector knob to ‘Resistance’, it will generate a probing current 
and measure the voltage drop across the external resistance using the same two 
connectors, see Fig. 3.10.

From Fig. 3.10, it is obvious that the resistance measured will also include the 
resistance of the wires. That may or may not be a problem, it depends on the size of 
the resistance of the wires and the sensor and on the required accuracy. The following 
example will illustrate this. 

Example 3.1 In a temperature measurement, a Pt-100 RTD is placed five meters 
from the DMM, and a TP cable is used where the copper wires’ cross-sectional 
area is 0.25 mm2. What will the error in the temperature measurement be due to the 
contribution from the wires? 

Solution The resistivity of copper is 1.77 · 10−8 Ωm. The resistance of one wire is 

Rwire = ρ 
L 

A 
= 1.77 · 10−8 5 

0.25 · 10−6 = 0.354Ω
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Fig. 3.10 The 2-wire method

And since we have two wires, the total contribution from the wires is 0.708 Ω. 
Since the sensitivity coefficient of a Pt-100 RTD is 0.385Ω/°C, 0.708Ω corresponds 
to a temperature error of 0.708/0.385 = 1.8 °C. (It would be 18 °C for a Pt-1000!) 

The error of 1.8 °C in the previous example, may or may not be a problem, but 
consider that the distance between the sensor and the DMM was ‘only’ five meters. 
In a physics lab, it can be considerably longer. In some labs, the sensor is inside 
a vacuum chamber in another room. Second, it depends on the application. If you 
just heat an oven, it might not matter much, but if you try to control a boiler, a few 
degrees are critical. 

To avoid the problem, you must use the 4-wire method. This is illustrated in 
Fig. 3.11. 

In Fig. 3.11, the current source and the voltage meter have separate wires all 
the way to the sensor. At a first glance, this may not seem to improve things; we 
just introduced two more wire resistances. However, if you analyze the two current 
circuits in Fig. 3.11, you see that there will be no current in the inner circuit, iV = 
0 A. The reason is that the inner circuit has a voltage meter in series and voltage 
meters have very high impedance. Hence, there is no voltage drop across the Rwire 

resistances in the inner circuit and the voltage meter will only measure the voltage 
drop across the RTD. The Rwire contributions are effectively eliminated.

Fig. 3.11 The 4-wire method  
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Fig. 3.12 Keysight’s/ 
Agilent’s DMM interface for 
2-/4-wire measurements 

If we compare Figs. 3.10 and 3.11, we can also see the disadvantage of the 4-wire 
method; apart from two extra wires, it also requires an ‘expensive’ DMM. To do a 
4-wire resistance measurement you almost certainly need a desktop DMM, like the 
popular Agilent/Keysight 344xx model. The front panel resistance interface of this 
DMM is illustrated in Fig. 3.12. The probe current comes out of the right-hand side 
pair of connectors and the left-hand side ‘Sense’ pair measures the voltage. Notice 
the ‘4W’ label. Most students think this means ‘4 Watts’. Now you know better. 

3.2.4 Bandgap Sensors 

Thermocouples and RTDs are extremely popular in physics labs, but they are not 
the most common temperature sensors when it comes to commercial applications 
outside the laboratory or in industrial applications. An inherent disadvantage is that 
they are not semiconductors and cannot be integrated into a silicon wafer, which is a 
typical demand in commercial products. Also, commercial products seldom require 
the extreme ranges offered by thermocouples and RTDs. 

In commercial applications, the ‘bandgap’ sensor is very popular. The basic prin-
ciple behind a bandgap temperature sensor is that the forward voltage of a pn junction 
(a silicon diode) is very temperature-dependent (approximately −2 mV/°C, compare 
that with thermocouples in Table 3.1). In principle, you could just bias a silicon diode 
but that is not recommended. The expression for the forward voltage’s dependence 
on the temperature is overly complicated [1] and it has a disadvantage; just like 
the thermocouple, it depends on a reference temperature. For that reason, another 
approach is used. 

The forward voltage also depends on the current used. Therefore, two pn junctions 
are used with different currents, and then the difference in forward voltages will be 
independent of any reference temperature. These devices are sometimes referred to 
as PTATs, Proportional To Absolute Temperature.



3.2 Temperature Sensors 43

Bandgap sensors can be integrated in silicon and are used in applications up to 
200 °C. Other advantages are that they are inexpensive and very sensitive. 

3.2.5 Cryogenic Temperatures 

At cryogenic temperatures (<−153 °C), you need to take extra care to use the right 
sensor. Some of the sensor technologies described above can be used also at cryogenic 
temperatures but remember that also the housings must be able to endure the stress 
implied by the extremely low temperatures. Having said that, silicon diodes can be 
designed for temperatures down to 1.5 K and some thermocouples can also be used at 
cryogenic temperatures (type N and T). A special cryogenic RTD has been designed 
using a platinum/cobalt alloy which can be used down to 1.4 K. In environments that 
include magnetic fields, ruthenium oxide RTDs are recommended. 

3.2.6 Extremely High Temperatures 

At the other end of the scale, we have extremely high temperatures (> 800 °C), that 
need to be measured in for example metal processing and plasma physics. There are 
some thermocouples that can be used up to 1800 °C (type B and type S), but above 
1800 °C, pyrometers are used. 

The word ‘pyro’ is Greek for ‘fire’. Pyrometers are based on two classic laws 
of physics. All objects warmer than 0 K emit a broad spectrum of infrared radia-
tion. Wien discovered that the wavelength peak of this radiation decreases when the 
temperature increases, and Stefan–Boltzmann discovered that the total energy that 
is emitted from the object (per surface area and unit time) increases rapidly with 
increasing temperature (~T 4). Both these laws can be observed in Fig. 3.13.

Since it is easier to measure the increase in emitted energy rather than finding the 
wavelength peak, it is Stefan–Boltzmann’s law that is usually used in pyrometers. 
Pyrometers are non-contact devices that measure the energy emitted from a black 
body by focusing the infrared light onto a thermopile. A thermopile consists of several 
thermocouples connected in series, see Fig. 3.14.

The infrared light is absorbed by the material in the hot junction layer, and this will 
heat the material; the temperature of the hot layer junction will be proportional to the 
radiation intensity which, according to Stefan–Boltzmann’s law, is proportional to 
the temperature. The thermopile consisting of N thermocouples in series produces a 
thermo emf that is N times the emf of a single thermocouple. Commercial pyrometers 
with a resolution of 0.1 °C are available. 

One problem that needs to be addressed when you use a pyrometer is the emissivity 
of the object whose temperature you want to measure. The emissivity is a number 
between 0 and 1 and reflects the object’s effectiveness in emitting energy as thermal 
radiation. Pyrometers are typically calibrated for emissivity = 1 (i.e., a ‘black body’),
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Fig. 3.13 Energy emitted from black body. Notice that the wavelength peak shifts left with 
increasing temperature and that the total energy emitted (the area under the curves) increases with 
temperature

Fig. 3.14 A thermopile

but the emissivity of a shiny metal surface can be as low as 0.1. On the more advanced 
pyrometers, you can set the emissivity number. 

One more thing: Pyrometers do not work through glass, so even if there is a 
window in your vacuum chamber, you cannot use it to read the temperature of an 
object inside with a pyrometer. If that is what you need to do, the window must be 
made of an infrared transparent material such as silicon or sapphire, depending on 
the temperature range. Potassium bromide has a very wide transparency range in the 
infrared but is more expensive. 

Some labs use ‘disappearing-filament’ pyrometers where you simply heat a fila-
ment until its color matches that of the object (they take advantage of Wien’s law 
rather than Stefan–Boltzmann’s law). This could be a good alternative if you need 
to measure for example the temperature of a filament inside a vacuum chamber that 
only has plain glass windows.
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3.3 The Strain Gauge Principle 

3.3.1 Strain Gauges 

The resistance of a conductor with cross-sectional area A and length L is 

R = ρ 
L 

A 
(3.9) 

where ρ is the resistivity of the conductor material. If the conductor is subjected to 
some tension, for example, if we pull both ends, see Fig. 3.15, then the resistance 
will change. 

The resistance will change because the parameters in Eq. (3.9) are affected by the 
tension; the conductor will be a little longer (L = L0 + dL), the area will decrease (A 
= A0 – dA) and for some materials even ρ will change (‘piezoresistive’ materials). 
The most common material used in sensors (‘strain gauges’) is Constantan (yes, the 
same alloy that we use in some thermocouples). Constantan is used because it has a 
low-temperature coefficient and high ‘strain sensitivity’, i.e., the resistance changes 
a lot when it is subjected to strain or tension. 

For Constantan, it is mostly a change in the length that is causing the change in 
resistance. The ‘gauge factor’ is defined as the quotient between the relative change 
in resistance and the relative change in length: 

k = 
dR/R 

dL/L 
(3.10) 

(dL/L is, by definition, the ‘strain’, hence the name ‘strain gauge’.) For Constantan, k 
is approximately 2. Instead of a circular conductor, as indicated in Fig. 3.15, a strain  
gauge is made from a thin foil that is folded back and forth and then placed between 
two substrates, see Fig. 3.16.

To use it in an application, it must be glued to the object. The gluing is impor-
tant; you must use a special glue to make sure the strain gauge is subjected to the 
same strain as the object. And herein lies the problem. Assuming the object whose 
strain we are trying to measure, is not made of Constantan (it never is, think ‘car 
chassis’) then the object will not be of the same material as the strain gauge and that 
implies that the object and the strain gauge do not have the same temperature coef-
ficient. If the temperature changes, the object, and the strain gauge will not expand/

Fig. 3.15 Conductor 
subjected to tension L0 

A 

F 
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Fig. 3.16 Strain gauge. 
They come in a huge range 
of dimensions, but a typical 
sensor element is 1 × 2 cm

contract equally, and since they are glued hard together, that difference in expan-
sion/contraction will cause a strain in the gauge. This is called a ‘false’ strain or an 
‘ostensible’ strain. 

That means that if we only measure the resistance of the strain gauge, there is no 
way to tell if a change in resistance is caused by a ‘real’ strain or a ‘false’ strain. We 
must be smarter than that. 

The trick is to apply the strain gauges pairwise so that they ‘counteract’; when 
there is a ‘real’ strain, one is stretched and the other one is compressed. By subtracting 
the resistance of one from the other, not only do we eliminate ‘false’ strain we also 
amplify the signal by a factor of 2. Figure 3.17 illustrates an example. 

First, if we assume that the resistance of the gauge ‘at rest’ is R0, we can write 
the resistance as 

R = R0 + dR  = R0

(
1 + 

dR  

R0

)
= R0(1 + ∆) (3.11) 

where∆ = dR/R0 is the relative change in resistance. In Fig. 3.17, we have glued one 
strain gauge on the top side of the girder and one on the bottom side. If we subtract 
them, we get 

Rm = R0(1 + ∆1) − R0(1 + ∆2) = R0(∆1 − ∆2) (3.12) 

When the girder is subjected to a force, it will bend downwards and that will 
stretch the gauge on the top side and compress the gauge on the bottom side. We will 
assume here that the gauge on the bottom side is compressed as much as the gauge 
on the top side is stretched. That means that the gauge on the top side has a positive

Fig. 3.17 Strain gauges are 
applied pairwise 
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∆ and the one on the bottom side has a negative ∆; ∆2 = −∆1. Hence, for a ‘real’ 
strain, Eq. (3.12) becomes 

Rm = R0(∆1 − (−∆1)) = 2R0∆1 (3.13) 

On the other hand, if we have a ‘false’ strain due to a temperature change, 
both gauges will be stretched/compressed in the same direction, i.e., ∆2 = ∆1, 
and Eq. (3.12) becomes 

Rm = R0(∆1 − ∆1) = 0 (3.14) 

By applying the gauges pairwise in a counteracting way and then subtracting their 
resistances, we get a reading that is independent of variations in temperature. 

However, we are still measuring resistance and we would really like to measure 
voltage. There are two reasons for that. First, we can measure voltage more accurately 
than resistance, and second, we can amplify voltage. 

So, if we would make a wishing list, we would like to have an electric circuit that 
can produce a voltage that is proportional to ∆1 − ∆2, i.e., a circuit that produces 

um = k(∆1 − ∆2) (3.15) 

That would be a voltage that only reacts to ‘real’ strains and would produce 0 V 
for ‘false’ strains. Does such a circuit exist? Yes, it does. It may be one of the most 
common circuits in electrical measurements. It is called the Wheatstone bridge. 

3.3.2 The Wheatstone Bridge 

Figure 3.18 illustrates the Wheatstone bridge where the strain gauges from Fig. 3.17 
have been connected in the upper branch of the bridge. 

Fig. 3.18 The Wheatstone 
bridge
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The ‘bridge voltage’ is the potential difference between points A and B: 

ub = UA − UB = R0(1 + ∆1) 
R0(1 + ∆1) + R0(1 + ∆2) 

U0 − R0 

R0 + R0 
U0 = 

=
(

1 + ∆1 

2 + ∆1 + ∆2 
− 

1 

2

)
U0 = 

2 + 2∆1 − 2 − ∆1 − ∆2 

2(2 + ∆1 + ∆2) 
U0 

= 
U0 

2 
· ∆1 − ∆2 

2 + ∆1 + ∆2 

Now we will make an approximation. ∆ is the relative change in the resistance 
and it is very small. (Pull a copper wire and try to imagine how much it expands…)
∆ is of the order of permille (‰). That means that the denominator above, 2 + ∆1 

+ ∆2 ≈ 2, and we can write the bridge voltage above as 

ub = 
U0 

4 
(∆1 − ∆2) (3.16) 

The bridge voltage is proportional to the difference in relative change in resistance, 
and hence it does not react to ‘false’ strains due to changes in temperature. 

The bridge in Fig. 3.18 is a ‘half-bridge’. In a ‘full bridge’, we apply four strain 
gauges to the girder, two on each side, see Fig. 3.19. 

Figure 3.20 illustrates how the gauges are connected in the Wheatstone bridge. 
The bridge voltage in Fig. 3.20 is two times higher than in Eq. (3.16).

At first sight, the beam with strain gauges in Fig. 3.17 might appear to have a 
limited number of applications; you can measure the strain in a cantilever, but how 
often do you need to do that? Well, that is just wrong. This ‘strain gauge principle’ is 
one of the most versatile and common sensor techniques in electrical measurement 
systems. It is used to measure a wide range of physical quantities, like acceleration, 
position, pressure, torque, viscosity, flow, humidity, etc. One of the reasons it has 
become so popular is the emergence of MEMS technology (MicroElectro Mechanical 
Systems); the beam with the four strain gauges can be miniaturized to sub-mm 
scales. Implementing strain gauges in semiconductor material also makes it possible

Fig. 3.19 Four gauges 
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Fig. 3.20 A full bridge

to integrate them on silicon. Below we will present several common applications of 
the strain gauge principle to give you an idea of the versatility. 

3.3.3 Accelerometers 

Figure 3.21 illustrates an accelerometer based on the strain gauge principle. A minia-
ture cantilever with four strain gauges is placed in an isolated housing. To increase 
the sensitivity, a ‘seismic mass’ is placed on the end of the cantilever and the entire 
system is filled with some oil to ‘damp’ the system. 

The strain gauges are internally connected in a Wheatstone bridge, see Fig. 3.22. 
As a matter of fact, this is (typically) how you can identify sensors based on the 
strain gauge principle; the electrical interface consists of four wires. Two should 
be connected to ‘power’ and the other two are the Wheatstone bridge voltage (that 
should be connected to an instrumentation amplifier, see Chap. 4).

The entire sensor is of the order of 10 mm and Fig. 3.23 illustrates a typical 
sensor. They are used abundantly in car crash testing and vibration monitoring and

Fig. 3.21 Accelerometer 
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Fig. 3.22 Most likely you have a strain gauge sensor when the electrical interface consists of four 
wires; connect red/black to power and green/blue to the amplifier (mind the polarity)

Fig. 3.23 Piezoresistive accelerometer: H × W × L = 5 × 10 × 12 mm 

are available in ranges from a few g up to thousands of g and are also available in 
‘multi axis’ versions (2- or 3-axis). 

3.3.4 Pressure Sensors 

In Fig. 3.24, piezoresistive strain gauges have been integrated onto a silicon 
membrane to form a pressure gauge. The strain gauges are connected in a Wheatstone 
bridge (as in Fig. 3.22); the signal interface is four wires.

The four strain gauges are placed on the silicon membrane so that two are stretched 
and two are compressed when the membrane is subjected to a force due to air pressure. 
Figure 3.25 illustrates the membrane in the sensor housing.

Figure 3.25 illustrates an ‘absolute’ pressure sensor, but they are also available 
as ‘differential’ sensors. Differential sensors would also have a pressure inlet on the 
bottom side of the sensor housing in Fig. 3.25. Figure 3.26 illustrates a differential
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Fig. 3.24 Piezoresistive elements on silicon

Fig. 3.25 The strain gauges are stretched/compressed due to the air pressure

pressure sensor from NXP Semiconductors. (Notice the four signal interface pins.) 
These sensors are available in ranges up to about 200 kPa.

3.3.5 Flow Sensors 

Once we can measure pressure, we can measure flow. In this context ‘flow’ means 
volume flow, [m3/s], and ‘fluid’ refers to gas or liquid (but you may assume liquid if 
it makes understanding easier). Flow measurements are often based on Bernoulli’s



52 3 Sensors

Fig. 3.26 Differential 
pressure gauge based on the 
strain gauge principle

equation (which is really a ‘conservation of energy law’). To measure flow in a fluid 
pipe, an obstacle is introduced; the pipe diameter is narrowed down, see Fig. 3.27. 

Bernoulli’s equation states that 

p1 
ρg 

‘pressure’ 
energy 

+ v2 
1 

2g 
kinetic 
energy 

+ h1 
potential 
energy 

= 
p2 
ρg 

+ 
v2 
2 

2g 
+ h2 (3.17) 

where ρ is the fluid density, g is the gravitational constant, hx is the height and px is 
the static pressure that the fluid exerts on the pipe walls. If we assume that h1 = h2,

Fig. 3.27 Flow measurement (using a ‘Venturi pipe’) 
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we can write Eq. (3.17) as  

p1 
ρ 

+ 
v2 
1 

2 
= 

p2 
ρ 

+ 
v2 
2 

2 
⇒ 

1 

ρ 
(p1 − p2) = 

1 

2

(
v2 
2 − v2 

1

)
(3.18) 

In general, the relationship between the flow, q, the pipe area A and the fluid 
velocity v is 

q = A · v [m3 /s] (3.19) 

Since the flow q must be a constant everywhere in the pipe, we must have that 

v2 
x = 

1 

A2 
x 

q2 ⇒ v2 
2 − v2 

1 =
(

1 

A2 
2 

− 
1 

A2 
1

)
q2 (3.20) 

Inserting Eq. (3.20) into Eq. (3.18) and solving for q gives us 

q =
 |||

2 

ρ
(

1 
A2 
2−A2 

1

) · √p1 − p2 = k
√

∆p (3.21) 

From Eq. (3.21), we can see that the flow is proportional to the square root of 
the difference in static pressure in the pipe between the two points with different 
cross-section areas. Two capillary tubes are inserted at both points and the pressure 
difference is measured with a differential pressure gauge as illustrated in Fig. 3.27. 
The tube in Fig. 3.27 with the ‘slender waist’ is called a ‘Venturi pipe’. 

3.3.6 Fluid Level Sensors 

Same thing with fluid level; once you can measure pressure, you can measure fluid 
level. In Fig. 3.28, a tube is placed in the (empty) vessel, and when it fills with fluid, 
the air trapped inside the tube is compressed and the pressure gauge will generate a 
signal proportional to the fluid level.

3.3.7 Torque Sensors 

Torque is another physical quantity that is readily measured with strain gauges. 
Figure 3.29 illustrates a shaft, or a spindle, subjected to some torque M. The torque 
will induce two opposing strains in the shaft. The tensile strain is in the direction of the 
torque with an angle of 45° versus the shaft direction, see Fig. 3.29. The compressive 
strain is in the orthogonal direction, at an angle of 90° versus the ‘tensile’ strain. (Roll
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Fig. 3.28 Fluid-level sensor

a piece of paper, twist it, and observe the tensions.) Hence, we can get counter-acting 
strain gauges by applying them pairwise at an angle of 90° as illustrated in Fig. 3.29. 
For rotating shafts, the signals are transferred to the ‘outside’ by sliprings. 

Fig. 3.29 Measuring torque
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3.3.8 Viscosity Sensors 

If you have a degree in physics, you have probably measured viscosity in some 
undergraduate lab exercise by measuring the time it takes for an object to sink in 
some fluid. That is fine, but it doesn’t provide a ‘sensor’ for us. The strain gauge does; 
if you can measure torque, you can measure viscosity. If you rotate a propeller (at a 
constant speed) in the fluid, the torque exerted on the propeller shaft is proportional 
to the viscosity. 

3.3.9 Load Cell 

Figure 3.30 illustrates the load cell principle. When the ‘cell’ is subjected to a load the 
vertical strain gauges will be compressed, and the horizontal ones will be extracted, 
and we can again place the strain gauges in a Wheatstone bridge to get a signal that 
only reacts to ‘real’ strains and not to false strains due to a variation in temperature. 

Load cells are mostly used for weighting (people, cars, and trucks) but can also 
be used to measure volume/level in a tank (volume/level is proportional to weight). 
It is also used to provide force feedback in robotic applications and rocket thrust 
measurements. 

We could give you more examples of applications for the strain gauge principle, but 
we think we have made the point; the strain gauge principle is a very versatile sensor 
technique and omnipresent. Instead, we will present some other sensor techniques 
that are almost as versatile.

Fig. 3.30 The load cell 
principle 
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3.4 Piezoelectric Crystals 

A ‘piezoelectric’ crystal has a symmetric crystal lattice of Silicon and Oxygen atoms, 
see Fig. 3.31. When the crystal is ‘at rest’ the positive Silicon atoms and the negative 
Oxygen atoms are arranged so that there is no net charge on any surface; the center 
of charge for positive and negative atoms coincide. 

However, if the crystal is deformed by an external force, see Fig. 3.32, the atoms 
in the lattice are displaced and the centers for positive and negative charges no longer 
coincide and a net charge can be detected on the surface. 

The amount of charge is proportional to the external force deforming the crystal. 
Just like the strain gauge case, we have a method to detect force, and we saw in the 
previous sections how that can be used to measure many other quantities. The charge 
depends very linearly on the force (just like the strain gauge arrangement), but the 
piezoelectric crystal has one advantage over the strain gauges; it is unaffected by 
temperature variations. 

However, it has some disadvantages too; we need to measure the charge that 
is generated by the force, and that is not as straightforward as it might seem. To 
understand the problem, we need a signal model of the crystal; we model it as a 
current/charge source that produces a charge Q = kF (F is the force on the crystal) 
and we model the crystal surfaces as a capacitor Cx, see Fig. 3.33.

That means that the voltage across the crystal is Ux = Q/Cx = kF/Cx, so by just  
measuring the voltage across the crystal would give us a number proportional to the 
force. The problem is that the capacitance Cx is very small and even if it is a non-
conducting material, there is still some ‘isolation resistance’ between the surfaces

Silicon atom 

Oxygen atom 

Centre of symmetry 
for postive and 

negative charge 
coincide. 

Electrodes 

Fig. 3.31 A piezoelectric crystal 

Centre of symmetry 
for positive charge. 

Centre of symmetry 
for negative charge. 

Fig. 3.32 A load will displace the centers of charge 
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↑

Q = k F 

CX RX RvV 

Fig. 3.33 The piezoelectric crystal signal model

(modeled by Rx in Fig. 3.33). Hence, the crystal will discharge through Rx and the 
voltage will decrease exponentially: 

Ux(t) = 
kF  

Cx 
e−t/τ (3.22) 

where τ = RxCx. The isolation resistance is very large (1012 Ω) but  Cx is of the order 
of pF, so τ ≈ 1 s; the voltage drops to 36% in just one second. As a matter of fact, 
the situation is much worse than that. To measure the voltage across the surfaces, 
we need to connect a voltage meter, see Fig. 3.33, and when we do that, the input 
impedance of the voltage meter is connected in parallel with Rx, and a typical voltage 
meter has an input impedance Rv = 1 MΩ. The consequence is that instead of 1012

Ω, the charge will discharge through Rv and τ in Eq. (3.22) is of the order of 1 μs! 
The charge is gone long before we have a reasonable chance to record it. 

Measuring the charge on a piezoelectric crystal is obviously not that straightfor-
ward. The trick is to ‘fool’ the charge to leave the crystal surface immediately. That 
is what a ‘charge amplifier’ does, see Fig. 3.34.

First, the negative op amp input is at ‘virtual’ ground. That means that the charge 
Q created on the crystal has three paths to ground: Through Cx, through Rx, or  
straight forward through no impedance at all. According to Kirchhoff’s current law, 
that means that all charge will go straight forward to the negative input of the op 
amp.

↑

Q = k F 

CX RX

-

+ 

C 

Q = k F 

Uout 

Piezo crystal 

Fig. 3.34 A piezoelectric crystal with charge amplifier 
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Once it reaches the op amp, it has nowhere else to go but ‘upwards’ to the external 
capacitor C; the output voltage will be 

Uout = −  
Q 

C 
= −  

kF  

C 
(3.23) 

It might seem like we just transferred the discharging problem from one capacitor 
to another, but that is wrong; C is an external capacitor that we can choose arbitrarily. 
It will have an isolation resistance too, but with the arrangement in Fig. 3.34, we can 
improve τ by many orders of magnitude. 

Still, τ will not be infinite, and piezoelectric crystals are not suitable for measuring 
static forces, but it is a popular sensor technique in dynamic applications because of 
its robustness against temperature variations, linear nature, and reliability. 

3.5 Hall Sensors 

When a charged particle moves in a magnetic field a force will act on it and bend the 
trajectory according to Fleming’s right-hand rule. 

In Fig. 3.35, a current is injected into a flat conductor (a metal strip) that at the same 
time is subjected to a magnetic field. Due to the magnetic field, the negative electrons 
will be forced to one side of the conductor and hence there will be a voltage across 
the conductor’s sides (perpendicular to the current’s direction and to the magnetic 
field lines). This is called the ‘Hall effect’ after Edvin Hall who discovered this 
phenomenon in 1879 (while working on his doctoral thesis in physics). 

The voltage across the conductor is proportional to both the current and the 
magnetic field, which indicates that the Hall effect has two major applications: 
Measuring currents (i.e., charge flow) and measuring magnetic fields. In the first

Fig. 3.35 The Hall effect 
principle 
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Fig. 3.36 Non-invasive flow 
meter 

Fig. 3.37 Hall probe 

case, we use a constant magnetic field and, in the other case, we use a constant 
current. 

Figure 3.36 illustrates a non-invasive flow meter (for conducting fluids, like water). 
When the fluid in the flow pipe passes through the (constant) magnetic field, the 
charges will be forced to the sides of the tube where electrodes pick up the charge 
and the voltage across the tube will be proportional to the flow q. Notice the advantage 
compared to the flow meter in Fig. 3.27; the Hall effect flow meter is non-invasive 
and does not interfere with the fluid (but it only works for conducting fluids with free 
ions). 

Figure 3.37 illustrates a Hall probe used to measure magnetic fields. A small metal 
plate/film is integrated on a probe stick and a constant current is sent through the 
plate and the voltage is measured across the plate. 

3.6 Position Sensors 

There is a plethora of position sensors on the market, and you really need to specify 
your needs in terms of accuracy, range, sensitivity, and reliability before you start 
searching for a position sensor. We will only cover one here; the Linear Variable 
Differential Transformer (LVDT). LVDTs emerged already in the 1930s to meet the 
need for displacement measurements in the process industry. The basic principle is 
illustrated in Fig. 3.38. A primary coil is wound on the same bobbin as two secondary 
coils and the ferromagnetic core is long enough to cover the primary coil and one 
of the secondary coils at both extremes. The primary coil is excited by an AC signal
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Fig. 3.38 The LVDT principle 

and as the core moves from one extreme to the other, the amplitudes of the signals 
transferred to the secondary coils will vary linearly with the core’s distance from the 
center position. The difference in amplitudes of the two secondary coils’ signals is 
an absolute measure of the core’s displacement from the center position. 

LVDTs are very linear (better than 1%), robust, and accurate. The resolution is in 
the low micrometer range. The sensitivity is of the order of millivolts per millimeter 
(‘millivolts’ referring to the difference in amplitudes between the secondary coils’ 
signals). LVDTs are not only used for displacement measurements but also as the 
sensing element in pressure gauges, force measurements, detection of gravitational 
waves, and calibration of atomic force microscopes. Hydraulic control systems and 
haptic robot interfaces are other areas of application. 

The signal conditioning required is an excitation source for the primary coil and 
demodulation circuitry for the secondary coils. The amplitudes of the secondary 
coils’ output depend on the core’s position x, but will also be influenced by the 
core material, the excitation frequency, the temperature, and the secondary coils’ 
design parameters (windings, length, diameter, etc.). It has been reported though, 
that the quotient between the difference and sum of the secondary coils’ signals is 
independent of temperature, excitation current, and excitation frequency [2]:
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e1 − e2 
e1 + e2 

= kx (3.24) 

Equation (3.24) is the key to successful demodulation of the LVDT signal. 

3.7 Photo Sensors 

3.7.1 Light Units 

Before, we get into photosensors, we need to define the units we use to describe 
light intensity. The power of a light source is in general measured in Watts [W] (= 
‘radial’ flow), but it is common to use ‘luminous’ flow for light sources in the visible 
wavelength range. The unit is ‘lumen’ [lm] (which is an SI unit) and is weighted 
according to the human eye’s response to different wavelengths. For example, a 
standard 40 W bulb (omnidirectional) emits 400 lm. 

Then there is ‘lux’ [lx] which is the (perceived) light power per unit area, i.e., 
1 lx  = 1 lm/m2. This is called ‘illumination’ or ‘luminous intensity’. Direct sunlight 
corresponds to 50,000–100,000 lx and typical office lighting is about 300–500 lx. 

Example 3.2 What is the luminous intensity of a 40 W bulb at 1 m? 

Solution We know from above that it emits 400 lm. Assuming that the bulb is ‘omni-
directional’, at 1 m, the 400 lm is distributed over a sphere with an area of 4πr2 = 
4π12 = 12.57 m2. Hence, the illumination at 1 m is 400/12.57 = 32 lx. 

There are many kinds of photosensors, like photoresistors, photodiodes, photo-
transistors, etc., but here we will limit our presentation to the most common photode-
tectors used in a physics lab; photodiodes (of different kinds) and photomultipliers. 

3.7.2 Photodiodes 

If a photon of sufficient energy hits the depletion area between the p- and n-doped 
area in a diode, an electron–hole pair is created and because of the electric field in the 
depletion region, the hole will move to the anode, and the electron will move to the 
cathode. If the diode electrodes are part of a closed circuit, a photocurrent will occur 
that is (a) in the ‘backward’ direction and (b) proportional to the light illuminance. 
This is illustrated in Fig. 3.39.

A photodiode is operated in one of two different modes: The ‘photovoltaic’ mode 
or the ‘photoconductive’ mode. In the photovoltaic mode, the anode and cathode are 
kept at the same potential (sometimes called the ‘zero-biased’ mode). The advantage 
of this mode is that it minimizes the ‘dark current’, i.e., the self-induced current
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Fig. 3.39 The photodiode principle

due spontaneous creation of electron–hole pairs. Figure 3.40 illustrates an example 
where a photodiode is operated in the photovoltaic mode. 

Figure 3.41 illustrates a photodiode operating in the photoconductive mode where 
the photodiode is reversed-biased (cathode is at a higher potential than the anode). 

Fig. 3.40 Photovoltaic mode. Notice that the anode and cathode have the same potential. The 
output range is determined by the feedback resistor 

Fig. 3.41 Photoconductive mode
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Fig. 3.42 The photodiode 
BPW21 

Ano
de 

Cat
hod

e 

The advantage of the photoconductive mode is that the reverse-biased voltage 
widens the depletion area and makes the diode more sensitive (more hole-electron 
pairs can be created) and it also improves the response time. The reason for the faster 
response is that when the depleted area is widened, the pn junction capacitance is 
decreased. The disadvantage of the photoconductive mode is that it increases the 
dark current. 

The sensitivity of a typical photodiode is of the order of 10 nA/lx. Figure 3.42 
illustrates the popular BPW21 photodiode that is optimized for green light and has 
a sensitivity of 9 nA/lx. 

A development of the photodiode is the PIN photodiode which consists of three 
layers, heavily doped p- and n-layers, and a lightly doped intrinsic area. This has 
two advantages. First, the depletion area where electron–hole pairs can be created 
is increased, and the wider depletion region decreases the capacitance even more 
which gives a faster response. 

3.7.3 Avalanche Photodiodes 

Avalanche photodiodes have yet another layer (four layers) and they are operated at 
much higher reverse-biased voltages (near the break-down voltage). The idea of an 
avalanche photodiode is that when an electron–hole pair is created by incident light, 
the electrons are accelerated to a very high speed (because of the high reverse-biased 
voltage). When the electrons are accelerated through the fourth layer (a lightly doped 
p-layer) they will collide with the atoms and because of their high velocity, they will 
create new electrons (due to impact ionization). This will generate a multiplication 
effect and the multiplication increases with the reverse-biased voltage. The reverse-
biased voltage is of the order of 100–500 V and gain factors of up to 200 can be 
achieved, which makes them very sensitive. 

The disadvantages of avalanche photodiodes are that they are noisy, non-linear 
and you must handle a high DC voltage in your setup.
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3.7.4 Position-Sensitive Detectors 

Position-sensitive detectors (PSDs) are photodiodes that produce currents depending 
on where the incident light hits the active surface. It consists of two photodiodes with 
a common cathode, see Figs. 3.44 and 3.45. 

As illustrated in Fig. 3.45, both photodiodes will generate a current when an 
incident light beam hits the surface, and the difference between these two currents is 
proportional to x (the distance between the incident light beam and the center of the 
active photodiode area). However, the difference between the currents also depends 
on the light’s intensity. To get a reading that is independent of the light intensity, the 
manufacturer recommends that you divide by the sum of the currents: 

Ix1 − Ix2 
Ix1 + Ix2 

= 
2x 

Lx 
(3.25) 

In the S3932 model illustrated in Fig. 3.43, the active area is 12 mm long. They 
are also available as two-dimensional detectors (x and y detectors). The common 
cathode is usually reverse-biased (5–10 V). Figure 3.46 illustrates the recommended 
signal conditioning where the currents are converted to voltages. 

Once you have the voltages, you can proceed with either analog electronics to 
generate the sum and difference currents (see solved Problem 3.4), or you can sample 
them and do it in software. (Since Eq. (3.25) involves division, it is recommended 
that you do it in software.) 

A very common application of PSDs is distance measuring by ‘triangulation’. 
Figure 3.47 illustrates the principle.

Depending on the distance to the obstacle, the reflected light will hit the PSD in 
a different position relative to the center and the PSD output will be proportional to 
the distance to the obstacle. For example, this is used by some projectors to measure 
the distance to the screen (enabling auto-focusing) and by vacuum robots to detect 
obstacles.

Fig. 3.43 PSD S3932 from 
Hamamatsu 

Fig. 3.44 Two photodiodes 
with common cathode
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Fig. 3.45 PSD: current difference is proportional to x 

Fig. 3.46 Typical signal 
conditioning for PSD

3.7.5 Photomultipliers 

Figure 3.48 illustrates a photomultiplier tube (PMT). The front end of a PMT consists 
of a photocathode. When hit by a photon, an electron is emitted (a ‘photoelectron’). 
Inside the tube are several ‘dynodes’ with successively higher potential: The photo-
cathode is at approximately –1 kV and the potential of the succeeding dynodes is 
about 100 V higher (each). When the first photoelectron is emitted, it is accelerated
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Fig. 3.47 Optical 
triangulation

Fig. 3.48 Photomultiplier tube (PMT)

towards the first dynode. The dynodes’ surface is made of a material that is specif-
ically designed to emit secondary electrons. Common materials are AgMgO, BeO, 
or GaAsP. A typical PMT has 12–14 dynodes and the quantum efficiency4 can be as 
good as 30% and gains of 106 are common, which means that PMTs can be used for 
photon counting (single photon detection). 

4 The quantum efficiency is the fraction of incident photons that generate a primary electron emission 
from the photocathode. 
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PMTs are delicate instruments. First, the tube is evacuated, and the sealing must 
never be broken. Second, they should never be exposed to daylight, even when not 
powered. They are also very expensive and suffer from high dark currents. 

3.8 Particle Detectors 

3.8.1 Channel Electron Multipliers 

Channel Electron Multipliers, CEMs (or ‘channeltrons’) are particle detectors that 
use a similar electron multiplication technique as PMTs. CEMs come in many 
different sizes and shapes, and Fig. 3.49 illustrates a common standard CEM. 

It is primarily used to detect ions (positive or negative) but can also be used to 
detect electrons or photons. The incoming ion hits a collector cone coated with a high 
secondary electron emission material and then electrons are accelerated backwards 
by an electric field and multiplied as they propagate through the channel to the end 
collector. Unlike the PMT, the CEM does not have discrete dynodes, instead it has 
one single ‘continuous dynode’ which creates a continuous electric field inside the 
channel, forcing the electrons to propagate towards the anode end. 

The inside channel is approximately 1 mm in diameter. Notice in Fig. 3.49 the 
incurvation of the channel. This is necessary to prevent ‘ion feedback’. Because of 
the multiplying effect, the electron density can be very high at the channel output, and 
this can cause adsorbed gases on the channel wall to desorb and ionize. This results in 
positive ions in the channel propagating back to the input, producing extra secondary 
electrons which generate noise in the output signal. The incurvation prevents the ions 
from gaining enough energy to produce secondary electrons. Without the incurvation, 
the gain would be limited to <105. Curved CEMs can have a gain factor of 108.

Fig. 3.49 Channel electron multiplier 
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3.8.2 Microchannel Plates 

Microchannel plates (MCPs) are a development of CEMs. As the name indicates, 
MCPs consist of several (parallel) channels, which provide a spatial resolution 
(provided that the charge collector is designed for that). Figure 3.50 illustrates a 
single MCP. 

An MCP is typically 0.5–2 mm thick and the diameter can vary from 10 mm 
up to 200 mm. Each microchannel’s diameter is 5–20 μm in diameter (less than a 
human hair). Just like the CEM channels, the inside of the channels is covered with 
a material with a high secondary electron emissivity. The top and bottom sides are 
high-voltage biased to produce an electric field across the continuous-dynode of the 
order of 106 V/m. Still, the gain of a single MCP is only of the order of 10,000. For 
that reason, two (or more) MCPs are stacked to improve the gain, see Fig. 3.51. 

Fig. 3.50 Microchannel plate 

Fig. 3.51 Chevron microchannel plate
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Notice in Fig. 3.50 how all the channels are tilted by a small angle against the 
normal (8–13°). This is to guarantee that an incident particle hits the channel wall and 
initiates an electron avalanche (instead of just passing straight through). Figure 3.51 
illustrates a ‘Chevron’ MCP. 

A Chevron MCP consists of two microchannel plates where the channels’ angles 
are in ‘opposite’ directions. This has two advantages. First, with two MCPs in series, 
gains up to 107 are possible. Second, the ‘opposing’ channel angles reduce ion feed-
back and reduce the noise in the output signal. ‘Z’ MCPs stack three microchannel 
plates. 

MCPs are used as particle detectors in mass spectrometers and space-based instru-
ments for detection of photons and high-energetic particles, but because of their 
spatial resolution capacity, they can also be used as intensity amplifiers in night-vision 
googles. 

3.9 Vacuum Gauges 

3.9.1 Introduction 

Vacuum chambers are omnipresent in physics labs, and where there are vacuum 
chambers there is a need to monitor the pressure, i.e., we need a vacuum gauge. 
But before we get into the details of vacuum gauges, let’s first talk about pressure 
units. Vacuum/pressure is one of the areas where the use of the SI unit (Pa, Pascal) 
is not necessarily the most common unit. There is a plethora of vacuum pressure 
units, and the preference depends on the context. ‘Context’ can refer to region and/ 
or application. My personal (prejudiced?) opinion is that Europeans use ‘mbar’, 
Americans use ‘Torr’ and Asians use ‘Pa’. Fortunately, 1 mbar is approximately 
equal to 1 Torr (1 Torr = 1.333 mbar), and the pressure in vacuum chambers are 
usually only measured in orders of magnitude anyway, so, if the pressure in your 
vacuum chamber is 10−6 Torr or 10−6 mbar, doesn’t matter, it is the same (for all we 
usually care). I will use mbar in this presentation. 

We distinguish between ‘low’ vacuum (LV), ≥ 10−3 mbar and ‘high’ vacuum 
(HV) ≤ 10−3 mbar. This is the only distinction we need when it comes to choosing 
a vacuum gauge. For LV, you use a ‘thermal conductivity gauge’ (called a ‘Pirani’ 
gauge) and for HV you must use a ‘gas ionization’ gauge. 

3.9.2 The Pirani Gauge 

There are several ways to implement a thermal conductivity pressure gauge, but the 
most common one is the ‘Pirani’ gauge. In a Pirani gauge, a thin filament (usually 
Platinum) is heated to approximately 50 °C. We know already (from Sect. 3.2.2) that
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the resistance of a metal filament depends on the temperature. When the filament is 
heated, some of the heat will be dissipated to the ambient gas (the air) and this will 
cool the filament (and cooling means decreasing resistance). The heat is carried away 
by conduction and the gas’s ability to carry heat is called ‘thermal conductivity’. The 
thermal conductivity is proportional to the gas density, which of course depends on 
the pressure. When the gas is evacuated, the thermal conductivity is reduced and the 
cooling effect on the filament is reduced, and the wire gets warmer and therefore the 
resistance increases. In conclusion, the filament resistance goes up when the pressure 
decreases. 

A Pirani gauge consists of two filaments. Both are heated by the same current, 
but only one is subjected to the vacuum chamber atmosphere. The other one is a 
reference gauge that compensates for variations in the ambient temperature. The 
reference gauge is sealed (under a ‘reference’ vacuum). Figure 3.52 illustrates a 
Pirani vacuum head. 

Hence, to measure the vacuum, we must measure the resistance of the filament 
(relative the reference filament) and we know already that this is best implemented 
in a Wheatstone bridge. However, there are several ways to implement the bridge. 
We could keep the Wheatstone supply voltage constant and measure the resistance or 
we could keep the current constant. A common implementation is a ‘self-balancing’ 
bridge, see Fig. 3.53.

In the bridge in Fig. 3.53, the output signal from an op amp is fed back as the 
supply voltage to the bridge. Since it has negative feedback, the op amp will do what 
it takes to keep the inverting (U−) and the non-inverting (U+) inputs equal; the op 
amp will ‘balance’ the bridge. 

When the pressure in the vacuum chamber decreases, RV (the filament resistance) 
increases, which means that U− (inverting op amp input) increases. To compensate 
for that the current through the filament must be reduced, which means that the supply 
voltage (the op amp output voltage) must be reduced; the op amp output voltage

Fig. 3.52 A Pirani gauge 
head; the reference gauge is 
sealed 

Inlet
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Fig. 3.53 Self-balancing Wheatstone bridge

decreases when the pressure in the vacuum chamber decreases. The op amp’s output 
is proportional to the pressure in the vacuum chamber. (The dependence is not linear 
and needs to be calibrated.) 

This vacuum gauge was invented by Marcello Pirani in 1906 in Germany and is 
still one of the most common vacuum sensor techniques for ‘pre-vacuums’ down to 
10−3 mbar. 

3.9.3 Gas Ionization Gauges 

There are several ways to design ionization gauges too, but the most common one is 
the ‘nude hot-cathode ionization’ gauge designed by Bayard & Alpert in the 1950s. 
(BAG = Bayard & Alpert gauge.) ‘Nude’ refers to the fact that it does not have any 
protective glass shielding. Technically, it is a ‘triode’ since it has three electrodes. 
The first electrode is a ‘hot’ cathode (a helical tungsten wire) that emits electrons. 
The second electrode is a ‘grid’ with a positive-biased potential to attract (accelerate) 
the electrons and the third electrode is a charge collector (the ‘anode’). Figure 3.54 
illustrates the gauge head.

In Fig. 3.54, the grid is a cylinder, and the anode is just a ‘pin’. The cathode 
filament has a potential of +30 to +50 V and the grid has a potential of +180 to 
230 V. When the filament is heated (by a 10-mA current) electrons are emitted and 
accelerated towards the grid. Most of the electrons pass right through the grid and 
will interact with the gas atoms inside the grid cylinder. An atom/molecule hit by a 
high-energy electron will be ionized (at some probability rate) and that will generate 
a positive ion. This positive ion will be attracted to the 0 V anode pin and generate 
a current in the anode circuit. The size of this current will be proportional to the gas 
density in the chamber. The ‘conversion factor’ is of the order of 100 mA/mbar. At 
a pressure of 10−10 mbar, the current is of the order of 100 pA.
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Fig. 3.54 The nude 
hot-cathode ionization gauge

The range for a typical ionization gauge is 10−3 to 10−10 mbar and hot-cathode 
gauges should never be exposed to atmospheric pressure (when they are powered) 
since this can damage them permanently. 

3.10 Solved Problems 

Problem 3.1 In a thermocouple experiment two conductors A and B were combined 
as illustrated in Fig. 3.55 and this produced the thermo emf UAB and this experiment 
was repeated with conductors B and C, see Fig. 3.56, which generated the thermo 
emf UBC.

Then finally, conductors A and C were combined to form a third thermocouple, 
see Fig. 3.57. Prove that UAC will equal UAB + UBC.

Solution The sum of the emfs in the first two experiments is:

UAB + UBC = {EB (TH → TC ) − EA(TH → TC )}
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Fig. 3.55 Thermocouple 1 

Fig. 3.56 Thermocouple 2

Fig. 3.57 Thermocouple 3

+ {EC (TH → TC ) − EB (TH → TC )} = 
= EC (TH → TC ) − EA(TH → TC ) = UAC

Problem 3.2 Figure 3.11 illustrates the 4-wire method for resistance measurements. 
The disadvantage of this method is that it requires an ‘expensive’ DMM. Prove that 
you can eliminate the wire resistance using a ‘cheap’ DMM (see Fig. 3.10) and only 
three wires. 

Solution Figure 3.58 illustrates the solution.
When the switch is in position ‘1’ the DMM will measure R1 = 2Rwire and when 

the switch is in position ‘2’ it will measure R2 = 2Rwire + RPt. Hence, by subtracting 
the first measurement from the second, we will get Rm = R2 – R1 = RPt. 

Problem 3.3 According to local traffic regulations, your bicycle must have a white 
headlight and a red taillight. The headlight “must be strong enough to be visible from 
300 m”. In physical units, that translates to 100 lumens, minimum. Assuming you
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Fig. 3.58 The 3-wire method

have a photodiode BPW21, how would you test if the headlight on your bike meets 
the local traffic regulations? 

Solution I would use the circuit in Fig. 3.40 with a feedback resistor of 1 MΩ. The  
setup would be in a completely dark room with the headlight as the only source 
of light and I would place the photodiode 10 cm in front of the headlight. At this 
distance, the illumination must be at least 

100 lumen 

4π · 0.12 m2 
= 796 lx 

With a sensitivity of 9 nA/lx, the photocurrent would be 796 × 9 = 7.16 μA and 
the output voltage would be 7.16 μA × 1 MΩ = 7.16 V. Hence, if the voltage at the 
op amp output exceeds 7.16 V, my headlight complies with the local regulations. 

Problem 3.4 Prove that the circuit in Fig. 3.59 produces both the sum and difference 
signals for the PSD.

Solution The left part of Fig. 3.59 is just the current-to-voltage conversion. We only 
need to prove that the right-hand side produces the sum and the difference. The op 
amp circuit in the upper right corner is the ‘difference’ circuit (Fig. 3.60).

To see that, first notice that the potential on the op amp’s ‘+’ input is VX2/2 which 
then is also the potential at the ‘−’ input. That means that the current I1 is 

I1 = 
VX1 − VX2 

2 

R 

This current has nowhere else to go, but to the output. The potential at the op 
amp’s output is 

Udiff = 
VX2 

2 
− I1 R = 

VX2 

2 
−
(
VX1 − 

VX2 

2

)
= VX2 − VX1 = −(VX1 − VX2)
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Fig. 3.59 Signal conditioning for PSD

Fig. 3.60 The difference 
circuit

Next, we analyze the lower right-hand side op amp (Fig. 3.61). 
In this circuit, the ‘−’ input of the op amp has potential 0 V. That means that the 

currents I1 and I2 are just VX1/R and VX2/R, respectively. These currents must go to 
the op amp’s output and the potential at the output is 

Usum = 0 − (I1 + I2) × R = −(VX1 + VX2)

Fig. 3.61 The summing 
circuit 
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Notice that if we divide Udiff by Usum, the minus signs cancel. 

Problem 3.5 Suppose that the thermocouple in Fig. 3.4 is a type K thermocouple 
and that TC = 20 °C. If Um = 25.000 mV, what is the temperature at the hot junction. 

Solution A quick Google search for a ‘type K thermocouple table’, gives that 20 °C 
corresponds to 0.798 mV. Adding that to 25 mV gives 25.798 mV. Going back into 
the same table gives TH = 621 °C. 

References 

1. Widlar, R.J. 1967. An exact expression for the thermal variation of the emitter base voltage of 
bi-polar transistors. Proceedings of the IEEE 55 (1): 2. 

2. Saxena, S.C, and S.B.L. Seksena. 1989. A self-compensated smart LVDT transducer. IEEE 
Transactions on Instrumentation and Measurement 38(3): 6.



Chapter 4 
The Instrumentation Amplifier 

Abstract This chapter introduces the instrumentation amplifier. This is perhaps the 
most important of all amplifiers in electrical measurement systems. The common 
mode rejection ratio is redefined and its relationship to the signal-to-noise ratio is 
emphasized. Instrumentation amplifiers are implemented with op amps, and the most 
common implementation circuits are illustrated. 

4.1 Introduction 

Different kinds of amplifiers are used in almost all measurement systems and in 
this chapter, we will introduce one of the most common and versatile amplifiers, 
the instrumentation amplifier. The instrumentation amplifier is a differential-ended 
amplifier, i.e., the input voltage is not referenced to ground. We saw in the previous 
chapter that there are plenty of sensor implementations that rely on such ampli-
fiers (the strain gauge, thermocouples, etc.). From here on, we will refer to the 
instrumentation amplifier as the ‘IA’ and its symbol is illustrated in Fig. 4.1.

As you can see, it has the same symbol as the operational amplifier, but unlike the 
op amp, this amplifier does not need feedback, because the open-loop amplification 
is ‘small’. It amplifies the potential difference between the plus and minus inputs by 
a ‘reasonable’ number (10–1000). A huge amplification is not what characterizes the 
IA. 

The IA is all about CMRR (see Sect. 1.2), i.e., the quality of the subtraction. 
The subtraction of potentials in electronics is never perfect and there will always 
be a small common mode residual. In Chap. 1, we introduced the signal model that 
we repeat in Fig. 4.2. The noise is the common mode voltage, and the signal is the 
normal mode voltage. (See, for example, the Wheatstone bridge signal in Fig. 3.20.) 
Because of the imperfection in the subtraction, the signal model in Fig. 4.1 is too 
naïve; instead, we use the model in Fig. 4.3.

FNM represents the amplification of the normal mode voltage (the ‘signal’) and 
FCM represents the suppression of the common mode voltage (the ‘noise’). The 
output voltage is
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Fig. 4.1 The instrumentation amplifier

Fig. 4.2 Signal model 

Fig. 4.3 There will always be a small cm residual

Uout = FNMUNM + FCMUCM (4.1) 

where FCMUCM represents what is left of the common mode voltage after the 
amplifier. 

Instrumentation amplifiers are most of all characterized by how well they suppress 
the common mode voltage compared to how much they amplify the normal mode. We 
defined the common mode rejection ratio (CMRR) already in Chap. 1 for a DMM. 
We use the same number to represent the quality of an IA:
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Fig. 4.4 The Wheatstone 
bridge signal is amplified by 
an IA 

CMRR = 20log 
FNM 

FCM 
[dB] (4.2) 

The following example will illustrate the use of an IA. 

Example 4.1 Figure 4.4 illustrates how a Wheatstone bridge produces two voltage 
potentials: One with the common mode potential and one with the common mode 
plus the normal mode potential. 

Assuming we have a bridge voltage of 1 mV and an IA with CMRR = 105 dB 
and FNM = 100, what is the output voltage from the IA? 

Solution First, we find the FCM from Eq. (4.2): FCM = FNM × 10−CMRR/20 = 
100 · 10−105/20 = 5.6 · 10−4 . Hence, normal mode voltages are amplified by 100 and 
common mode voltages are suppressed by a factor of 0.00056. The common mode 
voltage is U0/2 = 12/2 = 6 V. The output voltage is 

Uout = FNMUNM + FCMUCM = 100 · 0.001 + 6 · 0.00056 
= 100 + 3.4mV  = 1 

_ 
03.4mV  

4.2 Implementations 

4.2.1 Classic IA Circuit 

Before we get into the details of IA circuits, we need to understand the classic 
differential amplifier in Fig. 4.5.

The potential on the op amp’s + input is U in'2R2/(R1 + R2). Since this is also the 
potential on the op amp’s − input, the current i is 

i = 
Uin'1 − Uin'2 

R2 
R1+R2 

R1



80 4 The Instrumentation Amplifier

Fig. 4.5 Classic differential 
amplifier

Hence, the output voltage is 

Uout = U_ − i · R2 = Uin'2 
R2 

R1 + R2 
− 

R2 

R1

(
Uin'1 − Uin'2 

R2 

R1 + R2

)

= Uin'2 
R2 

R1 + R2

(
1 + 

R2 

R1

)
− 

R2 

R1 
Uin'1 = 

R2 

R1 
(Uin'2 − Uin'1) (4.3) 

Hence, we have a differential amplifier where we can choose the amplification 
arbitrarily with the resistors R1 and R2. 

This is what we were looking for, but we are not done yet; the circuit in Fig. 4.5 
has a disadvantage. Since the + and − inputs of the op amp are ‘virtually’ short-
circuited, the input impedance of the circuit is R1 + R1 = 2R1 and we must have a 
large R1 resistor to have a large input resistance. But then R2 must be very large to 
get an amplification of 10–1000, and it is likely to be impractically large. For that 
reason, we are looking for another solution. This solution is illustrated in Fig. 4.6. 

In Fig. 4.6, we can see that the problem with the input impedance is remedied 
since the signal inputs are now connected directly to the inputs of op amps. Let’s see 
what the output voltage is (to make sure we still have a differential amplifier). 

Assuming U in1 > U in2, the current ib through the Rb resistor is 

ib = 
Uin1 − Uin2 

Rb

Fig. 4.6 Instrumentation 
amplifier circuit 
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Then the voltages U in'2 and U in'1 are 

Uin'1 = Uin'1 + ib Ra 

Uin'2 = Uin'2 − ib Ra

 
Uin'2 − Uin'1 = Uin2 − Uin1 − 2ib Ra 

⇒ Uin'2 − Uin'1 = Uin2 − Uin1 − 
2Ra 

Rb 
(Uin1 − Uin2) 

= Uin2

(
1 + 

2Ra 

Rb

)
− Uin1

(
1 + 

2Ra 

Rb

)
=
(
1 + 

2Ra 

Rb

)
(Uin2 − Uin1) 

Inserting this into Eq. (4.3), we get the output voltage: 

Uout = 
R2 

R1

(
1 + 

2Ra 

Rb

)
(Uin2 − Uin1) (4.4) 

The normal mode amplification is FNM = (1 + 2Ra/Rb)R2/R1 and there are 
obviously several ways to vary the amplification, but, if we change R1, R2, or Ra, it  
involves two resistors. Changing Rb only involves one resistor. For that reason, IAs 
with variable FNM usually allow the user to apply an external Rb resistor. 

Example 4.2 Figure 4.7 illustrates an IA-integrated circuit. By varying Rb, what is 
the range of possible normal mode amplifications? 

Solution R2/R1 = 10, so if Rb = ∞, then FNM = 10 and if Rb = 0, the FNM = ∞. 
The range is FNM ∈ [10, ∞]. 

The popular IAs from Texas Instruments (INA128) and Analog Devices (AD622) 
both have exactly the configuration illustrated in Fig. 4.6. Linear Technology though, 
has a different implementation that only requires two op amps (LT110x). However, 
this is at the expense of not offering arbitrary amplifications. The circuit is illustrated 
in Fig. 4.8.

Fig. 4.7 Integrated IA 
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Fig. 4.8 2-op amp IA 

As in the previous solution, the inputs are directly connected to the input of op 
amps, so the input impedance is fine. The current I1 is U in−/99R. Hence, the potential 
at point A is 

UA = Uin− + I1 R = Uin−
(
1 + 

1 

99

)
= Uin− 

100 

99 

The current I2 is 

I2 = 
UA − Uin+ 

R
= 

Uin− 
100 
99 − Uin+ 

R 

And finally, Uout is 

Uout = Uin+ − I299R = Uin+ − 100U in− + 99Uin+ = 100(Uin+ − Uin−) 

We conclude that the IA in Fig. 4.8 has a normal mode amplification of 100, and 
it is easy to derive that it would be reduced to 10 if we short-circuit the 90R resistors 
(and FCM would also decrease by a factor of 10). 

Example 4.3 In Fig. 4.9, we use an IA to amplify the emf from a thermocouple. 
The circuit is radiated with 50 Hz EMC interferences from the surrounding power 
grid which induces a common mode voltage of 1 V in the circuit. The application 
requires a normal mode amplification of the thermo emf of 50. What CMRR does 
the IA need if we want the common mode contribution in the output signal to be less 
the 5%? (The thermo emf is around 0.8 mV.)

Solution The normal mode contribution is 50 × 0.8 mV = 40 mV. The output signal 
is 40 mV + FCM·1 = 40 mV + FCM. The CM part of the output should be less than 
5%:
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Fig. 4.9 Thermocouple amplifier

FCMUCM 

FNMUNM + FCMUCM 
= FCM 

0.04 + FCM 
≤ 

5 

100 

⇒ 95FCM = 0.2 ⇒ FCM = 2.1 · 10−3 

CMRR ≥ 20log 
50 

2.1 · 10−3 = 88 dB 

We should look for an IA with a CMRR of at least 90 dB. 

4.3 CMRR Versus SNR 

If we revisit Fig. 4.3, we can see that the ‘signal’ is the NM part of the voltage before 
the IA and the ‘noise’ is the CM part; the signal-to-noise ratio before the IA is 

SNRbefore = 
UNM 

UCM 
(4.5) 

In the output signal, the ‘signal’ is FNMUNM, and the noise is FCMUCM; the  
signal-to-noise ratio after the IA is 

SNRafter = 
FNMUNM 

FCMUCM 
(4.6) 

Next, we take the quotient of the signal-to-noise before and after the IA: 

SNRafter 

SNRbefore 
= 

FNMUNM 
FCMUCM 

UNM 
UCM 

= 
FNM 

FCM 
= CMRR (4.7) 

The quotient of the signal-to-noise before and after the IA is equal to the CMRR. 
This is how I recommend you think of CMRR. Rather than thinking of CMRR as a 
quotient between two amplifications, it tells you how much the signal-to-noise ratio 
is improved (with respect to the common mode noise). 

Example 4.4 Recalculate Example 4.4 using Eq. (4.7). 

Solution The SNRbefore = 0.8 mV/1V = 0.8 · 10−3 . In the output signal, the CM 
part should only correspond to 5% of the total signal:
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CM 

CM+NM 
≤ 

5 

100 
⇒ 

NM 

CM 
≥ 

95 

5 
= SNRafter 

The CMRR we need is 

CMRR = 20log 
95/5 

0.8 · 10−3 = 88 dB 

4.4 Solved Problems 

Problem 4.1 An IA has a normal mode amplification of 100 and a CMRR = 80 dB. 
How much does it attenuate the common mode signals? 

Solution 80 = 20log 100 FCM 
⇒ FCM = 100 · 10−80/20 = 0.01 

Problem 4.2 If we use the IA in problem 4.1 in an application where UCM = 2 V and 
UNM = 5 mV, what will the output signal be, and what are the normal and common 
mode contributions to the output signals? 

Solution Uout = 100×0.005+0.01×2 = 0.5+0.02 = 0.52 V. The NM contribution 
is 0.5 V, and the CM contribution is 0.02 V. 

Problem 4.3 An IA is used to amplify the signal from an ECG measurement, see 
Fig. 4.10. What CMRR is required for the CM contribution at the output to be less 
than 1%? 

Solution The SNRbefore = 3 mV/1.5 V  = 2 · 10−3 . In the output signal, the CM part 
should only correspond to 1% of the total signal: 

CM 

CM+NM 
≤ 

1 

100 
⇒ 

NM 

CM 
≥ 

99 

1 
= 99 = SNRafter 

The CMRR we need is 

CMRR = 20log 
99 

2 · 10−3 = 94 dB

Fig. 4.10 IA in ECG 
measurement 



Chapter 5 
Transmission Lines 

Abstract This chapter explains why the impedance 50Ω is so ubiquitous in physics 
labs. First, the transmission line is introduced and then the extremely important 
concept of its characteristic impedance is defined. Fresnel’s law is used to find the 
reflection coefficient for electric signals in a transmission line (Eq. 5.2) and that 
will explain why transmission lines need to be terminated. One section treats the 
problem of how to properly split and splice transmission lines. Finally, one of the 
most common applications of signal reflections in transmission lines is presented, 
namely, the Time Domain Reflectometer. 

5.1 Introduction 

Once you start working in a physics lab, connecting cables between instruments, 
lasers, and vacuum chambers, it doesn’t take long before you hear people talking 
about ‘50 Ω’ and that number keeps popping up in manuals and datasheets and it 
is almost like 50 Ω is a magic number. There is nothing magic about it, but it is 
paramount that you understand the fuss about 50 Ω. This chapter will remedy that 
and unravel the ‘50-Ω secret’. 

5.2 The Characteristic Impedance 

It all starts with a very simple experiment. In Fig. 5.1, a signal source with internal 
impedance 100 Ω is connected to a 100-Ω load impedance via a switch. The switch 
is closed at t = 0.

In Fig. 5.1, we can easily conclude that exactly at t = 0, the 10 V will immediately 
be equally distributed across the internal impedance Z i and the load impedance Z load; 
at t = 0, U load goes immediately from 0 to 5 V. 

The experiment in Fig. 5.1 is straightforward, 5 V across the load and 5 V across 
the internal impedance.
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Fig. 5.1 Signal model

Fig. 5.2 Same experiment but with a small twist 

However, as the next example will illustrate, it doesn’t take much for your under-
graduate electricity skills to ‘break down’. In Fig. 5.2, we repeat the exact same 
experiment, only with one small difference; we place the load impedance at some 
distance. This distance is ‘long enough not to be ignored’. 

What happens to the voltage across the load impedance now (at t = 0)? That’s 
easy: Nothing! Because it takes some time for the voltage to propagate to the load 
impedance. Something will happen later, but exactly at t = 0, nothing happens. 

Here is a harder question: How large is the voltage across the internal impedance 
Z i, at  t = 0 (the moment immediately after the switch is closed)? 

This is the key question here (and the key to the whole 50-Ω fuss). At t = 0, the 
voltage source cannot see the load impedance, so how much should it ‘keep’ across 
Z i and how much should it send down the cable to Z load? Most students answer, ‘0 V’ 
or ‘10 V’, but that is just wrong. It is more complicated than that. At t = 0, the voltage 
source ‘sees’ the internal impedance and ….. the cable!!! To answer the question, 
we must understand how the cable behaves at t = 0 (from the voltage source’s point 
of view). 

The answer is that at t = 0, the cable is ‘perceived’ as an impedance to ground, 
see Fig. 5.3. This ‘perceived’ impedance is the cable’s characteristic impedance and 
is denoted Z0. Here are some facts you should know about Z0:

• Equation (3.9) tells us the ‘ohm resistance’ of a conductor of some length and 
diameter. Most students think that the characteristic impedance has something to 
do with Eq. (3.9), or even think that Z0 is the same as Eq. (3.9). This is completely
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Fig. 5.3 At t = 0, the cable 
is perceived as an impedance 
to ground 

wrong! Z0 has nothing to do with the ohm resistance in Eq. (3.9)!! (Of course it 
doesn’t! Eq. (3.9) depends on the cable length. In Fig. 5.3, the cable length is still 
unknown, and still, we have a number for Z0.)

• Z0 is the ‘wave impedance’; how hard it is for the EM field to propagate down 
the cable. 

• Z0 still depends on manufacturing parameters, but ‘standard’ cables have ‘stan-
dard’ Z0 values. The standard cable in a physics lab is the RG58 coaxial cable 
which has a characteristic impedance of ….. 50 Ω! 

This is the origin of the ‘50-Ω’ fuss; since RG58 cables are omnipresent in all 
labs, a lot of equipment have been customized to work in that ‘environment’. 

Obviously, from Fig. 5.3, we can see that at time t = 0, the voltage U0 will be 
distributed across Z i and Z0. The voltage across Z0 is 

UZ0 = Z0 

Z0 + Z i 
U0 (5.1) 

UZ0 is the voltage that will propagate down the cable towards the load. (UZ0 has 
nothing to do with the size of the load Z load.) The rest of U0 (i.e., U0 − UZ0) stays 
over Z i. We will illustrate the consequences of the characteristic impedance by a 
detailed example. 

Example 5.1 Suppose we have the system in Fig. 5.4. If  U0 is a step voltage that 
goes from 0 to +5 V at  t = 0, plot the signal levels at the ‘near’ end (un) and the ‘far’ 
end (uf) as a function of time (in the same diagram).

Solution Since we have an RG58 coax cable, Z0 = 50 Ω. According to Fig. 5.3, we  
have the equivalent circuit in Fig. 5.5 at t = 0.

Equation (5.1) gives us 

UZ0 = 50 

20 + 50 
· 5V  = +3.57 V 

This is the voltage that will propagate down the coax cable towards the far end, 
and since this is the voltage at the near end, un will go from 0 V to +3.57 V at t =
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Fig. 5.4 Voltage source and transmission cable. Load impedance = ∞  means the far end is ‘open’

Fig. 5.5 System at t = 0

0. Nothing happens at the far end (yet); uf still = 0. Figure 5.6 illustrates the near-
and far-end signals a few moments after t = 0. 

Fig. 5.6 Signal levels just after t = 0
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Fig. 5.7 The signal situation on the cable just after t = 0 

Next, we need to understand what happens in the cable after t = 0. UZ0 represents 
the voltage that moves towards the far end; a ‘wavefront’, 3.57 V high, propagates 
down the cable, see Fig. 5.7. This ‘wavefront’ leaves the voltage level +3.57 V 
behind it on the cable (but the voltage in front of the wavefront is still 0 V). 

Nothing will happen at the far end until the wavefront in Fig. 5.7 reaches the far 
end. Before we worry about what happens when the wavefront hits the far end, we 
must first figure out how long it takes until this happens. How fast does the wavefront 
in Fig. 5.7 propagate? The wavefront in Fig. 5.7 represents the propagation of the 
EM field in the cable, and EM fields travel at the speed of light. That is, the speed of 
light in the cable, which for an RG58 coax cable is 0.66 × c0 = 2·108 m/s. So, if the 
cable is 20 m long, it will take 20/2·108 = 100 ns. After 100 ns, the wavefront hits 
the load impedance. To understand what happens at that moment, we will rephrase 
that: After 100 ns, the wave enters a new medium. And we know from wave theory 
that when a wave enters a new medium, there will be wave reflection; some wave  
energy will be absorbed (or transmitted) and some will be reflected. Fresnel’s law 
gives us the reflection coefficient as the quotient between the difference and sum of 
the refractive indices, but we don’t know the refractive indices here. 

Fortunately, the refractive indices are proportional to the wave impedances, so we 
can write Fresnel’s law as 

γ = 
n2 − n1 
n2 + n1 

= 
Z2 − Z1 

Z2 + Z1 
(5.2) 

At the far end, Z2 = Z load = ∞  and Z1 = Z0 = 50 Ω, so the reflection coefficient 
at the far end is 

γ f = 
∞ −  50 
∞ +  50 

= +1 

That means that all of the incoming wave is reflected. (Of course, it is. The far 
end is open. Where else would it go?). So, after 100 ns we will have a wave of +
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Fig. 5.8 The signal situation on the cable just after 100 ns 

3.57 V going back to the near end. The ‘+’ sign indicates that there is no phase shift, 
so the ‘back’ going waves will interact constructively with the incoming waves, and 
hence the back/left-going wavefront will leave a voltage level behind of 3.57 + 3.57 
= 7.14 V. This is illustrated in Fig. 5.8. 

And, since we measure uf at the far end, uf = 7.14 V after 100 ns. We can now 
update our timing diagram in Fig. 5.6, see Fig. 5.9. Nothing happens at the near end 
(yet). The near-end signal is stationary until the new wavefront reaches the near end. 

(Notice in Fig. 5.9 that neither signal is nowhere near the ‘expected’ 5-V line. 
Yet…). 

After 200 ns, the wavefront in Fig. 5.8 reaches the near end, and we will again 
have wave reflection. The reflection coefficient at the near end is

Fig. 5.9 Signal levels just after t = 100 ns 
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γn = 
Z i − Z0 

Z i + Z0 
= 

20 − 50 
20 + 50 

= −0.429 

Hence, the reflected wave is −0.429 × (+3.57) = −1.53 V. So, after the wavefront 
impacts the near end, a wave with amplitude −1.53 V will go back again towards the 
far end. The ‘−’ sign indicates a phase shift of 180°, which means that the back-going 
waves will interact destructively with the incoming waves. The incoming wavefront 
left a voltage level of 7.14 V behind. The new wavefront going back to the far end 
will leave a voltage of 7.14 − 1.53 = 5.61 V behind. This is illustrated in Fig. 5.10 
and in Fig. 5.11, we have updated our timing diagram; the near-end voltage goes up 
to 5.61 V. 

Fig. 5.10 The signal levels on the cable just after t = 200 ns 

Fig. 5.11 The far- and near-end signals after 200 ns
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After another 100 ns (t = 300 ns), the −1.53 V wavefront in Fig. 5.10 will hit 
the far end and since the reflection coefficient at the far end is (still) +1, all of the 
incoming wave is reflected; there will be a wavefront of −1.53 V going back to the 
near end. This will interact destructively with the incoming waves, leaving a voltage 
level of 5.61 – 1.53 = 4.08 V behind the wavefront, see Fig. 5.12. Hence, the far-end 
signal level will drop to 4.08 V, see Fig. 5.13. 

At t = 400 ns, the −1.53 V wavefront returns to the near end where the reflection 
is −0.429 × (−1.53) = +0.65. The ‘+’ sign indicates a constructive interaction with 
the incoming waves which means that the wavefront returning to the far end will

Fig. 5.12 Signal levels on the cable just after t = 300 ns 

Fig. 5.13 Far- and near-end signals after 300 ns 
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leave behind a voltage level of 4.08 + 0.65 = 4.73 V, see Fig. 5.14, and this will also 
be the signal level at the near end, see the updated timing diagram in Fig. 5.15. 

After 500 ns, the +0.65 V wavefront is reflected at the far end (+1) and a new 
+0.65 V wavefront goes back to the near end. The new +0.65 V wave interacts 
constructively with the incoming waves, leaving behind a voltage level of 4.73 + 
0.65 = 5.38 V (= uf), see Figs. 5.16 and 5.17.

At t = 600 ns, the 0.65 V wave returns to the near end and the reflected wave is − 
0.429 × 0.65 = −0.28 V, interacting destructively with the incoming waves, leaving 
5.38 – 0.28 = 5.10 V behind (= un), see Figs. 5.18 and 5.19.

Fig. 5.14 Signal levels on the cable just after t = 400 ns 

Fig. 5.15 Far- and near-end signals after 400 ns 
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Fig. 5.16 Signal levels on the cable just after t = 500 ns 

Fig. 5.17 Far- and near-end signals after 500 ns

We got the idea. Both the near- and far-end signals converge to +5 V, see Fig. 5.20. 
Of course, they do; it’s an open circuit! Eventually, it is just a DC voltage on an open 
wire. But it takes a while! In this case, more than a microsecond. That may or may 
not be okay, but it is easy to see how this could cause some serious problems.

First, it takes over 1 µs for the reflections to peter out. What if we don’t have 
that time? Suppose the source signal is not a step function, but a square wave with 
frequency 10 MHz, i.e., a period of 100 ns. Then, because of the reflections, the 
signal would be seriously distorted. 

Second, suppose we have some kind of digital counting device at the far end (high-
impedance input) with a trigger level of 5 V, then according to the timing diagram 
in Fig. 5.20, each pulse would generate multiple counts.
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Fig. 5.18 Signal levels on the cable just after t = 600 ns 

Fig. 5.19 Far- and near-end signals after 600 ns

Third, if this situation was allowed to occur in a serial digital network, like Ethernet 
or the automotive CAN network, it would corrupt all communication in the network. 

5.3 Termination 

Reflections in a transmission cable, like the ones we saw in Example 5.1, are almost 
always unwanted. Admittedly, there are some applications that capitalize on this 
phenomenon (see Sect. 5.5), but in most situations, pulse reflections are unwanted 
and need to be remedied. It is not that hard; Eq. (5.2) gives us the answer. The
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Fig. 5.20 Far- and near-end signals after 1200 ns

reflections are promptly cancelled if the reflection coefficient is zero. It is zero if the 
numerator in Eq. (5.2) is zero, i.e., if 

Z load = Z0 ⇒ γ = 0 (5.3) 

If the load impedance equals the characteristic impedance of the cable, then reflec-
tions are cancelled. If we have a 50-Ω cable (RG58) we must ‘terminate’ the cable 
with a 50-Ω load resistor to prevent reflections. This is called ‘impedance matching’. 
And this is true for both ends. That is why most waveform generators, like the popular 
Agilent/Keysight 33220 series, have an output impedance of 50Ω; if anything comes 
back from the far end, the waveform generator will absorb it. This is also why modern 
oscilloscopes always have a 50-Ω input option. The default input impedance of an 
oscilloscope is 1 MΩ, but it can always be changed to 50 Ω if you have a problem 
with reflections. Figure 5.21 illustrates an external 50-Ω terminator for an RG58 
coax cable. 

Don’t you always have this problem? Of course, not. See Fig. 5.1. We had no 
problems there. The problem only occurs when you have ‘long’ cables or ‘fast’ 
signals. ‘Long’ and ‘fast’ are relative terms; a cable is ‘long’ compared to the signal’s

Fig. 5.21 50 Ω terminator 
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wavelength. You need to worry about cable termination if the cable is longer than 
about half the wavelength (for a sinusoidal signal). For a square signal, you terminate 
the cable if the signal rise time is shorter than the propagation time in the cable. (These 
are just rules of thumb. You must always assess the situation at hand.) 

5.4 Splitting and Splicing 

Sometimes one cable is not long enough and needs to be spliced, or maybe it 
needs to be split to feed multiple instruments. Splitting and splicing of high-speed 
transmission lines is a precarious task and we will investigate both here. 

If you need to splice a cable, you should obviously be careful to use identical 
cables (preferably even from the same cable drum). However, sometimes you might 
have to splice an RG58 cable to another kind of cable (RG59, TP, …) which does 
not have the same characteristic impedance. If you connect two cables with different 
Z0, there will be reflections at the the joint, see Fig. 5.22. To avoid that, you need to 
design a simple interface between the cables. 

In Fig. 5.23, we want to splice an RG58 coax (Z1 = 50 Ω) with an RG62 coax 
cable (Z2 = 93 Ω). All we need is the simple resistor network in Fig. 5.23. 

The resistor values are given by the expressions in Eq. (5.4): 

R1 = Z1 

/
Z2 

Z2 − Z1 
R2 =

√
Z2(Z2 − Z1) (5.4)

Fig. 5.22 Splicing two cables with different Z0 will generate reflections at the joint 

RG58 RG62/U 

Z1 = 50 Ω Z2 = 93 Ω
Z2 > Z1 

R1 

R2 

Fig. 5.23 Splicing two cables 
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Fig. 5.24 Splitting a cable with a T-cross will cause reflections 

Example 5.2 Find the resistor values for R1 and R2 if you need to splice an RG58 
cable with an RG62 cable. 

Solution Z1 = 50 Ω and Z2 = 93 Ω: 

R1 = 50 
/

93 

93 − 50 
= 74Ω R2 =

√
93(93 − 50) = 63Ω

Another problem is splitting a transmission cable. Most people just use a ‘T-
cross’ connector, see Fig. 5.24. This is not a good idea if you have ‘fast’ signals, 
because this splitting will cause reflections. The reason is that the incoming signal 
(from any direction) will see two cables, i.e., two 50-Ω impedances to ground, which 
corresponds to 25 Ω to ground, which is an impedance mismatch, and we will have 
reflections. 

The trick is to insert a network so that the perceived impedance is always 50 Ω, 
regardless of where the signal comes from. The solution is illustrated in Fig. 5.25. 
This splitting is reflection-free since from any direction the total impedance is 16.7 
+ (16.7 + 50)//(16.7 + 50) = 16.7 + 66.7//67.7 = 16.7 + 33.3 = 50 Ω.

5.5 Attenuation 

Because of the non-zero ohm resistance in any conductor, a propagating signal will 
be attenuated. This is illustrated in Fig. 5.26.

The attenuation factor is expressed in ‘dB/m’: 

α = 
20 · log ux 

u0 

x 
[dB/m] (5.5)
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R
G
58 

RG58RG58 
16.7 Ω 16.7 Ω

16
.7

 Ω

Fig. 5.25 Reflection-free splitting

Fig. 5.26 The signal is attenuated in the cable

and hence 

ux = u0 · 10αx/20 (5.6) 

There is one important aspect of the attenuation factor that you need to know; it 
is highly frequency dependent, α = α( f ). You will find an attenuation number in 
the data sheet but remember that it is for a specific frequency. For example, it could 
say ‘−0.1 dB/m @ 50 MHz’. That means that you can use that attenuation factor 
only for  a 50 MHz  sinusoidal signal. If you use anything else, you must measure the 
attenuation yourself (by first applying your signal to a cable with a known length.) 

5.6 Time Domain Reflectometry 

Time Domain Reflectometry, TDR, is an example of a measurement technique that 
takes advantage of impedance mismatching. Consider the setup in Fig. 5.27.

In Fig. 5.27, the cable type and the cable length are unknown, and so is the load 
impedance at the far end. Next, suppose the waveform generator sends out a ‘short’
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Fig. 5.27 We don’t know the cable type, the cable length, or the load impedance

pulse and that we monitor the near-end signal un on an oscilloscope. Figure 5.28 
illustrates un. 

There is a lot of information that we can extract from Fig. 5.28. First, we can 
figure out the characteristic impedance of the unknown cable. By measuring uZ0 and 
applying Eq. (5.1), we can solve for Z0. 

And once we know Z0, we can identify the cable and then we know the propagation 
velocity in the cable. And if we know the signal velocity, we can find the cable length, 
since the time it takes for the pulse to return corresponds to twice the cable length: 
L = v·t2L/2. 

Finally, we can also figure out the far-end load impedance by studying the size of 
the returned pulse; if we can figure out the far-end reflection coefficient, we can use 
Eq. (5.2) and solve for Z load (= Z2). But this is a little precarious. 

The returned pulse will be smaller than uZ0, but it is important to understand that 
there are two reasons for that. It will lose amplitude partly because of the attenuation 
in the cable and partly because of the reflection against the far-end impedance (see 
Fig. 5.29).

If we send out a pulse of height uZ0, then according to Eq. (5.6), uZ0 · 10α L/20 will 
arrive at the far end. At the far end, there will be wave reflections and the size of the 
reflected wavefront will be uZ0 · 10α L/20 · γf. On its way back to the near end, the 
pulse will again be attenuated, so the height of the pulse returning to the near end is

Fig. 5.28 A typical TDR response 
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Fig. 5.29 There are two 
contributions to the signal 
loss

(5.7) 

And solving for γf: 

γf = 
u2L 
uZ0 

· 10−αL/10 (5.8) 

Inserting this γ f number into Eq. (5.2), we can solve for the load impedance. 
There is just one problem; we must know the attenuation coefficient in the cable for 
our probing pulse. There is no easy way to find α. Once you have identified the cable 
(from Z0), you must find an identical cable of known length (open-ended) and send 
in your pulse and study the attenuation of the returned pulse. 

This is the basic TDR theory. It can be used to find anyone of the parameters, Z0, 
L, and γ , but in ‘TDR applications, it is usually understood that it is used only to 
find L. For example, it is used to localize cable failures in long transmission lines or 
communication networks. 

However, due to the versatility of the TDR technique, it has found applications in 
a wide range of areas. For example, a TDR-based technique for automatic monitoring 
of the water content in soil [1, 2] has been reported, landslide warning systems in 
Taiwan [3] and monitoring of rock mass response in underground mining [4] are  
other examples of TDR applications. 

5.7 Solved Problems 

Problem 5.1 A 10-m RG58 coax cable is used to transmit a 45-MHz sine signal. 
Does this cable need to be 50-Ω terminated? 

Solution It needs to be terminated if the cable is longer than half the signal 
wavelength. The signal wavelength is
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Fig. 5.30 A TDR experiment 

λ = 
v 

f 
= 

2 · 108 
45 · 106 = 4.4m  

Half the signal wavelength is 2.2 m which is shorter than the cable length. Yes, 
this cable needs to be 50-Ω terminated. 

Problem 5.2 A CAN bus runs at a bit rate of 5 Mbits/s and the bits’ risetime is 10 ns. 
How long network can you have before you need to terminate the ends of the bus1 ? 

Solution If we assume the same velocity factor in a CAN bus cable as in an RG58 
coax cable, the signal travels 2·108 × 10·10−9 = 2 m during the rise time. If the 
network is longer than that, it needs to be terminated (at both ends). 

Problem 5.3 In Example 5.2, we got the resistor values 74 and 63 Ω. These are 
not ‘standard’ resistor values. How would you solve this if you only have access to 
resistors from the E12 series? 

Solution The E12 series comprises the numbers 10, 12, 15, 22, 27, 33, 39, 47, 56, 68, 
and 82 (multiplied by any multiple of 10). Then we use the following combinations 
to get the desired resistances: 

74Ω = 47 + 27 63Ω = 82//270 = 
82 · 270 
82 + 270 

= 63 

To get 74 Ω, we connect a 47-Ω resistor in series with a 27-Ω resistor. To get 63
Ω, we connect an 82-Ω resistor in parallel with a 270-Ω resistor.2 

Problem 5.4 Consider the TDR experiment in Fig. 5.30. Figure 5.31 illustrates the 
near-end signal.

The propagation speed in the cable is 0.7c0.

1 The characteristic impedance of a CAN bus cable is typically 120 Ω, so ‘termination’ in this case 
would be a 120-Ω resistor. 
2 Google “resistor e12 series online combination” and you will find an online tool for how to 
combine standard resistor values to any other resistance. 
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Fig. 5.31 The near-end signal

(a) Determine the characteristic impedance of the cable. (b) What is the cable length? 
(c) What is the attenuation in the cable? and (d) Draw the corresponding diagram if 
the far-end is short-circuited to ground. 

Solution (a) Equation (5.1) gives  UZ0 = Z0 

Z0 + 50 
· 2 = 1.2 ⇒ 2Z0 = 1.2Z0 + 60 

⇒ 0.8Z0 = 60 ⇒ Z0 = 75Ω

(b) L = vt/2 = 0.7 · 3 · 108 · 230 · 10−9/2 = 24.15 m 

(c) α = 
20 log ux u0 

2·L = 20 log 
1 
1.2 

2·24.15 = −0.033 dB/m 

(d) Short-circuit to ground ⇒ γ f = –1 (see Fig. 5.32). 

Problem 5.5 Consider the experiment in Fig. 5.33. 

This is what we know about the cable: It is 30 m long, has a characteristic 
impedance of 50 Ω, and, for the pulse-type signal in Fig. 5.33, the attenuation is 
−0.02 dB/m.

Determine the load impedance if the near-end signal looks as in Fig. 5.34.

Solution ux = 2 · 10−0.02·30/20 γ f · 10−0.02·30/20 = 1.74γ f = −1 ⇒ γ f = −0.574

Fig. 5.32 The near-end signal if the far end is short-circuited 



104 5 Transmission Lines

Fig. 5.33 The TDR experiment

Fig. 5.34 The near-end signal

γ f = 
Zload − 50 
Zload + 50 

= −0.574 ⇒ Zload − 50 = −  0.574 · Zload − 28.7 

1.574 · Zload = 21.3 ⇒ Zload = 13.5Ω

Problem 5.6 Consider the experiment in Fig. 5.35 (the input signal is a step function). 

Plot the near-end signal if Z load is (a) an open end, (b) a short-circuit to ground, 
(c) a 50-Ω resistor, (d) a capacitor, and (e) an inductor. (Disregard attenuation in this 
problem.) 

Solution First, let’s figure out what the step response of un is. Since we have an 
RG58 cable, it has a characteristic impedance of 50 Ω; at  t = 0, 2 V will propagate 
down the cable. If anything is reflected at the far end, it will return to the near end

Fig. 5.35 A TDR experiment 
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Fig. 5.36 The first t2L seconds are independent of the load 

after t2L = 2L/v seconds. So, whatever Z load is, the near-end signal will always look 
the same for the first t2L seconds, see Fig. 5.36. 

If the far end is open, γ f = +1 and all the incoming +2 V is reflected, interacting 
constructively with the incoming waves, leaving a voltage of 2 + 2 = 4 V behind. 
When it reaches the near end, un will = 4 V, see Fig. 5.37. 

If the far end load is a short-circuit, the reflection coefficient is –1, and the reflected 
2 V will interact destructively with the incoming waves and since 2 –2= 0, the voltage 
level on the cable is cancelled. At t2L, un = 0, see Fig. 5.38.

If Z load = 50 Ω, the far-end reflection coefficient is 0 and nothing is returned, see 
Fig. 5.39.

If the load is a capacitor, it will initially be uncharged and as long as it is uncharged, 
current can pass right through it (like a short-circuit). But soon (sooner rather than 
later) it will be fully charged and then it will stop conducting current and act like 
an open circuit. Hence, at first it will act like Fig. 5.38, but soon it will act as in 
Fig. 5.37. Figure 5.40 illustrates the capacitor case.

Fig. 5.37 un if Z load = ∞  
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Fig. 5.38 un if Z load = 0

Fig. 5.39 un if Z load = 50 Ω

Fig. 5.40 un if Z load = a capacitor 

On the other hand, if the load is an inductor, it will initially act as an open circuit 
(Fig. 5.37), but once it understands that it is just a DC signal, it will act as a short-
circuit (Fig. 5.38). Figure 5.41 illustrates the inductor case.
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Fig. 5.41 un if Z load = an inductor 

RG58 

Fig. 5.42 Splice the cables 

Problem 5.7 In an experiment, a TP signal cable needs to be spliced to an RG58 
coax cable, see Fig. 5.42. How would you do that if the characteristic impedance of 
the TP cable is 75 Ω? 

Solution Eq. (5.4) gives  

R1 = 50 
/

75 

75 − 50 
= 87Ω = 100Ω//  680Ω

R2 =
√
75(75 − 50) = 43Ω = 10Ω + 33Ω

Above we have assumed that we only have access to E12 series resistor values. 
The reflection-free splicing is illustrated in Fig. 5.43. 

Problem 5.8 Suggest another way to do the splitting in Fig. 5.25.

RG58 
10 Ω

10
0 
Ω

33 Ω

68
0 
Ω

Fig. 5.43 Reflection-free splicing 
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Fig. 5.44 Y and ∆ networks 

R
G
58 

RG58RG58 
50 Ω

50
 Ω

50 Ω

Fig. 5.45 Alternative splitting 

Solution The circuit in Fig. 5.25 is a ‘Y’ network (‘wye’). This can be transferred 
to a ‘∆’ network (‘delta’) (see any electricity handbook) (see Fig. 5.44). 

For example, R12 = R1 R2

(
1 
R1 

+ 1 
R2 

+ 1 
R3

)
, but if R1 = R2 = R3, then this is 

reduced to R12 = 3R1. For our network in Fig. 5.25, that would give us R12 = R23 = 
R13 = 3 × 16.7 = 50 Ω. The alternative network is illustrated in Fig. 5.45.
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Chapter 6 
Probes 

Abstract This chapter emphasizes the need for probes in electrical measurements. 
A ‘probe’ is used to minimize the measurement system’s interference with the 
measurement object (observing without interfering). Passive probes are introduced 
in Sect. 6.2, active probes in Sect. 6.3, and current probes in Sect. 6.4. 

6.1 Introduction 

Consider the simple network in Fig. 6.1.
It is easy to see that the potential at point A is 2.5 V. But, of course, we don’t 

really know that until we measure it. A common DMM (or an oscilloscope) has an 
input impedance of 1 MΩ. If we connect that over the 200-kΩ resistor, see Fig. 6.2, 
then the voltage meter’s impedance will be in parallel with the 200-kΩ resistor, and 
the total impedance will be 200//1000 = 167 kΩ, see Fig. 6.2.

By trying to measure the voltage, we change the system. In this example, the 
result is off by almost 10%! System interference is inevitable; you can (almost) 
never measure something without disturbing the system. The important thing here is 
to first be aware of that, and second, to do what you can to minimize your instruments’ 
interference. 

In the previous example, it is obvious that the problem is the ‘high’ source 
impedance (or the ‘low’ instrument impedance); the source’s and the instrument’s 
impedances are of the same order. Obviously, the remedy is to increase the impedance 
of the instrument so that it is ‘much higher’ than the source impedance. 

That is exactly what a ‘probe’ does; it increases the impedance of the instrument to 
minimize the instrument’s interference with the system. In the previous DC example, 
the probe would just be a simple high-Ω resistor in series with the voltage meter. In 
Fig. 6.3, we have connected a 9-MΩ resistor in series, which means that the total 
impedance is now 200//10000 = 196 kΩ and the potential in point A is now 2.47 V; 
our new instrument only causes a disturbance corresponding to 1%. That is quite an 
improvement.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 
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Fig. 6.1 Simple DC measurement

Fig. 6.2 Connecting the instrument will change the impedance

Fig. 6.3 Using a probe 

Of course, it could be argued that this will cause an error in the measurement; the 
voltage meter in Fig. 6.3 will only measure one-tenth of this (0.247 V), but that is 
easily compensated for (just multiply by a factor of 10). 

In this example, it was easy and straightforward to design a probe. However, 
probes are mostly used with oscilloscopes measuring AC signals, and that makes
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things a little more complicated. The main objective here is to design probes for 
oscilloscopes. 

6.2 Passive Probes 

First, we need an accurate model of the oscilloscope’s input. An oscilloscope input 
is always marked with a resistance and a capacitance, see Fig. 6.4. That refers to the 
input impedance values as illustrated in the right-hand side of Fig. 6.4; the input is 
modeled as a resistor and a capacitor in parallel. (The ‘capacitor’ is not a capacitor; 
it is the inherent capacitance of the input.) 

Hence, the input impedance is 

Z1 = XC1//R1 = 
1 

jωC1 
R1 

1 
jωC1 

+ R1 
= R1 

1 + jωR1C1 
(6.1) 

In Eq. (6.1), we see the problem; Z1 depends on the frequency. 
In Fig. 6.3, we multiplied the voltage meter reading by a factor of 10 to get the 

right answer. That is acceptable, if we can always multiply by the same constant (= 
10) to get the right answer, but if we did the same trick in Fig. 6.4, the portion of the 
input voltage that falls over R1 would depend on the frequency; we would have to 
calculate a new multiplication factor for each new frequency, and that would make 
the trick next to useless. So, for AC signals and oscilloscopes, we need to be a little 
more creative. Figure 6.5 illustrates our ‘creative’ solution.

In Fig. 6.5, the ‘probe’ is the R2/C2 circuit, and this is what we need to make 
the fraction of uin that ends up over R1 independent of the input signal’s frequency. 
That may look unlikely at first sight, since we have added one more component that 
has a frequency-dependent impedance (C2), but we will prove it shortly. First, we 
consider the DC case. If the input signal is DC, then we can disregard the capacitors 
and we are back to the same problem as in Fig. 6.3. The most common probes are 
‘X10’ probes, meaning that only one-tenth of the input signal ends up over R1 and 
that’s what we are aiming for here. Well, for that to be true for DC signals, we must 
have R2 = 9 MΩ, just like in Fig. 6.3. 

So, we already know the value of R2. The trick now is to, if possible, select a value 
for C2 such that the fraction of the voltage uin that falls over R1 is always one-tenth

1 
1 M 
12 pF 

R1 = 1 MC1 = 12 pF 

Fig. 6.4 Oscilloscope input 
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Fig. 6.5 Oscilloscope with probe (R1 = 1 MΩ)

of uin, regardless of the input signal’s frequency. If we can’t find such a capacitance, 
the whole idea will be rejected. Let’s see what uosc is 

uosc = 
R1 

1+jω R1C1 

R1 

1 + jωR1C1 
+ R2 

1 + jωR2C2
    

δ 

× uin (6.2) 

Equation (6.2) does not look very promising; there are a lot of ωs in Eq.  (6.2) and 
we want δ to be independent of ω; we want δ = 1/10. Well, that is possible; if we 
make R1C1 = R2C2, we can cancel all the 1 + jωRxCx denominators and then: 

uosc = 
R1 

R1 + R2 
× uin = 

1 

1 + 9 
× uin = 

1 

10 
× uin (6.3) 

which is exactly what we are looking for. So, if 

C2 = 
R1 

R2 
C1 = 

1 

9 
× 12 = 1.33 pF (6.4) 

we have a frequency-independent voltage divider in Fig. 6.5, and that’s what a passive 
probe is. Figure 6.6 illustrates a typical oscilloscope probe. 

The advantage of an oscilloscope probe is that your instrument’s ‘disturbance’ on 
the system is significantly reduced (which is paramount), but the disadvantage is that 
since only a fraction of the input voltage (one-tenth) ends up over the oscilloscope 
(the rest is over the probe), the sensitivity is reduced by a factor of 10. However, 
if you insert the right probe (i.e., the oscilloscope vendor’s probe), the scope will 
automatically recognize it and automatically recalibrate the vertical scale to give you 
the correct reading (you don’t have to think about the 1/10 factor). As you can see 
in Fig. 6.5, the  C2 capacitance is adjustable, usually by a small screw on the probe’s 
head, (see oscilloscope manual for the procedure), but modern oscilloscopes have an 
‘auto-calibration’ option for probes (in some menu somewhere…).
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Apart from not disturbing the voltage at the measurement point, there is one more 
thing you need to consider. We will illustrate that by an example. 

Example 6.1 In Fig. 6.7, two systems are cascaded, one with bandwidth 100 MHz 
and one with bandwidth 120 MHz. What is the overall bandwidth of this system? 

Solution On an exam, a lot of students would answer ‘100 MHz’, arguing that in a 
cascaded system, the component with the narrowest bandwidth defines the overall 
bandwidth. That is wrong (and earns you zero credits on an exam). It is a lot worse 
than that. Go back to Chap. 1, Fig.  1.4, and Eqs. (1.7) and (1.8), and you will see 
why. The overall risetime of the system in Fig. 6.7 is 

ttotal =
/

(

0.35 

0.12

)2 

+
(

0.35 

0.10

)2 

= 4.56 ns 

which means that the overall bandwidth is 

Btotal = 
0.35 

4.56 
= 77 MHz

Fig. 6.6 A ‘passive’ 
oscilloscope probe 

Fig. 6.7 Two cascaded 
systems 
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We learn two things from this example. First, we learn that the overall bandwidth of 
a cascaded system of components is always less than the bandwidth of the system with 
the narrowest bandwidth. Second, notice that by adding the probe to the oscilloscope 
above, we significantly reduced the system’s bandwidth. We went from 100 MHz 
without the probe to 77 MHz, with the probe. So, we learned one more thing: 

The probe’s bandwidth must be significantly larger than the oscilloscope’s 
bandwidth (or the overall bandwidth will be reduced). 

6.3 Active Probes 

If high input impedance is what we want, then we can easily find a better solution; 
feed the input signal to the input of a op amp in a voltage follower circuit, see Fig. 6.8. 

The probe in Fig. 6.8 is an ‘active’ probe; it is ‘active’ because it needs external 
power to work. Anyway, this is obviously the perfect probe! The input of an op amp 
is extremely large so it would not induce any disturbance at the measurement point, 
and it also does not reduce the sensitivity like the passive probe does. So, if this 
probe is so perfect, why don’t we always use it? Why do we bother with passive 
probes at all? The probe in Fig. 6.8 is so perfect, it is almost too good to be true…. 
And when something sounds too good to be true, it usually is. Active probes are 
no exception. The problem with active probes is that they are very expensive. An 
active probe could easily be e10,000. Why are they so expensive? It looks like a 
simple enough circuit. The answer is in the previous example. We concluded that the 
probe’s bandwidth must be much larger than the oscilloscope’s bandwidth. If you 
have a 500 MHz oscilloscope, you need maybe a 5 GHz probe. So, even if the circuit 
in Fig. 6.8 looks simple and innocent enough, if you scale it up to the GHz range 
(and above), it becomes a very complicated (and expensive) design. So, unless you 
have very deep pockets, you will be stuck with passive probes. 

Here is a common question about active probes: If ‘active’ means that it needs 
external power, does that mean that I need to supply power from an external DC 
power supply? 

No, you don’t. Again, if you use the right probe, the oscilloscope will recognize 
it, and provide the necessary power automatically through the copper pads on the 
oscilloscope input, see Fig. 6.9. (So, for God’s sake, don’t buy the wrong active probe 
to your oscilloscope! If the scope doesn’t recognize it, it is a lot of money down the 
drain.)

Fig. 6.8 An ‘active’ probe 
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Fig. 6.9 An active probe is 
powered from the 
oscilloscope 

6.4 Current Probes 

Oscilloscopes are voltage meters; they inherently measure voltage. You could of 
course measure current by measuring the voltage across some reference resistor, but 
the vertical scale on your scope would still be voltage [V]. However, you can measure 
current with an oscilloscope (with amps [A] on the vertical axis) if you buy a current 
probe. 

Current probes for oscilloscopes are non-contact probes; the probe clamps an 
iron core around the wire-under-test and the induced magnetic flux in the iron core 
is proportional to the current. Figure 6.10 illustrates the principle. 

Fig. 6.10 The current probe principle
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Fig. 6.11 Current probe with op amp feedback 

The disadvantage of the current probe in Fig. 6.10 is that it doesn’t work for DC 
currents. For that reason, current probe designs typically include a Hall sensor and a 
feedback op amp, see Fig. 6.11. 

In Fig. 6.11, the Hall sensor signal is fed to an op amp with negative feedback and 
since the non-inverting input is at 0 V, the op amp will generate a signal that makes 
the Hall sensor signal zero; the op amp will generate a signal in the coil that cancels 
the total flux in the iron core. Hence, the op amp output signal is proportional to the 
current. 

Current probes are expensive too, and the price depends on the bandwidth you need 
for the current measurement; the higher the current bandwidth the more expensive 
will the probe be. 

If the current is small, a common trick is to twist the wire multiple times around 
the iron core. Figure 6.12 illustrates a common current probe.
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Fig. 6.12 Current probe 

6.5 Solved Problems 

Problem 6.1 Design a ×10 probe for the oscilloscope in Fig. 6.13. 

Solution Fig. 6.14 illustrates the probe. If we first consider the DC case (ignore the 
capacitors), we can find R2: 

3 

3 + R2 
= 

1 

10 
⇒ R2 = 27 MΩ

Equation (6.4) gives us C2 = R1C1/R2 = 3 · 40 27 = 4.44 pF.

Fig. 6.13 Instrument input 

3 M40 pF 

Instrument 

Signal 
input 
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Fig. 6.14 The probe

3 M40 pF 

Instrument 

R2 

C2 

Probe 

Fig. 6.15 Find the ‘true’ 
potential at A 

Problem 6.2a What is the voltage at point A in Fig. 6.15? 

Solution One-fourth of x(t) falls over the 100-kΩ resistor: uA(t) = 1 × sin106t V. 

Problem 6.2b What signal will the oscilloscope in Fig. 6.16 measure? 

Solution 100//1000 = 90.9 kΩ. XC = −j/ωC = −j/106 · 15 · 10−12 = −j66.7 kΩ

∼ 

100 kΩ 

300 kΩ 

x(t) = 4×sin106t 

1 MΩ15 pF 

Oscilloscope 

Fig. 6.16 What signal will the oscilloscope display? 
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Z = 90.9// − j66.7 = 
−j66.7 · 90.9 
90.9 − j66.7 

= 
6063 · e−j90

◦ 

112.7 · e−j36.3◦ = 53.8 · e−j53.7
◦ 

= 31.8 − j43.5 kΩ

uA(t) = Z 

Z + 300 
· x(t) = 53.8 · e−j53.7

◦ 

31.8 − j43.4 + 300 
· 4 · ej106t = 

53.8 · e−j53.7
◦ 

334.6 · e−j7.5◦ · 4 · ej106t 

= 0.64 · e j
(

106t−46.2
◦)

Compared to the ‘true’ value, we have an amplitude error of 36% and a phase 
error of 46.2°. 

Problem 6.2c Design a × 10 probe for the oscilloscope in Fig. 6.16. 

Solution R2 = 9 MΩ, C2 = 15/9 = 1.67 pF. 

Problem 6.2d What will the oscilloscope measure if we use the probe at point A? 

Solution Fig. 6.17 illustrates the oscilloscope with the probe. 
First, we find the impedances Z1 and Z2 (see Eq. (6.1)): 

Z1 = 1 M  

1 + j · 106 · 106 · 15 · 10−12 
= 66.5 · e−j86.2◦ 

kΩ = 4.4 − j66.4 kΩ

Z2 = 9 M  

1 + j · 106 · 9 · 106 · 1.67 · 10−12 
= 598.7 · e−j86.2

◦ 
kΩ = 39.7 − j597.4 kΩ

Z1 + Z2 = 44.1 − j663.8 kΩ = 665.3 · e−j86.2◦ 
kΩ

∼ 

100 kΩ 

300 kΩ 

x(t) = 4×sin106t 

1 MΩ15 pF 

1.67 pF 

A 

9 MΩ 

Z1 

Z2 

Fig. 6.17 Measuring with probe 
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ZA = (Z1 + Z2)//100 kΩ = 
100 · 665.3 · e−j86.2◦ 

144.1 − j663.8 
= 

66530 · e−j86.2◦ 

679.3 · e−j77.8◦ 

= 97.9 · e−j8.4
◦ 
kΩ = 96.8 − j14.3 kΩ

uA(t) = Z A 

Z A + 300 
· x(t) = 

97.9 · e−j8.4◦ 

396.8 − j14.3 
· 4 · ej106t = 

97.9 · e−j8.4◦ 

397.1 · e−j2.1◦ · 4 · ej106t 

= 0.99 · e−j(106t−6.3◦) = 0.99 × sin
(

106 t − 6.3◦)
V 

We now have a 1% error in the amplitude and 6.3-degree error in the phase.



Chapter 7 
Transform Theory 

Abstract This long and important chapter introduces a mathematical tool called 
transforms. This is probably the most important mathematical operation used in 
electrical measurements. It transforms a signal in time space to frequency space, and 
this is extremely common (and useful) to understand and analyze your measurement 
signal. The focus in this chapter is the understanding of transforms and it starts with 
understanding exactly what is meant by the frequency (and later we must under-
stand why the frequency can be a complex number). Transform theory is by most 
students perceived to be ‘hard’ and the main reason for that is that there appears to 
be so many different transform expressions; depending on the nature of the (time) 
signal, it is necessary to use different mathematical expressions, but they all really 
do the same thing (i.e., transfer a time signal to frequency space). Because there 
are so many different expressions, this chapter tries to organize them for you (see 
Table 7.6). Several different transforms are introduced; the Fourier transform, the 
discrete Fourier transform, the Fast Fourier transform, the Laplace transform, and 
the z transform, but remember they all do the same thing; they take your signal from 
time space to frequency space. The main objective of this chapter is to help the reader 
understand transforms and see how they are related. This chapter also introduces the 
Bode plot and defines LTI systems (linear and time-invariant system). 

7.1 Introduction 

You should consider this to be one of the most important chapters in this book. 
‘Transform theory’ is what we use to transfer a signal from ‘time space’ to ‘frequency 
space’. It will become obvious that we can learn so much more about any signal (or 
system) if we leave time space and go to frequency space. Our primary objective here 
is to do a ‘frequency analysis’ and the tool(s) we need to do that is called a ‘transform’. 
There is not just one transform, there are several different ones, depending on the 
signal we are looking at. The signal could be ‘analog’ or it could be ‘digital’. In 
this context, ‘digital’ means ‘sampled’ (the mathematical term is ‘discrete’). We 
will also introduce a few new frequency variables. For example, we will have both
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‘non-complex’ and ‘complex’ frequencies. That gives us four transforms already, 
see Table 7.1. 

We will fill the gaps in this table as we learn about the transform tools in this 
chapter. 

But we need to start from the beginning. We should start by properly defining 
exactly what we mean by ‘frequency’. I’m sure you have a clear idea about what a 
signal’s ‘frequency’ is, but our definition of ‘frequency’ in this context is very strict: 
If a signal has frequency f , it is a  harmonic function (sinusoidal) with period T = 1/ 
f . Hence, the signal in Fig. 7.1 has frequency f , but not the signal in Fig. 7.2. (Well, 
it does have the frequency f , but also at lot of other frequencies, see Example 7.1.) 

Hence, when we say ‘frequency’ we mean the frequency of a harmonic signal. 
We also need to define the word ‘analysis’, but first we will present a fundamental 

theorem. 

Theorem All signals can be expressed as a sum of cosines: 

x(t) = a0 + a1 cos(ω1t + ϕ1) + a2 cos(ω2t + ϕ2) + . . .  

= a0 +
∑

k 

ak cos(ωk t + ϕk) (7.1)

Table 7.1 The transform 
map Non-complex frequency Complex frequency 

Analog 

Sampled 

Fig. 7.1 A signal with frequency f = 1/T 

Fig. 7.2 This signal has frequency f = 1/T and many more (see Example 7.1) 
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The domain of k depends on the signal; if x(t) is periodic with period T, then the 
domain of k is all positive integers and ω ∈ k · ω0, where 

ω0 = 
2π 
T 

⇒ ω0T = 2π (7.2) 

On the other hand, if x(t) is not periodic, then k can be any number and ω ∈ R 
(all real numbers). When x(t) is not periodic, Eq. (7.1) doesn’t make sense. We will 
come back to that later. 

Now we can define ‘analysis’. In general, ‘analysis’ means ‘decompose into 
constituents’. When we do ‘frequency analysis’ of a signal, we express it as in 
Eq. (7.1), i.e., we write it as a linear combination of cosines (the cosines are the ‘base 
vectors’). If x(t) is periodic, we already know the frequencies (they are k · ω0); we 
only need to find all the amplitudes ak and phase angles ϕk . The tool we use to find 
the amplitudes and the phase angles is called the Fourier transform. 

7.2 The Fourier Transform 

The Fourier transform takes our signal and produces an expression that is a function 
of the frequency, X(ω) (Fig. 7.3); this is a complex function and the magnitude of 
X(ω) gives us the amplitude of the cosine with frequency ω, and the argument (arg 
X(ω)) of X(ω) gives us the phase angle. 

Depending on the signal, we can identify three different cases that we need to 
treat separately. 

7.2.1 Case 1: Signal is Periodic 

In the first case, the signal is periodic, the period is T and, in that case, only frequencies 
which are a multiple of ω0 can exist in Eq. (7.1). For that reason, we write the Fourier 
transform X(ω) as  X(ω) = X(k·ω0) = X(k), and we define it as 

X(k) = 
1 

T 

T ∫
0 
x(t) · e−jωt dt  = 

1 

T 

T ∫
0 
x(t) · e−jkω0t dt (7.3) 

Example 7.1 Express the square wave in Fig. 7.4 as a sum of cosines.

Fig. 7.3 The Fourier 
transform operator 
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Fig. 7.4 We will analyze a square signal 

Solution First, we find the Fourier transform expression. In Eq. (7.3), we can inte-
grate over any period. Since the signal is symmetric, we choose to integrate over a 
symmetric interval: 

X(k) = 
1 

T 

T /2 ∫
−T/2 

x(t)e−jkω0t dt  = 
1 

T 

T /4 ∫
−T/4 

1 · e−jkω0t dt  = −  
1 

jkω0T

[
e−jkω0t

]T/4 

−T/4 

= −  
1 

jk2π

(
e−jkω0 

T 
4 − ejkω0 

T 
4

)
= 

1 

kπ 
· 1 
2j

(
ejkπ/2 − e−jkπ/2

) = 
1 

kπ 
sin 

kπ 
2 

(7.4) 

In Eq. (7.4), we can immediately see that X(k) = 0 if  k is an even number (/= 0). 
If k is odd, then sinkπ/2 = ±  1 and X(1) = 1/π, X(3) = −1/3π, X(5) = 1/5π, etc.  
For k = 0, we need to find the limit when k → 0. We use l’Hospital’s rule to find the 
limit: 

lim 
k→0 

sin k π 
2 

kπ 
= lim 

k→0 

π 
2 cos k 

π 
2 

π
= 

1 

2 

Hence, we get the following Fourier transform: 

X (k) = 

⎧ 
⎨ 

⎩ 

1 
2 if k = 0 

± 1 kπ if k is odd 
0 if  k is even 

(7.5) 

Notice in Eq. (7.5) that k is both positive and negative, which suggests negative 
frequencies. But of course, frequencies cannot be negative; the negative k values are 
only a consequence of Euler’s formulas for sine and cosine: 

ak cos(ωk t + ϕk) = ak 
1 

2

(
ej(ωk t+ϕk ) + e−j(ωk t+ϕk )

)

= 
1 

2 
ak · ejϕk

    
X(k) 

·ejωk t + 
1 

2 
ak · e−jϕk

    
X(−k) 

·e−jωk t (7.6)
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Euler’s formula for cosine assigns half the signal energy to the ‘positive’ frequency 
and the other half to the ‘negative’ frequency. Except for k = 0, of course, where + 0 
and −0 coincide, and all the energy is in k = 0 (k = 0 is the ‘DC’ part of the signal). 
From Eq. (7.6), we can see that 

|X (k)| = 
1 

2 
ak ⇒ ak = 2 · |X (k)| k /= 0 (7.7a) 

ϕk = argX (k) (7.7b) 

a0 = |X (0)| (7.7c) 

Expression (7.7) is the link between the Fourier transform and the sum of cosines 
in Eq. (7.1). In our example, we get 

a0 = |X (0)| = 
1 

2 

X (1) = 
1 

π 
= 

1 

π 
ej0 ⇒ a1 = 2 · 1 

π 
ϕ1 = 0 

X (3) = −  
1 

3π 
= 

1 

3π 
ejπ ⇒ a3 = 2 · 1 

3π 
ϕ3 = π 

X (5) = 
1 

5π 
= 

1 

5π 
ej0 ⇒ a5 = 2 · 1 

5π 
ϕ5 = 0 

Since cos(α + π) = −cos(α), we can now use Expression (7.1) to write x(t) as  

x(t) = 
1 

2 
+ 

2 

π

(
cos ω0t − 

1 

3 
cos 3ω0t + 

1 

5 
cos 5ω0t − . . . ..

)
(7.8) 

In Fig. 7.5, we have plotted the amplitude spectrum of x(t) and in Fig. 7.6 we have 
plotted the different components and the sum of the first four terms in Eq. (7.8) to  
compare it with the original square signal. 

We can learn a few important things from this example. First, notice that we use 
k as the frequency variable. Get used to that! The frequency is a multiple of ω0 and 
it is very important that you get used expressing frequency in terms of k. ω0 = 2π/T

Fig. 7.5 The amplitude spectrum of x(t)
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Fig. 7.6 The different frequency components of x(t)

or f 0 = 1/T. So, for example, when we say that the frequency is ‘3’, we mean that 
it is 3 × f 0. Here is an alternative way to think of k: We know the period T of the 
signal and k tells us how many periods of a cosine that fits in T, see Fig. 7.7. 

Second, notice that we only plotted the amplitude spectrum in Fig. 7.5; we didn’t 
plot the phase spectrum. We could have done that too, but we didn’t. This is typical; 
in most cases, we only care about the distribution of amplitudes in a signal (see 
Chap. 8 about spectral analysis). 

Let’s return to Eq. (7.3). The Fourier transform expression has a very important 
feature; the amplitude spectrum is symmetric, i.e., 

X (−k) = X∗(k) ⇒ |X(−k)| = |X (k)| (7.9) 

(In Eq. (7.3), it doesn’t matter if we change sign of k or j.) As we will see later, 
this is a feature that characterizes all Fourier transforms. 

Now we can update our transform map in Table 7.1 with our first transform. 
In Table 7.2, we had to split the analog/non-complex frequency cell into two, 

because we are not done with this signal category yet.

Fig. 7.7 k is our frequency variable 
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Table 7.2 The transform 
map

Non-complex frequency Complex frequency 

Analog 
X (k) = 1 T 

T ∫
0 
x(t)e−jkω0t dt  

Sampled 

7.2.2 Case 2: Signal is Non-Periodic, But ‘Time-Limited’ 

Another name for a ‘non-periodic, time-limited’ signal is a ‘transient’, see Fig. 7.8. 
A transient is characterized by the fact that its energy is limited. (A periodic signal 

has infinite energy, but limited power.) Since a transient doesn’t have a period T, we  
cannot define an ω0 and the frequencies of the cosines in Eq. (7.1) cannot be predicted 
with some simple formula. As a matter of fact, when x(t) is a transient, all frequencies 
are allowed and ω ∈ R (all real numbers). That means that Expression (7.1) is no  
longer meaningful, and when we describe a transient, we only present its amplitude 
spectrum (which is now a continuous function). Fourier transform Expression (7.3) 
must be manipulated to allow any frequency: 

X (ω) = 
+∞ ∫
−∞ 

x(t) · e−jωt dt (7.10) 

Example 7.2 Plot the magnitude spectrum of the transient in Fig. 7.9. What is the 
signal’s bandwidth?

Solution First we need to find the Fourier transform:

Fig. 7.8 A transient 
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Fig. 7.9 A transient

X(ω) = 
1 ∫
0 
1 · e−jωt dt  = −  

1 

jω 
· [e−jωt

]1 
0 = −  

1 

ω 
· 1 
j

(
e−jω − 1

) = 

= −  
2 

ω 
· 1 
2j

(
e−jω/2 − ejω/2

)

    
− sin ω/2 

·e−jω/2 = 
2 

ω 
· sin ω 

2 
· e−jω/2 = sinc 

ω 
2 

· e−jω/2 

⇒ |X (ω)| = |sincω/2| 

(7.11) 

The amplitude spectrum is plotted in Fig. 7.10. 
In Fig. 7.10, we can see that the signal’s bandwidth is infinite, but most of its 

energy is in the interval 0… 2π rad/s. 
Notice in Eq. (7.10) that the Fourier transform for a transient is also symmetric: 

X (−ω) = X∗(ω) ⇒ |X (−ω)| = |X(ω)| (7.12) 

So, if we also plotted the amplitude spectrum in Fig. 7.10 for negative frequencies, 
it would just be a mirror of the positive frequency values. 

Compare the amplitude spectrums in Figs. 7.5 and 7.10; for periodic signals, 
the amplitude spectrum is always a discrete function (only certain frequencies are 
allowed) and for transients the amplitude spectrum is always a continuous function 
(any frequency is allowed).

Fig. 7.10 The amplitude spectrum is now a continuous function 
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Table 7.3 The transform map 

Non-complex frequency Complex frequency 

Analog Periodic 
X(k) = 1 T 

T ∫
0 
x(t)e−jkω0t dt  

Transient X(ω) = 
∞ ∫

−∞ 
x(t)e−jωt dt  

Sampled 

Let’s update our transform map with our new Fourier transform (Table 7.3). 

7.2.3 Case 3: Signal is Non-Periodic and Infinite 

Figure 7.11 illustrates a non-periodic, infinite signal. 
This signal is a little bit of a headache because we don’t have a transform formula 

for it. It is not periodic, and it is not a transient. It is not even deterministic, i.e., we 
don’t have a closed-form expression for it to put into a formula. So, what do we do? 
If you think about it, this must be what most ‘real-life’ signals look like, and there 
are plenty of situations where we need to know the amplitude spectrum of this kind 
of signals (to find the signal bandwidth, for example). 

The answer is that we must sample it. ‘Sampling’ means recording its signal value 
at regular time intervals, see Fig. 7.12.

TS is the sampling time interval, the time between each sample, and the inverse 
is the sampling rate: 

fS = 
1 

TS 
[S/s] (7.13) 

(The unit is ‘Samples per second’.) Sampling is a precarious operation; there is a 
strict rule that you must always follow:

Fig. 7.11 A non-periodic and infinite signal 
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Fig. 7.12 Sampling a signal

Theorem When you sample a signal with a maximum frequency of f max (= the 
signal bandwidth), the sampling rate must exceed 2·f max: 

fS > 2 · fmax ⇒ fmax < 
fS 
2 

(7.14) 

This is the sampling theorem, sometimes also called the Nyquist sampling theorem 
(or the Shannon sampling theorem1 ). Notice the use of ‘ > ’ and ‘ < ’ in Eq. (7.14) and 
not ‘ ≥ ’ and ‘ ≤ ’. The sampling rate must be greater than 2·f max. Not  greater than or 
equal! This is important and we will talk a lot more about this later. A consequence 
of the sampling is that the signal becomes discrete: x(t) becomes x(n): 

x(t) → x(n · TS) = x(n) (7.15) 

x(n) should be interpreted as x(n·TS). Also, we will usually write ‘xn’ instead of x(n) 
(laziness wins). 

Another thing we need to decide is when to stop sampling. The signal is infinite, 
but we can’t just sample forever. Sooner or later, we must stop sampling and do 
something with our samples (like finding the Fourier transform). Hence, we take 
N samples and then we stop (temporarily) to do some calculations on our samples. 
When we stop sampling, we have observed the signal for a time duration T: 

T = N × TS (7.16) 

The question is: What do these samples represent and how do we find the Fourier 
transform? Well, the answer is that we must adjust one of the Expressions (7.3) 
or (7.10) to discrete time. (We don’t have any other expressions for the Fourier 
transform.) But, which one? Using Expression (7.3) would indicate that we consider 
our N samples to be exactly one period of a periodic signal and using Expression 
(7.10) would suggest that we consider the N samples to be a transient, equal to zero 
outside the observed time T = N ·TS . So, whichever expression we use, it will not be

1 Neither Shannon nor Nyquist’discovered’ the sampling theorem; Edmund Whittaker published it 
already in 1915, but Shannon and Nyquist are usually credited for it. Fair or not, that is how it is. 
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completely correct, but again, these are all the expressions we have. And, as it turns 
out, it doesn’t matter which one we choose, the result will be the same! However, we 
will arrive at the result a little faster (and a little more elegantly) if we use Expression 
(7.3): We consider our N samples to be exactly one period of a periodic signal with 
period T = N ·TS . We denote our samples in Fig. 7.12 as {x0, x1, x2, x3, x4, ..xN−1}. 
To find the Fourier transform of the samples, we adjust Eq. (7.3) for discrete time: t 
→ n·TS . 

X(k) = 
1 

T 

T ∫
0 
x(t) · e−jkω0t = dt  {t → nTS} =  

1 

N 

N−1∑

n=0 

xn · e−jkω0nTS (7.17) 

But, ω0TS = ω0T /N = 2π/N , so  

X (k) = 
1 

N    
Drop 
it! 

N−1∑

n=0 

xn · e−jk 2π 
N ·n = 

N−1∑

n=0 

xn · e−jk 2π 
N ·n = DFT (7.18) 

Expression (7.18) is called the Discrete Fourier Transform, or just DFT. Notice 
that we dropped the 1/N factor above; it carries no information (since it only scales 
each X(k) value by the same factor), and we drop it because our samples will of course 
be processed by a computer algorithm with a real-time constraint and multiplying 
by 1/N is just a waste of processor time that doesn’t add any information. (Our X(k) 
samples will be N times ‘too large’, though. We need to keep that in mind when we 
use a computer to find the Fourier transform. See Example 7.4.) 

Equation (7.18) requires exactly N (complex) multiplications for each X(k), and 
there will be exactly N X(k)s to calculate (we will explain why there are exactly 
N values later), so the DFT requires N2 complex multiplications. This is a time-
consuming task that puts a limit on the real-time sampling rate. However, analyzing 
Eq. (7.18) in more detail reveals that a lot of the multiplications are identical and/or 
‘symmetrical’. 

When a computer computes the discrete Fourier transform, it takes advantage 
of the symmetries in Eq. (7.18) by using an algorithm known as the Fast Fourier 
transform or the ‘FFT algorithm’. It was first presented by Cooley and Tukey in 
1965 [1], and it reduces the number of complex multiplications to only N ·log2N. 
Anyway, the details of that algorithm are not important to us (let the computer worry 
about that). In this context, ‘DFT’ and ‘FFT’ mean the same thing and will be used 
interchangeably. 

Before we present any examples of how to use the DFT, we make some obser-
vations. First, the Fourier transform Expression (7.18) is still symmetric (X (−k) = 
X∗(k)), so we still have symmetric amplitude spectra. However, the DFT expression 
has a new property that we have not seen in our earlier expressions, and this new 
property is all-important! To see this property, we find the DFT of X(k + N):
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X (k + N ) =
∑

xne
−j(k+N ) 2π 

N ·n =
∑

xne
−jk 2π 

N n · e−j2πn
    

=1 

=
∑

xne
−jk 2π 

N n 

= X (k) 
(7.19) 

We can easily see that Eq. (7.19) holds for any multiple of N: X(k + mN) = X(k), 
which proves that the DFT is periodic. 

If You Take N Samples of X(t), X(k) Becomes Periodic with Period N! 
(Which explains why we only need to calculate exactly N X(k) values.) 
Notice also that we still use k as our frequency variable! If the frequency is ‘3’, it 

still means that the cosine has a frequency such that its period fits three times in T. 
The only difference is that T is now the ‘observation time’ defined in Fig. 7.12. The  
frequency of the ‘fundamental’ is f 0 = 1/T, and all other signal frequencies must 
(still) be a multiple if this frequency: 

f = k · f0 = k 
1 

T 
= k 

1 

NTS 
= k 

fS 
N 

= k · ∆ f (7.20) 

where ∆f = f S/N is the frequency resolution. Notice that the frequency resolution 
is improved if we reduce the sampling rate (or take more samples). The sampling 
rate and the number of samples determine how small frequency differences we can 
resolve in the amplitude spectrum. A high sampling rate gives us a high resolution 
in the time domain, but a low resolution in the frequency domain. 

7.2.4 FFT Outputs 

If you use an FFT algorithm to compute the DFT, it will output exactly one period 
of X(k); X(0) …. X(N − 1). These samples need to be treated ‘carefully’. First, 
remember the sampling theorem: only frequencies < f S/2 are ‘legit’. Are all N DFT 
samples produced by the FFT algorithm legit? Well, yes and no. First, according 
to Eq. (7.20), the frequencies are k·f S/N. Inserting this into the sampling theorem 
condition gives us 

f = k · fS 
N 

< 
fS 
2 

⇒ k < 
N 

2 
(7.21) 

Hence, you could argue that only the first half of the N X(k) samples are ‘legit’; 
the second half has frequencies that violate the sampling theorem. On the other hand, 
we have the symmetric and periodic properties of the DFT. Assume that N /2 ≤ k < 
N – 1, i.e., k represents a frequency that violates the sampling theorem. Then, 

X(k) =    
Due to 
periodicity 

X (k − N ) =    
Due to 
symmetry 

X∗(N − k) (7.22)
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Suppose N = 16 and k = 10. Then X(10) = X(−6) = X*(6). Hence, you could 
argue that the second half of the N DFT samples is legit; they are just the ‘negative’ 
half (and will always be the complex conjugates of the ‘positive’ half). Figure 7.13 
illustrates some of these important aspects of the DFT. 

Example 7.3 Figure 7.14 illustrates a sinusoidal function (not sampled). Without 
doing any actual calculations, predict its Fourier transform. 

Solution There is only one cosine in this signal, and it defines the period T. That 
means that only X(1) and X(−1) are /= 0. Equation (7.7) gives us immediately that 
the magnitudes are 0.5. Since it is a sine, and not a cosine, it has a phase shift of − 
90°: 

X (1) = 0.5 · e−j90◦ = −0.5j ⇒ X (−1) = X∗(1) = 0.5j 

X(k) = 0 for all k /= ±  1. 

Notice how easy it was to find the Fourier transform once you understand what it 
represents.

Fig. 7.13 A DFT spectrum when N = 10; notice the periodicity and the symmetry 

Fig. 7.14 A sinusoidal function 
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Fig. 7.15 Taking eight samples of a sinusoidal signal 

Example 7.4 In Fig. 7.15, we have sampled the signal in Fig. 7.14. What would 
MATLAB (or any other signal processing software) produce if we used the fft 
command on these samples? 

Solution It is important to understand that T is no longer determined by the signal’s 
period; it is determined by the (total) sampling time N ·TS as indicated in Fig. 7.15. 
Since our signal’s period fits exactly two times in this time T, only X(2) will be /= 0. 
From the symmetry property, we also know that X(−2) would be = X*(2), but the fft 
algorithm doesn’t produce, X(−2), it only produces X(k) for  k = 0…7. However, the 
periodic property of the DFT implies that X(−2) = X(−2 + 8) = X(6) which indeed 
is a number that the fft algorithm produces. Hence X(6) = X*(2) /= 0, all other DFT 
values will be 0. So, we only need to find X(2), everything else is predicted. 

So, what is X(2)? Well, the phase angle is the same as in Example 7.3, so we will  
again get a ‘−j’. The amplitude is also the same, but that does not mean that X(2) = 
−0.5j! The reason is that in the DFT expression in Eq. (7.18), we dropped the 1/N 
factor! Now we must face the consequences of that; our X(k) values will be N times 
too large! So, instead of −0.5j, we will get −0.5j × 8 = −4j (and X(6) = 4j). 

We encourage you to check this by applying the fft command in MATLAB to the 
eight samples [0,1,0,−1,0,1,0,−1]. 

Finally, we should update our transform map, see Table 7.4. Notice in Table 7.4 
that we use the same frequency variable k in two transforms, and that they mean the 
same thing. Almost….! Make sure you understand the subtle difference between the 
k variables in the two transforms.

7.2.5 Aliasing 

If we don’t comply with the sampling theorem, there will be consequences, which 
we will illustrate in the following two examples. 

Example 7.5 Plot the amplitude spectrum of the signal x(t) = sin2π1000t, if it is  
sampled at a rate of f S = 10 kS/s.
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Table 7.4 The transform map 

Non-complex frequency Complex frequency 

Analog Periodic 
X (k) = 1 T 

T ∫
0 
x(t)e−jkω0t dt  

Transient X (ω) = 
∞ ∫

−∞ 
x(t)e−jωt dt  

Sampled 
X(k) = 

N −1∑
n=0 

xne−jk 2π 
N n

Solution This is easy; there is only one frequency (= 1000 Hz), so we will have a 
spectrum peak at f = 1000 Hz. But, since we are sampling, there will be other peaks 
too, due to the symmetry and periodic properties. First, due to symmetry, we will 
have an equally large peak for f = −1000 Hz, and then these two peaks will repeat 
for every multiple of the sampling frequency, i.e., we will have peaks at (m·10,000 
± 1000) Hz, see Fig. 7.16. 

Due to the symmetry and periodic properties of the DFT, there will be a lot of 
‘peaks’ in the amplitude spectrum (infinitely many), but since we only look in the 
‘allowed’ range 0 … f S/2, that is not a problem; our 1000 Hz signal shows up correctly 
in this region. The other peaks are called ‘aliasing’ peaks and in this example, they 
don’t cause us any trouble, but they will cause you trouble if you don’t comply with 
the sampling theorem. The next example will illustrate that. 

Example 7.6 Plot the amplitude spectrum of the signal x(t) = sin2π9000t, if it is  
sampled at a rate of f S = 10 kS/s. 

Solution Just as easy; ‘real’ peak at 9000 Hz, ‘symmetry’ peak at−9000 Hz and then 
the ‘periodic’ peaks at (m·10,000 ± 9000) Hz. That will give us peaks at frequencies 
…−9000, + 1000, + 11,000, + 21,000 ….. and −1000, 9000, 19,000, 29,000 ….. 
Exactly at the same positions as in the previous example!! (Fig. 7.17).

Fig. 7.16 Amplitude spectrum of a 1000 Hz sinusoidal signal sampled at 10 kS/s 
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Fig. 7.17 Same amplitude spectrum as in Fig. 7.16 

Fig. 7.18 Aliasing in the time domain; sampling violates the Nyquist theorem 

Since we still only look in the Nyquist interval ( f < f S/2), we will only see the 
1000 Hz peak and draw the erroneous conclusion that we are measuring a sinusoidal 
with frequency 1000 Hz. We have aliasing in our amplitude spectrum, which will 
happen when you don’t comply with the sampling theorem. Figure 7.18 illustrates 
what aliasing looks like in the time domain. 

7.3 Describing Systems 

So far, we have only used transforms to describe signals, but it is very common to 
also use them to describe systems. In Fig. 7.19, the signal x(t) is the input to a system 
and y(t) is what comes out of the system. The Fourier transform of the input signal 
is X(ω) and the Fourier transform of the output signal is Y (ω). We now define the 
system’s transfer function H(ω) as the quotient between Y (ω) and X(ω): 

H (ω) = 
Y (ω) 
X (ω) 

= |H (ω)| · ejϕ(ω) (7.23)
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Fig. 7.19 Signals and 
systems are described with 
transforms 

H(ω) is in general a complex function where |H(ω)| is the amplification diagram 
(or ‘gain’ diagram) and ϕ(ω) is the  phase diagram. The amplification diagram tells 
you what happens to the amplitudes of the cosines in x(t) and the phase diagram tells 
you what happens to their phase angles. An example will make this clear. 

Example 7.7 If the signal x(t) = 4 cos(20000t + 25◦) is the input to the system in 
Fig. 7.20, what will the output be? 

Solution First we find y(t): 

y(t) = XC 

XC + R 
· x(t) 

= 
1 

jωC 
1 

jωC + R 
x(t) = 1 

1 + jω RC 
x(t) ⇒ Y (ω) = 1 

1 + jω RC 
X (ω) 

⇒ H (ω) = 
Y (ω) 
X (ω) 

= 1 

1 + jω RC 
= 1 · ej·0 √

12 + (ω RC)2 · ej tan−1 ω RC/1 

= 1 √
1 + R2C2ω2

    
|H (ω)| 

· e 
−j tan−1 RCω    

ϕ(ω) 

Since |H (ω)| is a first-order polynomial in ω, the system in Fig. 7.20 is a first-
order system. It is also a lowpass system, since |H (0)| = 1, and |H (ω)| → 0, when 
ω → ∞. In Fig.  7.21, we have plotted the Bode diagram of the system, i.e., |H(ω)| 
and ϕ(ω) for  R = 1 kΩ and C = 100 nF. From this plot, we can see that a signal with 
frequency 20 krad/s will be attenuated by a factor of 0.45 and the phase angle will 
be shifted by −63 degrees. Hence, the output y(t) in Fig.  7.20 is 

y(t) = 0.45 · 4 cos(20000t + 25◦ − 63◦) = 1.8 cos(20000t − 38◦)

Fig. 7.20 A first-order 
system 
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Fig. 7.21 The Bode plot 

Notice in Example 7.7 that we mix radians and degrees in the cosine argument. 
Mathematically this is of course wrong, but it is common practice, simply because 
it is easier to imagine the size of an angle in degrees than in radians. You just have 
to keep that in mind and be careful when you use your calculator. 

Another detail worth pointing out in this example is that the system changed the 
amplitude and the phase of the signal, but it didn’t change the frequency. This is 
what characterizes linear and time-invariant systems (LTI), and we will only treat 
LTI systems in this book. That is the most common restraint in signal processing 
textbooks.2 

The Bode plot in Fig. 7.21 is what characterizes any system; if you know the 
transfer function, you know the Bode plot and then you know everything you need 
to know about the system; with ‘everything’ we mean that you can predict the output 
for any signal input. As a matter of fact, systems are characterized by the |H (ω)| 
diagram (which we will call the amplification diagram or gain diagram) and there 
are, in general, six different types of systems: Lowpass, highpass, bandpass, stop-
band, resonance, and notch systems. Their characteristic amplification diagrams are 
illustrated in Fig. 7.22 on the next page.

Most systems are ‘by nature’ lowpass, like amplifiers, instruments, and transmis-
sion lines (they are typically also first-order systems). In general, to get anything else 
than a first-order lowpass system, you need to design a ‘filter’ (see Chaps. 9 and 10). 
For that reason, we will take a closer look at the amplification diagram of a lowpass 
system, see Fig. 7.23.

First, in most diagrams, both axes are logarithmic. Second, the system’s bandwidth 
is defined as the frequency ωB where the amplification has decreased by −3 dB

2 Look for textbooks about ‘Non-linear systems’ or ‘Adaptive systems’ if you want to go beyond 
the LTI restriction. 
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Fig. 7.22 Six different types of systems

Fig. 7.23 A lowpass system

(compared to the amplification at ω = 0). Third, in the stopband (ω > ωB), the 
amplification drops as n·20 dB/decade, where n is the system order. Hence, you can 
figure out the system order by looking at the stopband roll-off. 

7.3.1 Distortion-Free Systems 

Consider the signal x(t) = sin t + 0.33 sin 3t . This signal is passed through the 
lowpass system in Fig. 7.24 with the amplification diagram in Fig. 7.25. x(t) has 
frequencies 1 and 3 rad/s and according to the amplification diagram, neither of the 
amplitudes are affected by the system (since the amplification = 1 for both signals.) 
Does that mean that y(t) = x(t)?
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Fig. 7.24 x(t) is passed through the system H(ω). 

Fig. 7.25 The amplification diagram of the system 

The right answer to that question is: We don’t know! To answer that question, we 
also need to know the phase diagram. Figure 7.26 illustrates the phase diagram of 
the system. 

Now we can answer the question: The answer is ‘No, y(t) will not equal x(t)’. 
Here is the reason. 

Figure 7.27 illustrates the signal x(t) and its two components and Fig. 7.28 illus-
trates what happens to the two components and the sum of them (which is y(t)) after 
they have been phase shifted −90° and −120°, respectively. 

Fig. 7.26 The phase diagram 

Fig. 7.27 x(t) and its components.
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Fig. 7.28 y(t) and its components. 

Fig. 7.29 y(t) and its components. 

From Fig. 7.28, we can see that even though the amplitudes are not affected, we 
still have distortion because of the phase diagram. So, what is wrong with the phase 
diagram in Fig. 7.26? To have a distortions-free passage, the phase diagram must 
be linear, i.e., ϕ(ω) = k·ω, and we can see immediately that the phase diagram in 
Fig. 7.26 is not linear and distortion is expected. 

For a distortion-free passage of x(t), the phase shift for ω = 3 rad/s must be three 
times higher than the phase shift for ω = 1 rad/s. Figure 7.29 illustrates the system 
output when sin3t is phase shifted −270° (= 3 × (−90°) = 3 × ϕ(1)). 

So, distortion-free systems are characterized by linear phase diagrams; however, 
remember that it only needs to be linear in the passband (ω < ωB); we don’t care 
what happens in the stopband since these signals are attenuated anyway. 

7.4 Complex Frequencies 

Now that we know something about systems, and how to describe them, we will take 
a new look at our frequency variables. From experience, I know that wrapping your 
head around all the frequency variables in transform theory is the hardest part. So far, 
we have introduced f , ω, and k, but I’m sorry to say, we are only half-way through.
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The Fourier transform expressions in Eqs. (7.3), (7.10), and (7.18) are really 
scalar products, where x is the vector we ‘analyze’ and e−jωt is the ‘base vector’ 
(base function). Compare with what you learned in linear algebra; to find the vector 
component along the x-axis, you take the scalar product of the vector and the x base 
vector: vx = <v|ex > = (

vx , vy
) · (1, 0) = vx . Well, that is exactly what we do when 

we use the Fourier transform (signals are vectors!). We do it to find the size of the 
signal in the different ‘cosine directions’ in Eq. (7.1). 

You could argue against that, saying: ‘But if the cosines are the base vectors, how 
come we don’t have cosines in the Fourier transform expressions?’ Well, we do! We  
have just used Euler’s formula for cosine: 

Aejωt = A cos ωt(+jA sin ωt) (7.24) 

(And remember that the scalar product between two functions is < f, g> =  ∫ f · 
g∗dt .) When we substitute cosine for an exponential expression, something else 
happens at the same time: The frequency goes from being a real number (ω) to an  
imaginary number (jω). Is that important? Maybe not, but it becomes important if we 
take it one step further: If the frequency can be an imaginary number, could it also 
be a complex number? The answer is actually ‘Yes’! We know what the imaginary 
part (ω) represents (the signal’s harmonic oscillation frequency), but what would the 
real part of the frequency represent? We will assign the letter s to our new complex 
frequency variable: 

s = σ + jω (7.25) 

We will later come back to what physical property the real part (σ ) represents. 
First, let’s update our transform expression with our new frequency. We only need 
to adjust Expression (7.10) (it will become clear later why we don’t worry about 
Eq. (7.3)). In Eq. (7.10), we substitute jω for s: 

X (ω) → X (σ + jω) = ∫ x(t)e−(σ +jω)t dt  = ∫ x(t)e−st  dt  = X(s) (7.26) 

X(s) is the  Laplace transform (and notice that the Fourier transform is just a special 
case of the Laplace transform, when σ = 0 and s = jω). 

Now, let’s first figure out what the real part of the new frequency variable 
represents. First, we substitute jω for s in Eq. (7.24): 

Aejωt → Aest  = Ae(σ +jω)t = Aeσ t · ejωt = Aeσ t
    

Amplitude! 

cos ωt (7.27) 

Look at Eq. (7.27). By introducing a real part in the frequency, we can also 
represent harmonic functions with exponentially decaying/increasing amplitudes! 
(With the Fourier transform we can only process harmonic signals with constant 
amplitudes.) From Eq. (7.27), we can also see that if σ > 0, we have a harmonic
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signal with exponentially growing amplitude! We never want that!3 It would drive 
our signal output to the power supply limit (and we would suddenly have a non-linear, 
malfunctioning system). Hence, we (almost) always want to make sure that we have 
signals where the real part of the frequency is ≤ 0. 

However, our main concern here is not signals; it is systems. 

7.4.1 Laplace Representation of Systems 

We previously derived the expression H (ω) = 1/(1 + jRCω) for the transfer func-
tion of the system in Fig. 7.20. We can, and usually do, express the transfer function 
using the complex frequency s, just substitute jω for s: 

H (s) = 1 

1 + RCs 
(7.28) 

In Chap. 9, we will investigate the details of filters and how to describe and design 
them, but Eq. (7.28) is a typical filter equation; in general, a filter transfer function 
is a quotient between two polynomials of s, and the filter ‘order’ is determined by 
the highest polynomial order. Right now, we are trying to understand the Laplace 
transform, and to have something to work with we will use the following second-order 
filter: 

H (s) = 4s 

s2 + 2s + 2 
(7.29) 

First, let’s find the Bode plot to see what kind of filter we are dealing with. 
Substitute s for jω to get the Fourier transform: 

H (ω) = 4jω 
−ω2 + 2jω + 2 

= 4ωej90
◦

/(
2 − ω2

)2 + 4ω2 · ej tan−1 2ω/(2−ω2 ) 
= 

= 4ω/(
2 − ω2

)2 + 4ω2 
· ej(90◦−tan−1 2ω/(2−ω2 )) = |H (ω)| · ejϕ(ω) 

(7.30) 

Figure 7.30 illustrates the Bode diagram of this system. From Fig. 7.30, we can 
see that we are dealing with a bandpass system with a peak amplification around 
1 rad/s. Also, the discontinuity in the phase diagram is a not real; it is because the 
MATLAB arctan function returns values in the range −π/2 … π/2 only.

Speaking of MATLAB, there is a faster way to get the Bode plot of a given 
system. If we define the numerator and denominator as b = [4,0] and a = [1,2,2],

3 Unless you are designing an oscillator. 
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Fig. 7.30 The Bode plot

the freqs(b,a) command will immediately plot the Bode diagram (with logarithmic 
axes and no arctan folding), see Fig. 7.31. 

Next, we substitute s for σ + jω, in Eq.  (7.29): 

H(σ, ω) = 4(σ + jω) 
(σ + jω)2 + 2(σ + jω) + 2 

(7.31) 

Let’s look at the magnitude function of this expression. 

|H(σ, ω)| = 4
√

σ 2 + ω2

/(
σ 2 − ω2 + 2σ + 2

)2 + 4ω2(σ + 1)2 
(7.32) 

Since this is a function of two variables, the amplification diagram of a system 
represented by the Laplace transform will be a 3D graph, see Fig. 7.32. In Fig.  7.32,

Fig. 7.31 Using the freqs command in MATLAB 
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Fig. 7.32 The amplification diagram of the system in Eq. (7.29) is a 3D graph 

‘Real’ is the σ-axis and ‘Imag’ is the jω-axis. Notice most of all in Fig. 7.32 that we 
have ‘cut’ the graph along σ = 0; the edge line in the cut corresponds to the Fourier 
transform’s amplification diagram. Compare the edge line with the top diagram in 
Fig. 7.30. 

We will comment more on this 3D graph in a minute, but first we must introduce 
the concept of a system’s ‘poles’ and ‘zeros’. 

The roots of the numerator are the ‘zeros’ and the roots of the denominator are 
the ‘poles’. Our system in Eq. (7.29) has one zero only; s = 0. The poles are 

s2 + 2s + 2 = s2 + 2s + 1 + 1 = (s + 1)2 + 1 = 0 ⇒ s = −1 ± j (7.33) 

In Fig. 7.33, we have marked the poles (‘X’) and zeros (‘O’) in the s plane 
(using the pzplot command in MATLAB). Compare Figs. 7.32 and 7.33; the poles 
in Fig. 7.33 coincide with the ‘poles’ in Fig. 7.32 and the zero in Fig. 7.33 coincides 
with the (0,0)-coordinate where the amplification diagram touches the zero plane. 
Now we understand the names ‘poles’ and ‘zeros’. When you get used to this kind 
of representation of systems, you will be able to immediately identify the pole-zero 
diagram in Fig. 7.33 as a bandpass system.

So far, we have presented three different ways to represent a system: the transfer 
function, the Bode plot, and the pole-zero diagram. They all say the same thing and it 
is important that you learn to transfer smoothly between the different representations. 
In Chap. 9, we will introduce a few more ways to represent systems, but this is all 
we need for now.
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Fig. 7.33 Poles and zeros in 
the s plane

Hopefully, you can also see the benefit of introducing the complex frequency 
variable s; it provides so much more information about the system than when we 
only use the ‘one-dimensional’ frequency variable jω. 

It is time to update our transform map, see Table 7.5. 
From Table 7.5, it is obvious where we must go next; we have a void in our 

transform map. We need to introduce a complex frequency variable for the sampled 
case and find a discrete-time correspondence to the Laplace transform. 

But before we do that, we should look at one more aspect of systems and their 
pole-zero diagram. We do that in the following example. 

Example 7.8 A system’s  impulse response h(t) is the system’s output when the input 
is an impulse, see Fig. 7.34. By ‘impulse’ we mean a Dirac impulse: 

δ(t) = 

⎧ 
⎨ 

⎩ 

0 if  t /= 0
∞ ∫

−∞ 
δ(t)dt  = 1 (7.34)

Table 7.5 The transform map 

Non-complex frequency Complex frequency 

Analog Periodic 
X (k) = 1 T 

T ∫
0 
x(t)e−jkω0t dt X (s) = 

∞ ∫
0 
x(t)e−st  dt  

Transient X (ω) = 
∞ ∫

−∞ 
x(t)e−jωt dt  

Sampled 
X (k) = 

N −1∑
n=0 

xne−jk 2π 
N n 
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Fig. 7.34 The impulse response 

The impulse response is a very important characteristic of a system; the Laplace 
transform of the impulse response is the transfer function: 

H (s) = 
∞ ∫
0 
h(t)e−st  dt  ⇒ h(t) = H−1 (s) (7.35) 

Suppose that the impulse response for some system is h(t) = e−at . What is the 
domain of a that guarantees a stable system? What does that imply for the system’s 
poles? 

Solution Obviously, we must have a > 0 to have a stable system; if a ≤ 0, just a short 
impulse input would generate an output that would never ‘die’. A ‘healthy’ system 
is characterized by ‘limited input’ must generate a ‘limited output’. To see what that 
implies for the system’s poles, we need to find the poles. And to find the poles we 
need the transfer function: 

H (s) = 
∞ ∫
0 
h(t)e−st  dt  = 

∞ ∫
0 
e−at e−st  dt  = 

∞ ∫
0 
e−(a+s)t dt  = −  

1 

a + s
[
e−(a+s)t

]∞ 
0 

= −  
1 

a + s 
(0 − 1) = 1 

s + a 
(7.36) 

The system has no zeros, just one pole in sp = −a. Since we already restricted a 
to be > 0, obviously this pole can only be in the ‘negative’ half of the s plane (the 
left half), see Fig. 7.35.

The conclusion in the previous example is true in general; a system’s poles must 
be in the left half of the s plane to be stable. (There is no such restriction for the 
zeros.) 

7.4.2 The z Transform 

The objective here is to find the Laplace transform correspondence in discrete-time 
space (for a sampled signal). Before we do that, let’s talk about what properties we 
would expect to find in such a transform.
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Fig. 7.35 Poles must be in 
the left half of the s plane

In the Laplace transform, we find the Fourier transform by setting σ = 0, i.e., the 
Fourier transform is along the jω-axis in the s plane. We already know that that can’t 
be true for the discrete-time ‘Laplace transform’, since we have already concluded 
that the discrete Fourier transform of a sampled signal is periodic! Then it can’t be 
on a straight line, because that would require an infinite number of poles and zeros. 
The only thing that would account for the periodicity of the discrete-time Fourier 
transform is if the Fourier transform is on a circle! When we transfer from the s plane 
to the corresponding space for sampled signals, we must make sure that the jω-axis is 
transferred to a circle. How do we do that? That’s easy. We use the following transfer 
trick: 

z = esTS (7.37) 

(TS is the sampling interval time.) We call the new space the ‘z space’ and the 
‘Laplace transform’ for sampled signals is called the z transform. Let’s take a closer 
look at Eq. (7.37): 

z = esTS = e(σ +jω)TS = eσ TS · ejωTS = |z| · ejΩ (7.38) 

where 

|z| = eσ TS (7.39a)

Ω = ωTS (7.39b) 

z is illustrated in Fig. 7.36: eσ TS is the ‘length’ of z and ωTS is the ‘angle’.
To find the Fourier transform in this new space, we set σ = 0, and from Eq. (7.39a) 

we conclude that the Fourier transform is on the unit circle in z space (|z| = 1). This
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Fig. 7.36 The z frequency

will make it periodic with period Ω = 2π. That corresponds to a period in frequency 
equal to f S:

Ω = ωTS = ω 
2π 
ωS 

= 2π 
ω 
ωS 

= 2π 
f 

fS 
(7.40) 

(Ω is the ‘normalized’ frequency.) Hence, the z frequency variable reflects the 
periodicity of the Fourier transform in sampled signals. Let’s find the transforms 
that correspond to the Laplace and Fourier transforms for sampled signals. First, we 
discretize the time in the Laplace transform, and then we substitute esTS for z: 

X(s) = 
∞ ∫
0 
x(t)e−st  dt  = {t → nTs} = 

∞∑

n=0 

xne
−snTS = 

∞∑

n=0 

xn
(
esTS

)−n 

= 
∞∑

n=0 

xnz
−n = X(z) 

(7.41) 

This is the z transform and corresponds to the Laplace transform in continuous 
time. We will take a closer look at it in a minute, but let’s first also derive the Fourier 
transform. Setting σ = 0 and substituting s for jω in Eq. (7.41) give us:  

∞∑

n=0 

xne
−jωnTS = 

∞∑

n=0 

xne
−jΩn = X (Ω) (7.42) 

Equation (7.42) is the Fourier transform for discrete-time signals. (Not to be 
confused with the discrete Fourier transform, the DFT! We’ll talk more about that 
later.) We have requested that it should be periodic with period Ω = 2π. Let’s check 
that:
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X (Ω + 2π) =
∑

xne
−j(Ω+2π)n =

∑
xne

−jΩn · e−j2πn
    

=1 

=
∑

xne
−jΩn = X (Ω) 

So, the Fourier transform is periodic with a period Ω = 2π, which according to 
Eq. (7.40) corresponds to a frequency of f = f S. Figure 7.37 illustrates the relation 
between the s space and the z space. (Notice that ω = 0 and ω = ωS ends up in the 
same place in z space.) 

You might be a little confused right now. We just derived the Fourier transform 
for sampled signals, but didn’t we do that already in Sect. 7.2.3, Eq. (7.18)? No, we 
didn’t actually! Eq. (7.18) is the  discrete Fourier transform. It is a very common 
misunderstanding that the word ‘discrete’ in ‘discrete Fourier transform’ refers to 
discrete time, i.e., to the fact that we have sampled the signal. It does not! Expression 
(7.42) is the  discrete-time Fourier transform. 

Expression (7.18) is the  discrete Fourier transform, i.e., it is a discrete version 
of Eq. (7.42), where ‘discrete’ means that we only calculate Eq. (7.42) for certain 
Ω-values (you could say that we sample X(Ω)). The DFT is an adaption to the ‘real-
world’ situation if you like. Look at Eq. (7.42); the domain of Ω is R; all  Ω-values 
are allowed, and we don’t have time to calculate X(Ω) for that many Ω-values. As 
if that was not enough; the Fourier transform in Eq. (7.42) sums forever! In a ‘real-
world’ application, we must stop sampling at some point (after N samples) and due 
to real-time constraints, we want to calculate X(Ω) for just enough Ω-values; no 
more and no less than necessary. So how many X(Ω)-values are ‘enough’? Well, by 
definition, it is enough when we have enough X(Ω)-values to be able to reproduce xn 
by an inverse Fourier transform, i.e., when X−1(Ω) = xn. And, if we take N samples 
of a signal, we must have (at least) N X(Ω)-values to get the signal back when we 
do an inverse transform. 

If we have N samples and calculate Eq. (7.42) for exactly N Ω-values, the distance 
between Ω-values must be 2π/N and

Fig. 7.37 From s space to z space 
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Fig. 7.38 Poles must be 
within the unit circle

Ω = k · 2π 
N 

(7.43) 

Inserting that into Eq. (7.42) gives us 

X (Ω) = X
(
k · 2π 

N

)
= X (k) = 

N−1∑

n=0 

xne
−jk 2π 

N n (7.44) 

which is exactly the DFT expression in Eq. (7.18). The DFT is a discrete (sampled) 
version of the Fourier transform in Eq. (7.42). That’s why it is ‘discrete’, not because 
it processes discrete signals. 

Finally, let’s also see what happens to our ‘poles restraint’ in Fig. 7.35. For  a  
continuous-time system to be stable, all poles must be in the left half of the s plane, 
i.e., σ < 0. How does that translate to discrete time? Well, inserting σ <0 in  Eq. (7.39a) 
implies that |z| < 1, i.e., in the z plane, all poles must be within the unit circle for 
the system to be stable, see Fig. 7.38. 

Time to update (to complete!) our transform map, see Table 7.6.
Admittedly, there are a lot of transforms, but hopefully, after reading this chapter 

you can see how they fit together and Table 7.6 may help you to ‘organize’ them. We 
will have plenty of reasons to use transforms later in this book. In Fig. 7.39, we have  
summarized the three different transforms for sampled signals and their relationship.

7.5 Solved Problems 

Problem 7.1 Plot the amplitude spectrum of the signal x(t) in Fig.  7.40.

Solution First we need to find the Fourier transform. The signal is periodic with 
period T = 0.1 s. In the time interval 0 … 0.1 s, the signal equation is x(t) = 1 – 10t
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Table 7.6 The complete transform map 

Non-complex frequency Complex frequency 

Analog Periodic 
X(k) = 1 T 

T ∫
0 
x(t)e−jkω0t dt X (s) = 

∞ ∫
0 
x(t)e−st  dt  

Transient X(ω) = 
∞ ∫

−∞ 
x(t)e−jωt dt  

Sampled DFT 
X (k) = 

N −1∑
n=0 

xne−jk 2π 
N n X(z) = 

∞∑
n=0 

xnz−n 

Fourier 
X (Ω) = 

∞∑
n=0 

xne−jΩn

Im(z) 

Re(z) 
1 

j 

The z transform domain is 
the entire z plane. 

Increasing frequency. 

Discrete Fourier transform domain (DFT) 

Discrete-time Fourier transform domain 

Ω 

ΔΩ = 2π/N 

Fig. 7.39 Transform domains for sampled signals

Fig. 7.40 A sawtooth signal

= 1 –  t/T. The Fourier transform is
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X (k) = 
1 

T 

T ∫
0

(
1 − 

1 

T 
t

)
· e−jkω0t dt  

= 
1 

T

 
− 

1 

jkω0

[(
1 − 

1 

T 
t

)
· e−jkω0t

]T 

0 

− 1 

jkω0T 

T ∫
0 
e−jkω0t dt

 

= 
1 

T

 
1 

jkω0 
+ 1 

j2 k2ω2 
0T

[
e−jkω0t

]T 
0

 
= 

1 

T 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

1 

jkω0 
− 

1 

k2ω2 
0T 

⎛ 

⎝e−jk2π − 1    
=1 

⎞ 

⎠

    
=0 if  k /=0 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

= 1 

jk2π 
k /= 0 

We need to treat the case k = 0, separately. Since k = 0 represents the DC 
component in the signal, we can easily see in Fig. 7.40 that X(0) must be = 0.5. But 
let’s calculate it anyway: 

X (0) = 
1 

T 

T ∫
0

(
1 − 

1 

T 
t

)
dt  = 

1 

T

[
t − 

1 

2T 
t2
]T 

0 

= 
1 

T

(
T − 

T 

2

)
= 

1 

2 

Hence: 

|X (k)| = 

⎧ 
⎨ 

⎩ 

1 
2 k = 0 

1 
k2π k /= 0 

Figure 7.41 illustrates the amplitude spectrum. 

Problem 7.2 Prove that the signal x(t – t0) has the same amplitude spectrum as the 
signal x(t). 

Solution To prove this, we do a substitution: τ = t – t0. The Fourier transform of 
x(t – t0) is

Fig. 7.41 Amplitude spectrum of sawtooth 
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∫ x(t − t0)e−jωt dt  = ∫ x(τ )e−jω(τ +t0) dτ = ∫ x(τ )e−jωτ · e−jωt0 dτ 
= e−jωt0 ∫ x(τ )e−jωτ dτ = e−jωt0 X (ω) = e−jωt0 |X (ω)| · e−jϕ(ω) 

= |X(ω)| · e−j(ϕ(ω)+ωt0) 

A time shift only adds a phase angle ωt0 to the phase diagram. The amplitude 
spectrum is unaffected by time shifts in the signal. 

Problem 7.3 How does the bandwidth of the signal in Example 7.2 depend on the 
pulse width? 

Solution We set the pulse width to a (instead of 1). According to the previous 
example, we can shift the pulse anywhere we want to, it doesn’t affect the amplitude 
spectrum. Hence, we assume it is between −a/2 and a/2: 

a/2 ∫
−a/2 

e−jωt dt  = −  
1 

jω

[
e−jωt

]a/2 

−a/2 = −  
2a 

ωa 
· 1 
2j

(
e−jωa/2 − ejωa/2

)

= a · sin ωa/2 

ωa/2 
= a · sinc ωa 

2 
⇒ |X (ω)| = a ·

|||sinc 
ωa 

2

|||

This expression is plotted in Fig. 7.42 and it is obvious that the bandwidth increases 
when the pulse width decreases. This is true in general; ‘short in time, wide in 
frequency’ (and vice versa). 

Problem 7.4 Some FFT software produced the following output for a 16-sample 
input: 

24 0 0 − 5 + 2j 0 30 + 18j  0 0 0 0 0 30  − 18j 0 − 5 − 2j 0 0 
The 16 samples were sampled at 100 kS/s. Write down an expression for the analog 
signal that was sampled. (No aliasing occurred.) 

Solution We have X(0) = 24, hence a0 = 24/16 = 1.5. X(3) = −5 + 2j and X(5) = 
30 + 18j. Use Eq. (7.7) to find the corresponding amplitudes and phase angles (and 
divide the amplitudes by N = 16):

Fig. 7.42 The bandwidth increases when the pulse width decreases 
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X(3) = −5 + 2j = 5.38ej158.2
◦ ⇒ a3 = 2 · 5.38 · 1 

16 
= 0.67 ϕ3 = 158.2◦ 

X(5) = 30 + 18j = 35.98ej31.0
◦ ⇒ a5 = 2 · 35.98 · 1 

16 
= 4.50 ϕ5 = 31.0◦ 

Frequencies are 

k · fS 
N 

= k · 100 
16 

kHz = k · 6.25 kHz ⇒ f3 = 3 · 6.25 = 18.75 kHz, f5 = 31.25 kHz 

x(t) = 1.50 + 0.67 cos(2π18750t + 158.2◦) + 4.50 cos(2π31250t + 31◦) V 

Problem 7.5 If you sample the signal x(t) = 10 sin(2π200000t − 45◦), with a 
sampling rate of 75 kS/s, what frequency would you see? 

Solution Signal frequency is 200 kHz which is > f S/2 = 37.5 kHz, and there will 
be aliasing. We need to find the aliasing frequency that ends up in the ‘observa-
tion’ interval 0 … 37.5 kHz, because that is the frequency we will ‘see’. First, we 
subtract 75 from 200 repeatedly: 200, 125, 50, −25, −100… None of these falls 
into the observation area. Next, add 75 repeatedly to −200: −125, −50, 25, 100, …. 
Obviously, 25 kHz is the aliasing frequency that ends up in our observation interval. 
Answer: We will see a frequency of 25 kHz. 

Problem 7.6 If x(t) has the Laplace transform X(s), what is the Laplace transform 
of x’(t)? 

Solution Integrating by parts: 

∞ ∫
0 
x '(t)e−st  dt  = [

x(t)e−st
]∞ 
0 + s 

∞ ∫
0 
x(t)e−st  dt  = 0 − x(0) + sX  (s) 

= sX  (s) − x(0) 

Problem 7.7 If x(t) has the Laplace transform X(s), what is the Laplace transform 
of the primitive function of x(t)? 

Solution Setting y(t) = 
t ∫
0 
x(τ )dτ , then y’(t) = x(t) and y(0) = 0. According to 

Example 7.6, we have that the Laplace transform of y’(t) is  

L(y'(t)) = sY (s) − y(0) = sY (s) ⇒ Y (s) = 
L(y'(t)) 

s
= 

L(x(t)) 
s 

= 
X (s) 
s

= 
1 

s 
X (s) 

Problem 7.8 What is the Laplace transform of a ‘step function’, see Fig. 7.43.

Solution 
∞ ∫
0 
1 · e−st dt  = − 1 

s

[
e−st

]∞ 
0 = − 1 

s (0 − 1) = 1 s .
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Fig. 7.43 A ‘step function’ 
(sometimes called a 
‘Heaviside’ function)

Problem 7.9 What is the Laplace transform of x(t) = e−at? (x(t) = 0 for  t < 0.)  

Solution
 ∞ 
0 e

−at · e−st dt  =  ∞ 
0 e

−(s+a)t dt  = −  1 s+a

[
e−(s+a)t

]∞ 
0 = 1 

s+a . 

Problem 7.10 If the z transform of x(n) is  X(z), then what is the z transform of x(n 
– n0)? 

Solution Inserting x(n – n0) into Eq. (7.41) gives us 

∞∑

n=0 

xn−n0 z
−n =

 
m = n − n0 
n = m + n0

 
= 

∞∑

m=−n0 

xmz
−m−n0 = {assuming xn = 0 if  n < 0} 

= 
∞∑

m=0 

xmz
−m z−n0 = X (z) · z−n0 

Problem 7.11 If x(t) has the Laplace transform X(s), what is the Laplace transform 
of the delayed signal x(t – t0)? 

Solution Substituting τ for t – t0 and that x(t) = 0 for  t < 0:  

L(x(t − t0)) = 
∞ ∫
0 
x(t − t0)e−st  dt  = 

⎧ 
⎨ 

⎩ 

τ = t − t0 
dτ = dt  
t = τ + t0 

⎫ 
⎬ 

⎭ = 
∞ ∫
−t0 

x(τ )e−s(τ +t0) dτ 

= e−st0 
∞ ∫
0 
x(τ )e−sτ dτ = e−st0 X (s) 

If x(t) has the Laplace transform X(s), then x(t – t0) has the Laplace transform 
e−st0 X (s).
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Chapter 8 
Spectrum Analyzers 

Abstract Spectrum analyzers are one of the most common instruments used in a 
measurement laboratory (often integrated into the oscilloscope) and it is an imperative 
skill of a scientist to be able to handle a spectrum analyzer and to interpret its output. 
A spectrum analyzer is the most basic application of transform theory, and this 
chapter relies heavily on the previous chapter. Spectrum analyzers can be analog (non-
sampling) or digital (sampling). Both kinds of analyzers are treated in this chapter, but 
the focus is on sampling systems based on the fast Fourier transform. Fundamental 
spectrum concepts like spectral leakage and windows, resolution bandwidth, and 
heterodyne analyzers are highlighted and illustrated by examples. 

8.1 Introduction 

In general, a ‘spectrum analyzer’ produces the Fourier transform of a signal. However, 
in most situations, it is understood that only the magnitude (|X (ω)|) of the Fourier 
transform is of interest. Some spectrum analyzers produce the phase diagram too, 
but here we will consider spectrum analyzers that produce the magnitude diagram 
only. 

A spectrum analyzer can be ‘digital’ or ‘analog’. We will treat ‘analog’ spectrum 
analyzers in Sect. 8.4. Digital spectrum analyzers sample the signal and calculate 
the discrete Fourier transform (Expression (7.18)), but of course, they use the FFT 
algorithm to speed up the math (see Sect. 7.2). We know from the previous chapter 
that Fourier transform spectra can be corrupted by aliasing, so here we will assume 
that the signal is sampled with respect to the sampling theorem. Instead, we will 
concentrate on other aspects of the Fourier transform spectrum. 

Our starting point is Expression (7.20), that specifies the resolution of the FFT 
spectrum: 

f = k · fS 
N 

= k · ∆ f (8.1) 

where ∆f is the resolution of the FFT spectrum (|X (k)|).
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Consider the analog signal in Fig. 8.1. To produce the FFT, we must sample it, 
and we must stop sampling it at some point; we take N samples of the signal at a rate 
of f S. If we would sample the signal in the interval indicated in Fig. 8.1, the signal’s 
period would fit exactly five times in this interval, and that would correspond to a 
‘frequency’ of k = 5 in Eq.  (8.1). The FFT spectrum would produce a single peak 
for k = 5, see Fig. 8.2; k represents the number of periods of the signal that fits in 
the sampling interval. 

The spectrum in Fig. 8.2 looks nice and clean, but if you think about it, we were 
quite lucky in our sampling; we sampled exactly five periods of the signal! What are 
the odds of that in a ‘real’ situation? In a real situation, we would not know the signal 
frequency and it is more likely to look as in Fig. 8.3.

In Fig. 8.3, the sampling interval is not an exact multiple of the signal’s frequency; 
it corresponds to k ≈ 4.8. But the FFT only outputs frequencies for integer values 
of k. So, in what FFT channel will we see this signal? Well, the answer is that in 
this case, which is the most common case, the signal will be smeared out over all 
frequencies (over all k values), see Fig. 8.4. However, the k frequency closest to 4.8

Fig. 8.1 Sampling a sinusoidal signal 

Fig. 8.2 The FFT spectrum 
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Fig. 8.3 ‘Real’ case: The sampling interval is not an exact multiple of the signal’s period

Fig. 8.4 Spectral leakage 

(= 5) will have the largest value and the other frequencies’ magnitudes will drop off 
with the distance to 4.8, see Fig. 8.4. 

This phenomenon, the ‘smearing out’ of the signal’s energy over a wide range of 
frequencies in the FFT spectrum, is called ‘spectral leakage’. If we only learn that 
the k frequency represents a signal period that fits k times in the sampling interval, 
then we could (erroneously) conclude from the spectrum in Fig. 8.4 that the original 
signal consists of many sinusoidal signals with a wide range of frequencies, so it is 
important to understand that multiple peaks in an FFT spectrum can be (and often 
are) caused by spectral leakage. 

Apart from introducing an uncertainty in the signal’s frequency, the biggest disad-
vantage of leakage is that the frequency peak is ‘broadened’, which reduces our ability 
to resolve signals with close frequencies in the spectrum. If that is the problem, then 
we need to reduce the leakage.
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8.2 Windows 

The reason for the spectral leakage is obvious from Fig. 8.3; we don’t sample an 
exact multiple of the signal’s period. Remember from Chap. 7, the DFT expression 
assumes that we have sampled exactly one period of a periodic signal. If we take 
the sampled interval in Fig. 8.3 and repeat it, we get the signal that the DFT really 
represents, see Fig. 8.5. 

The periodic signal will have singularities, and then it is no wonder that the 
FFT spectrum will be ‘broadened’. The reason for the spectrum broadening is the 
discontinuities in the periodic signal in Fig. 8.5; if we want to remedy the spectral 
broadening, we must remedy the discontinuities. 

We remedy the discontinuities by applying a ‘window’ to the sampled data. A 
window is a function that is zero (or almost) at both ends. There are a lot of window 
functions and we have plotted four of the most common ones in Fig. 8.6. 

That means that if we multiply our sampled data with a window function, it will 
be forced to zero at both ends and that will cancel the discontinuities. In Fig. 8.7, we  
have multiplied our samples with a Hanning window function, and it is obvious that 
the resulting periodic function is now a continuous function with no singularities.

Admittedly, the window distorts the signal, but our main concern here was spectral 
resolution, not amplitude accuracy. In Fig. 8.8, we have plotted the new FFT spectrum 
after the windowing.

Fig. 8.5 The periodic signal has a singularity 

Fig. 8.6 Some window functions 
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Fig. 8.7 Applying a Hanning window: The periodic signal has no discontinuities

Fig. 8.8 The FFT spectrum after a Hanning window has been applied to the signal 

If we compare the spectrum in Fig. 8.8 with the spectrum in Fig. 8.4, we can see 
that the spectrum has been narrowed, it is spread out over three k-numbers only (in 
Fig. 8.4 it is spread over 8–10 k-numbers). 

Modern oscilloscopes that have an FFT analyzer also have a set of window func-
tions that you can choose from. Different windows work best for different situations, 
so you just try them all and see which one works best for your signal. Windows are 
particularly useful when you need to resolve spectrum peaks where a ‘small’ peak 
is drowned in the leakage from a ‘big’ peak. This is illustrated in the next example. 

Example 8.1 Figure 8.9 illustrates the amplitude spectrum of the signal x(t) = 
10 sin 100t + 0.5 sin 104t . (  f S = 100 S/s, N = 501.)

As we can see in Fig. 8.9, the 104 rad/s signal is hard to discern; it drowns in the 
leakage from the 100 rad/s signal. Try resolving the peaks by applying a window to 
the sampled data. 

Solution Fig. 8.10 illustrates what the spectrum looks like after a Bartlett window 
has been applied to the data. Comparing it with Fig. 8.9, we can see that it is now 
easier to discern the small peak.
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Fig. 8.9 The ‘small’ peak drowns in the ‘big’ peak’s leakage

Fig. 8.10 Spectral resolution has been improved by a Bartlett window 

8.3 Resolution Bandwidth 

8.3.1 Quantifying the Leakage 

It is possible to quantify (and predict) the leakage exactly, and it is not that hard 
either. To explain how to do that, we need some numbers to work with. Let’s assume 
that we take 128 samples of a sine signal with frequency 336 Hz at a rate of 10 kS/s. 
The total sampling time is N ·TS = 128/10 k = 12.8 ms. The signal period is 1/336 
= 2.97 ms, and hence we expect a peak in the DFT spectrum at 

k = 
12.8 

2.97 
= 4.3 (8.2)  

Since the DFT spectrum only provides values for integer numbers of k, there will 
be leakage; the biggest peak will be at k = 4, the second biggest will be at k = 5, 
etc., see Fig. 8.11.
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Fig. 8.11 Estimated spectrum: We will figure out the relative sizes of the peaks in the leakage 

Our objective here is to calculate the relative heights of the peaks in Fig. 8.11. 
It is not that hard once you understand how to model each ‘channel’ (= each k). 
Admittedly, we have not covered filters yet, so you might need to read this section 
again after you have read Chapter 9, but we think this is understandable even without 
the filter theory in Chapter 9. 

First, we will refer to each k frequency in the DFT spectrum as a ‘channel’, and 
we model each channel as a narrow resonance filter with center frequency ∆f = 
k·f S. However, this resonance filter is not infinitely narrow; the frequency response 
function for each channel is a sinc function, see Fig. 8.12. 

Notice in Fig. 8.12 that the period of the sinc function is 2π; the sinc function’s 
zeros coincide exactly with all the other channels’ center frequencies. If the signal 
frequency had been exactly k = 4, the channel 4 peak would have had height 1 
(normalized), but since it is 0.3π to the right of channel 4, the channel 4 height will 
be 

Channel 4: 
sin 0.3π 
0.3π 

= 0.86

Fig. 8.12 The relative peak height in channel 4 will be 0.86 
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Figure 8.13 illustrates the resonance filter over channel 5, and since the frequency 
k = 4.3 is 0.7π away from the center of channel 5, the peak height in channel 5 will 
be 

Channel 5: 
sin 0.7π 
0.7π 

= 0.37 

We center a sinc function over each channel and calculate the peak height from 
the ‘real’ signal’s distance to the channel center. 

And once you accept the ‘sinc resonance filter’ model for each DFT channel, there 
is an easier way to do this; if you center a sinc function over the ‘real’ frequency, 
you can read the relative height in each channel from the sinc function’s value over 
the channel, see Fig. 8.14. Compare Fig. 8.14 with Fig. 8.15 where the real DFT 
spectrum has been plotted. 

Fig. 8.13 The relative peak in channel 5 will be 0.37 

Fig. 8.14 Center the sinc function over k = 4.3
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Fig. 8.15 The real DFT spectrum (compare with Fig. 8.14) 

8.3.2 Resolution Bandwidth 

Equation (8.1) defines the resolution ∆f in the FFT spectrum. However, ∆f is not 
the most common number used to describe the resolution in FFT spectra; the most 
common number is the resolution bandwidth, RBW. The RBW is almost the same 
as ∆f but there is a subtle difference that we think is important to understand, and 
the RBW has an advantage over ∆f ; RBW is adjusted for different windows. 

In Chap. 9, we will learn that a filter’s bandwidth is defined as the ‘3 dB’ limit, i.e., 
the frequency where the gain has decreased by –3 dB (= 1/ 

√
2 ≈ 0.707). Translated 

to our sinc resonance filters in the FFT spectrum, the bandwidth will be the distance 
between the upper and lower limits where the gain has decreased by –3 dB, see 
Fig. 8.16. 

To find the exact bandwidth, we must solve the equation sin x/x = 1/ 
√
2 which 

has the solutions x = ±0.44π, which means that the bandwidth is 2 · 0.44π ≈ 0.9π 
or 0.9 · ∆ f (since the distance between each channel is π in terms of ‘sinc angle’ 
and ∆f in terms of ‘Hz’).

Fig. 8.16 Defining the resolution bandwidth 
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So, RBW = 0.9 · ∆ f which indicates that RBW and ∆f are almost the same 
and it shouldn’t really matter which one we use, but it does, because RBW can be 
compensated for the use of different windows. The ‘frequency space’ consequence 
of applying a window is that we change the resolution bandwidth in each channel. 
The general expression for the resolution bandwidth is 

RBW = w · ∆ f (8.3) 

where w is a constant that depends on what window we use. If we have no window (= 
‘rectangular’ window), then w= 0.9, but if we have a Hamming window, for example, 
then w = 1.30 and for a Hanning window w = 1.44. That means that applying a 
window increases the RBW which would indicate an impairment in resolution, but 
because the leakage is reduced, the overall resolution could still improve. However, 
if you don’t suffer from leakage, you should not use a window because it deteriorates 
the resolution bandwidth. 

8.4 Heterodyne Analyzers 

It is not necessary to sample the signal to find it’s amplitude spectrum, it is quite 
possible to design analog (non-sampling) hardware that produces |X (ω)|. That 
hardware is based on the following trigonometric identity: 

A cos α · B cos β = 
AB  

2 
(cos(α + β) + cos(α − β)) (8.4) 

If we multiply two trigonometric functions, we get two new ones: One with 
the ‘sum-of-angles’ and one with the ‘difference-of-angles’. That implies that if 
we multiply two sinusoidal signals with different frequencies, we will get two new 
sinusoidal signals, one with the sum frequency and one with the difference frequency, 
see Fig. 8.17. 

Multiplying two signals is sometimes called ‘mixing’, and there are ready-made 
components that do that, for example, the AD633 circuit from Analog Devices. As a 
matter of fact, we only have to add a very narrow resonance filter and an AC voltage 
meter to the circuit in Fig. 8.17 to get a spectrum analyzer.

Fig. 8.17 ‘Mixing’ two signals produces the sum and difference frequencies 
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Fig. 8.18 An analog spectrum analyzer (a ‘heterodyne’ analyzer) 

In Fig. 8.18, x(t) is the signal we want to analyze (i.e., find the magnitude of its 
Fourier transform) and ‘lo’ is short for ‘local oscillator’. In Fig. 8.18, the signal y(t) 
is 

y(t) = 
2 · A 
2 

(cos(ωlo + ωx)t + cos(ωlo − ωx)t) = 

A cos(ωlo + ωx)t + A cos(ωlo − ωx)t 
(8.5) 

Next, we sweep the local oscillator’s frequency; we start on ω0 and sweep contin-
uously up to ω0 + ωbw. (‘bw’ is short for ‘bandwidth’.) Also remember that the 
narrow resonance filter only allows signals with the exact frequency ω0 to pass. That 
means that u(t) /= 0 only if ωlo + ωx = ω0, or if  ωlo − ωx = ω0, i.e., if 

Sum term: ωlo + ωx = ω0 ⇒ ωlo = ω0 − ωx (8.6a) 

Difference term: ωlo − ωx = ω0 ⇒ ωlo = ω0 + ωx (8.6b) 

Since the local oscillator’s frequency starts on ω0 (and sweeps upward), the condi-
tion ωlo = ω0 − ωx will never happen; the resonance filter will always cancel the 
sum signal in Eq. (8.5). 

The difference term, however, will pass the resonance filter if only ωlo = ω0 

+ ωx < ω0 + ωbw, i.e., if ωx < ωbw; the signal x(t) must be within the analyzer’s 
bandwidth. When ωlo = ω0 + ωx, then u(t) = Acosω0t, and the ACV meter will 
register its amplitude (or rms value). For all other frequencies, the ACV will read 
0 V.  

So, we sweep the local oscillator’s frequency from ω0 to ω0 + ωbw and read the 
ACV. Figure 8.19 illustrates the ACV reading as a function of the local oscillator’s 
frequency.

All we need to do is to rescale the frequency axis and we have the magnitude of the 
Fourier transform of x(t). (Even better since we don’t have the ½ factor on the vertical 
scale as the Fourier transform does.) This kind of frequency analyzers are called 
heterodyne analyzers and more expensive oscilloscopes have built-in heterodyne 
analyzers.
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Fig. 8.19 The ACV reading as a function of the local oscillator frequency

The advantage of heterodyne analyzers is that they don’t sample, so they are not 
limited by the sampling theorem (no aliasing); heterodyne analyzers typically have 
much higher bandwidths than FFT analyzers. 

8.5 Solved Problems 

Problem 8.1a A 500 Hz sine signal is sampled 256 times at a sampling rate of 5 kS/ 
s. Find the relative sizes of the six largest peaks in the FFT spectrum (for k < 128). 

Problem 8.1b How would the spectrum change if the sampling rate is changed to 
5.12 kS/s? 

Solution The frequency resolution is ∆f = 5000/256 = 19.53 Hz, and the 500 Hz 
sine corresponds to a frequency k = 500/19.53 = 25.6. 

That means that the ‘biggest’ peaks will be 26, 25, 27, 24, 28, and 23, in that 
order. The ‘26 peak’ is only 0.4π from the sinc maximum, so its relative size will be 

Channel 26: 
sin 0.4π 
0.4π 

= 0.76 

Channel 25 is 0.6π from the sinc maximum, and for the following channels we 
add one π for each channel: 

Channel 25: 
sin 0.6π 
0.6π 

= 0.50 Channel 27: 
sin 1.4π 
1.4π 

= 0.22 

Channel 24: 
sin 1.6π 
1.6π 

= 0.19 Channel 28: 
sin 2.4π 
2.4π 

= 0.13 

Channel 23: 
sin 2.6π 
2.6π 

= 0.12
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In Fig. 8.20, we have plotted these six peaks together with the sinc function and 
in Fig. 8.21, we have plotted the real FFT spectrum for the sampled 500 Hz signal. 
If we compare Figs. 8.20 and 8.21, we can see that our prediction in Fig. 8.20 is 
correct. 

If we change the sampling rate to 5.12 kS/s, then∆f = 5120/256 = 20 Hz exactly, 
and the 500 Hz sine corresponds to k = 500/20 = 25. That would give a single peak 
at k = 25 in the FFT spectrum, see Fig. 8.22.

Problem 8.2 Figure 8.23 illustrates the FFT spectrum of some unknown signal that 
was sampled at 10 kS/s and 100 samples were taken. What can you say about the 
signal?

Solution The spectrum is perfectly symmetric around k = 20.5; the signal that was 
sampled was a sinusoidal signal with frequency f = 20.5·∆f = 20.5·10,000/100 = 
2050 Hz.

Fig. 8.20 Predicting the six biggest peaks in the FFT spectrum 

Fig. 8.21 The real spectrum (using the fft command in MATLAB) 
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Fig. 8.22 FFT spectrum if the sampling rate is changed to 5.12 kS/s

Fig. 8.23 FFT spectrum of unknown signal

Problem 8.3 What is the resolution bandwidth of the FFT analyzer in Problem 8.2? 
What would the resolution bandwidth be if we applied a Hamming window to the 
data? 

Solution ∆f = 10,000/100 = 100 Hz, so RBW = 0.9·100 = 90 Hz. If we apply a 
Hamming window, RBW is increased by a factor of 1.30: RBW = 90·1.30 = 117 Hz.



Chapter 9 
Analog Filters 

Abstract A filter is used to discriminate unwanted signals in a complex measure-
ment signal. This chapter first introduces passive filters (RCL filters) of first and 
second order. Next, biquad filters, switched capacitor filters, and state-variable 
filters are introduced. The quality factor is defined (the Q factor) and different filter 
characteristics and filter models (Butterworth, Chebyshev, and elliptic models) are 
illustrated. Analog filters can be implemented using so-called Sallen–Key links. 
Section 9.6 demonstrates how a given filter characteristic can be transformed into 
any other filter characteristic. To process the signal in time space, it is necessary to 
introduce a mathematical operation called convolution (Sect. 9.7). Like transforms, 
convolution is usually considered to be hard to grasp by students, but this chapter 
emphasizes the understanding of convolution by using graphical examples. 

9.1 Introduction 

By ‘analog’ filters we mean filters that can be implemented in hardware, using analog 
electronics. (We will treat ‘digital’ filters in Chap. 10.) Filter theory depends heavily 
on the transform theory that we presented in Chap. 7, like Bode plots (Sect. 7.3) and 
pole-zero diagrams. 

9.2 First-Order Filters 

9.2.1 Passive Filters 

A first-order passive filter is a simple voltage division between two impedances, see 
Fig. 9.1. 

The impedances are either real or imaginary (they could be complex, but we limit 
the presentation here to non-complex impedances). The transfer function is simple 
enough:
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y(t) = Z2 
Z1 + Z2 

x(t) ⇒ Y (ω) = 
Z2 

Z1 + Z2 
X (ω) 

⇒ H (ω) = 
Y (ω) 
X (ω) 

= Z2 
Z1 + Z2 

(9.1) 

In Example 7.7, we illustrated the case where Z1 = R and Z2 = 1/jωC: 

H (ω) = 1 

1 + jωRC 
⇒ H (s) = 1 

1 + sRC 
(9.2) 

This is a lowpass system with a pole in s = −1/RC. By replacing Z1 and Z2 in 
Eq. (9.1) with other combinations of R, jωL or 1/jωC, we can get highpass filters too. 

The filter in Fig. 9.1 has a disadvantage; if it is cascaded with a second filter 
module, its output impedance will be connected in parallel with the next stage’s 
input impedance and that might change the characteristics of the filter. This is easily 
avoided by inserting an op amp as a voltage follower, see Fig. 9.2, and once we 
have an op amp, we might as well take advantage of it and use it as a non-inverting 
amplifier to add an arbitrary amplification, see Fig. 9.3. Filters with op amps are 
called ‘active’ filters. 

Fig. 9.1 First-order filter 

Fig. 9.2 First-order filter 
with voltage follower 

Fig. 9.3 First-order filter 
with amplification (1 + R2/ 
R1)
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9.3 Second-Order Filters 

9.3.1 ‘Biquad’ 

The general expression for a second-order filter is 

H (s) = 
N (s) 
D(s) 

= 
b2s2 + b1s + b0 
s2 + a1s + a0 

(9.3) 

We know from Sect. 7.4 that the roots of the denominator polynomial represent 
the system’s singular points (the ‘poles’) and they determine the system’s resonance 
frequencies. If the filter in Eq. (9.3) has the poles s = −σ p ± jωp (remember that the 
poles must be in the left half-plane in s space), then the denominator polynomial is 

D(s) = (
s − sp1

)(
s − sp2

) = (
s + σp − jωp

)(
s + σp + jωp

)

= s2 + 2σps + σ 2 p + ω2 
p (9.4) 

/
σ 2 p + ω2 

p = ω0 is of course the poles’ distance to the origin, and we define the 

system’s ‘quality factor’ as 

Q = 
ω0 

2 · ||σp

|
| ⇒ ||σp

|| = 
ω0 

2Q 
(9.5) 

Hence, Q is the poles’ distance from the origin divided by their distance from the 
jω-axis, see Fig. 9.4.

This means that we can write the denominator polynomial in (9.3) as  

D(s) = s2 + 
ω0 

Q 
s + ω2 

0 (9.6) 

Inserting that into Eq. (9.3) gives us 

H (s) = 
N (s) 
D(s) 

= 
b2s2 + b1s + b0 
s2 + ω0 

Q s + ω2 
0 

(9.7) 

In Eq. (9.7), we have a second-order polynomial in both the numerator and 
the denominator. Since we have two quadratic polynomials, the filter is sometimes 
referred to as ‘biquadratic’ or just ‘biquad’. It is the denominator polynomial (the 
poles) that determines the filter’s resonance frequency (ω0), but it is the numerator 
polynomial that determines the filter type (lowpass, highpass, bandpass, etc.). That 
gives us three important special cases.
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Fig. 9.4 Defining Q and ω0

9.3.2 Lowpass: b2 = b1 = 0 

With b2 = b1 = 0 we get the transfer function 

H (s) = b0 
s2 + ω0 

Q s + ω2 
0 

⇒ |H (ω)| = |b0|/(
ω0 
Q ω

)2 + (
ω2 
0 − ω2

)2 
(9.8) 

In Fig. 9.5, we have plotted |H (ω)| for b0 = ω0 = 1 for different quality factors. 
Notice first the lowpass characteristics; the amplification is=1 for low frequencies 

and =0 for high frequencies. Another thing to notice is the ‘resonance’ at ω = 1 
(= ω0) and that the peak gets higher and sharper with increasing Q. This is easy

Fig. 9.5 Amplification versus frequency for different quality factors 
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Fig. 9.6 Amplification diagram for bandpass filter 

to understand from Fig. 9.4; when Q increases, the pole’s distance to the jω-axis 
decreases and the closer the pole is to the jω-axis, the higher and sharper is the 
resonance peak (see also Fig. 7.32). The special case where Q = 0.707 (1/ 

√
2) 

generates no ‘overshoot’ and the system response is ‘flat’ (in the ‘passband’; we will 
later refer to this case as the ‘Butterworth filter’). For Q > 0.707, we have overshoots 
(the system is ‘underdamped’), for Q < 0.707 the system is ‘overdamped’ and the 
system is ‘critically damped’ if Q = 0.707. (See also Sect. 18.5.2 about step response 
of second-order systems.) 

9.3.3 Bandpass: b2 = b0 = 0 

With b2 = b0 = 0 we get the transfer function 

H (s) = b1s 

s2 + ω0 
Q s + ω2 

0 

⇒ |H (ω)| = |b1ω|
/(

ω0 
Q ω

)2 + (
ω2 
0 − ω2

)2 
(9.9) 

In Fig. 9.6, we have plotted |H (ω)| for b1 = ω0 = 1. Notice the bandpass char-
acteristics; the amplification diagram goes to zero at both ends. The resonance peak 
is still at ω = ω0 = 1 and the peak gets higher and sharper with increasing Q. In a  
lowpass filter, you try to keep the peak as low as possible, but in a resonance filter, 
the sharpness of the peak is intentional; the sharper the resonance peak is, the more 
selective is the filter.
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Fig. 9.7 Amplification diagram for a second-order highpass filter 

9.3.4 Highpass: b1 = b0 = 0 

With b1 = b0 = 0 we get the transfer function 

H (s) = b2s2 

s2 + ω0 
Q s + ω2 

0 

⇒ |H (ω)| =
||b2ω2

||
/(

ω0 
Q ω

)2 + (
ω2 
0 − ω2

)2 
(9.10a) 

In Fig. 9.7, we have plotted |H (ω)| for b2 = ω0 = 1. 
This is a highpass filter since amplification =0 for low frequencies and =1 for  

high frequencies. 

9.4 Implementations 

There are several different ways to implement analog filters in hardware and we will 
present the most common ones here. 

9.4.1 The Double Integral Method 

If we have a highpass filter as in Eq. (9.10a), then (see Fig. 9.8)

Fig. 9.8 Second-order 
highpass filter 
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H (s) = b2s2 

s2 + ω0 
Q s + ω2 

0 

= 
Y (s) 
X (s) 

(9.10b) 

and s2Y (s) + ω0 
Q sY (s) + ω2 

0Y (s) = b2s2X (s). Next, we rearrange this expression as 
follows: 

Y (s) + 
1 

s 

ω0 

Q 
Y (s) + 

1 

s2 
ω2 
0Y (s) = b2X (s) 

⇒ Y (s) = b2X (s) − 
ω0 

s 

1 

Q 
Y (s) − 

ω2 
0 

s2 
Y (s) (9.11) 

In Problem 7.7, we learned that if the function f (t) has the Laplace transform F(s), 
then the Laplace transform of the integral of f (t) is  F(s)/s. Hence, if we integrate 
the function y(t) using an integrator with time constant 1/ω0 (see Problem 9.1), the 
output is ω0Y (s)/s and if we integrate it again, the output will be ω2 

0Y (s)/s
2. That 

means that we can represent the system in Eq. (9.11) with the block model in Fig. 9.9. 
Next, we rearrange the blocks in Fig. 9.9 as illustrated in Fig. 9.10. The highpass 

output signal is the signal right after the summator in Fig. 9.10. However, since an 
integration corresponds to a division by s in frequency space, the output after the first 
integrator is a bandpass filter (Eq. (9.9)) and the output after the second integrator is 
a lowpass filter (Eq. (9.8)); with a single design we can get three different filters!

The derivatives of a signal are called the ‘state variables’ of the signal and for that 
reason the filter(s) in Fig. 9.10 is called a ‘state-variable’ filter. Figure 9.11 illustrates 
how it is implemented with only three op amps.

This implementation is usually referred to as the ‘KHN biquad’ (from Kerwin– 
Huelsman–Newcomb) and you only need two design equations: 

ω0 = 
1 

RC 

R3 

R2 
= 2Q − 1 (9.12) 

(The R1 resistors’ value doesn’t matter; they are only part of the summation 
circuit.) Another usual name for this filter is ‘UAF’, which stands for Universal 
Active Filter. The UAF42 circuit from Burr-Brown is an example of such a circuit.

Fig. 9.9 Block diagram of Eq. (9.11) 
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Fig. 9.10 Rearranging the blocks; a ‘state-variable’ filter

Fig. 9.11 A state-variable filter can be implemented with only three op amps

Some final comments about the quality factor Q. For a lowpass or a highpass filter, 
the Q number determines the ‘steepness’ of the filter, i.e., the width of the transition 
area from the passband to the stopband. For a bandpass filter, Q determines the 
‘selectiveness’, i.e., how narrow it is: 

Q = 
ω0 

ωu − ωl 
(9.13) 

where ωu and ωl are the ‘3 dB’ frequencies (‘upper’ and ‘lower’, respectively), i.e., 
where the amplification has decreased by 3 dB on either side of the resonance peak. 

9.4.2 The Sallen–Key Link 

The first-order lowpass RC filter is the most basic of all filters (see Example 7.7). By 
adding a voltage follower, it doesn’t impose any load on the next step, and if we are
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adding a voltage follower, we might as well turn that into a non-inverting amplifier; 
that turns our filter into a first-order ‘Sallen–Key’ link, see Fig. 9.12. 

The transfer function is still 1/(1 + jωRC), see Example 7.7, and the cutoff 
frequency (where the amplification is down by 3 dB) is 

|H (ω)| = 1 
√
1 + (ωRC)2 

= 
1 √
2 

⇒ ωc = 1/RC (9.14) 

and the DC amplification can be adjusted arbitrarily with the R1 and R2 resistors (1 
+ R2/R1). We can easily change it into a highpass filter by changing places with R 
and C. 

Figure 9.13 illustrates a second-order lowpass Sallen–Key link. 
The transfer function is (see Problem 9.3): 

H (s) = 1/R1R2C1C2 

s2 + R1+R2 
R1R2C1 

s + 1/R1R2C1C2 
(9.15) 

or, if we set R1 = R2 = R, then 

H (s) = 1/R2C1C2 

s2 + 2 
RC1 

s + 1/R2C1C2 
(9.16) 

Comparing with Eq. (9.7), we can see that 

2 

RC1 
= 

ω0 

Q 
(9.17)

Fig. 9.12 First-order 
Sallen–Key link 

Fig. 9.13 Second-order 
Sallen–Key link 
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and 

ω2 
0 =

1 

R2C1C2 
(9.18) 

Using Eqs. (9.17) and (9.18), we can implement any ω0 and Q values we want to, 
by selecting the right R, C1 and C2 values. Also, by changing places with resistors 
and capacitors in Fig. 9.13, we get a highpass filter. 

9.4.3 Switched Capacitors 

As we have seen above, both the biquad and the Sallen–Key filters depend on passive 
components like resistors and capacitors. When implemented in integrated circuits, 
silicon area saving is paramount; capacitors don’t require much area, but resistors do. 
For that reason, a technique to implement resistors using a capacitor has been devel-
oped. This technique is called the ‘switched capacitor’ technique and it replaces a 
resistor with a capacitor and two switches (the switches are of course two transistors). 
Figure 9.14 illustrates the switched capacitor resistor. 

The switches are controlled by two clock signals that are 180° out of phase; when 
one switch is closed, the other one is open. The clock signal’s period is T = 1/f 0 and 
the duty cycle is 50%. When switch S1 is closed, the capacitor is charged by U1, and 
when S2 is closed, the capacitor is charged (or discharged) by U2. Figures 9.15 and 
9.16 illustrate the two situations. 

Hence, over one clock period T, the change in charge over the capacitor is ∆Q = 
C(U1 – U2). By definition, current is the change of charge per time unit; the average 
current between the end points during one period is

Fig. 9.14 A switched  
capacitor resistor 

Fig. 9.15 S1 is closed



9.4 Implementations 185

Fig. 9.16 S2 is closed

i = ∆Q 

T 
= 

C(U1 − U2) 
1/f0 

⇒ R = 
U1 − U2 

i
= 

1 

Cf0 
(9.19) 

From Eq. (9.19), we can see that this circuit corresponds to a resistance between 
the end points that depends on the capacitor and the clock frequency. By using 
a switched capacitor as the resistance in a filter design, we can control the filter 
parameters with the clock frequency. MAX7400 is an example of an integrated filter 
that uses switched capacitors. 

9.4.4 More About Passive Filters 

In Fig. 9.1, we only have two impedances, and that limits our range of filters to lowpass 
and highpass filters. If we introduce a third impedance, we can also design bandpass 
and bandstop filters (since they need to be second-order filters), see Fig. 9.17. 

For example, Fig. 9.18 illustrates a bandpass filter. The transfer function is 

H (s) = XL//XC 

R + XL//XC 
= 

sL·1/sC 
sL+1/sC 

R + sL·1/sC 
sL+1/sC 

= sL · 1/sC 
sLR + R/sC + sL · 1/sC 

= sL 

s2LRC + sL + R 
= s/RC 

s2 + s/RC + 1/LC 
(9.20)

And according to Eq. (9.9), this is a bandpass filter with ω0 = 1/ 
√
LC and 

Q = R 
√
C/L. By changing places with R and the LC network in Fig. 9.18, we get a 

bandstop filter.

Fig. 9.17 With three impedances, we can create bandpass and bandstop filters 
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Fig. 9.18 A bandpass filter

9.4.5 Special Cases 

A special case of bandstop filters is the ‘notch’ filter, see Fig. 7.22, that is designed 
to block just one single frequency. For example, in a physics lab, the power line 
frequency, 50 or 60 Hz, is omnipresent in measurements and it can be blocked with 
a passive second-order filter called the ‘Twin-T’ notch filter, see Fig. 9.19. This filter 
has a zero on the imaginary axis at ω = 1/RC. 

9.5 Filter Models 

Equation (9.3) is the general expression for a second-order filter, and it can certainly 
be extended to an arbitrary order filter. The filter coefficients (the ai and bi polynomial 
coefficients) are optimized for certain conditions: 

In a ‘Butterworth’ filter, the amplification diagram (in the Bode plot) is as ‘flat’ as possible 
in the passband (no ‘ripple’). 

Chebyshev and Cauer filters are more selective (the transition area from passband to stopband 
is narrower) at the expense of some passband ripple. 

The Bessel filter is not that selective but has the advantage of a very linear phase diagram 
(which is what we need to minimize the signal distortion, see Sect. 7.3.1). 

We will give a brief presentation of the Butterworth, Chebyshev, and Cauer filters 
here. In the following presentation, we will only treat the lowpass filter types; in 
Sect. 9.6, we will show you how to transform a lowpass filter to any other filter type.

Fig. 9.19 The Twin-T notch 
filter 
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9.5.1 Butterworth 

A Butterworth filter is an ‘all-pole’ filter, i.e., no zeros, and all the poles are on a 
perfect circle (semi-circle) in the s plane, see Fig. 9.20. If the filter order is odd, there 
is a pole on the negative σ-axis and the angle between the poles is π/n, where n is the 
filter order. In a Butterworth filter, the numerator polynomial N(s) = 1. Comparing 
Fig. 9.20 with Fig. 9.4, we can see that

||σp

|| = ω0cosπ/4 = ω0/ 
√
2. Equation (9.5) 

gives us Butterworth filter’s quality factor: 

Q = ω0 

2 · ω0/ 
√
2 

= 
1 √
2 

≈ 0.707 (9.21) 

Comparing this with Fig. 9.5, we can see that this represents an amplification 
diagram with no overshoot (‘critically’ damped); the amplification diagram is ‘maxi-
mally flat’ in the passband, which is the hallmark of all Butterworth filters. This is a 
consequence of the fact that the poles are on a circle and the circle radius determines 
the resonance frequency ω0. 

In Table 9.1, you can see the denominator polynomials for all Butterworth filters 
up to the seventh order for ω0 = 1. (In Sect. 9.6 we will show you how to transfer 
them to other ω0s.)

Figure 9.21 illustrates the amplification diagram for Butterworth filters of different 
orders; the higher the order, the more selective is the filter. Notice in Fig. 9.21 that 
the amplification diagrams have no ‘ripple’; it declines monotonically.

Notice in Table  9.1 that higher order filters are written as a product of first- and 
second-order filters; they are typically implemented by cascading first- and second-
order filters.

(a) (b) 

Fig. 9.20 a Second-order Butterworth filter. b Fifth-order Butterworth 
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Table 9.1 Butterworth filter polynomials 

Order Polynomial 

1 s + 1 
2 s2 + 1.41s + 1 
3 (s + 1)

(
s2 + s + 1

)

4
(
s2 + 0.765s + 1

)(
s2 + 1.848s + 1

)

5 (s + 1)
(
s2 + 0.618s + 1

)(
s2 + 1.618s + 1

)

6
(
s2 + 0.518s + 1

)(
s2 + 1.414s + 1

)(
s2 + 1.932s + 1

)

7 (s + 1)
(
s2 + 0.444s + 1

)(
s2 + 1.246s + 1

)(
s2 + 1.802s + 1

)

Fig. 9.21 Amplification diagram for Butterworth filters

To see exactly how that works, let’s take a fourth-order filter as an example: 

H (s) = 1 

s2 + 0.765s + 1 
· 1 

s2 + 1.848s + 1 
(9.22) 

Since ω0 = 1 for both filters, the filters’ quality factors are 1/0.765 = 1.307 and 
1/1.848 = 0.541. If we compare these Q numbers with Fig. 9.5, we can see that 
the first filter is underdamped (Q > 0.707) and the other one is overdamped (Q < 
0.707), but if we combine them, the overall gain diagram is perfectly flat. In Fig. 9.22, 
we have plotted both systems’ gain diagrams together with the combined diagram. 
(Combined Q = 1.307·0.541 = 0.707.)

9.5.2 Chebyshev 

A Chebyshev filter is more selective (steeper roll-off) than a Butterworth filter of the 
same order. It is still an ‘all-pole’ filter, and the greater selectiveness is achieved by 
placing the poles on an ellipse instead of a circle, see Fig. 9.23. The elliptic shape of 
the poles’ location is the reason for the greater selectiveness, but it creates a ‘ripple’ in 
the passband. In Fig. 9.24, we have plotted the gain diagram of the filter in Fig. 9.23.
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Fig. 9.22 A fourth-order filter = two cascaded second-order filters

Fig. 9.23 A Chebyshev filter has all poles on an ellipse 

Fig. 9.24 Gain response of fifth-order Chebyshev 1 filter 

The filter in Figs. 9.23 and 9.24 is a ‘Chebyshev 1’ filter and is characterized by 
its passband ripple. In Fig. 9.24, the ripple is 3 dB, but that is a design parameter that 
can be selected arbitrarily.
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Fig. 9.25 Chebyshev 2 filters have zeros 

Fig. 9.26 Gain response of fifth-order Chebyshev 2 filter 

There is also a ‘Chebyshev 2’ filter, which does not ripple in the passband; instead, 
it ripples in the stopband. This is achieved by adding some zeros, see Figs. 9.25 and 
9.26. 

The passband (or stopband) ripple is not the only ‘cost’ for the greater selec-
tiveness; Chebyshev filters’ phase diagram is less linear than the phase diagram of 
Butterworth filters, i.e., they are more prone to distort the signal. 

9.5.3 Cauer 

Chebyshev 1 filters ripple in the passband and Chebyshev 2 filters ripple in the 
stopband. What if we allowed ripple in both the passband and the stopband? Wouldn’t 
that improve selectiveness even more? Yes, it would, and filters that ripple in both
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Fig. 9.27 Poles and zeros of a sixth-order Cauer filter 

Fig. 9.28 Gain diagram of sixth-order Cauer filter (3 dB passband ripple, 20 dB stopband ripple) 

passband and stopband are called ‘Cauer’ filters (or sometimes ‘elliptic’ filters). 
Figure 9.27 illustrates the poles’/zeros’ location in the s plane for a sixth-order 
Cauer filter, and Fig. 9.28 illustrates the corresponding gain diagram. 

In Fig. 9.29, we have plotted the gain diagram for all four filter models (third-order 
filters). Comparing them, we can clearly see that the Cauer filter is the most selective 
one but keep in mind that the ‘cost’ is ripple in both passband and stopband and that 
the phase diagram is less linear (higher degree of distortion).

9.6 Filter Transformations 

So far, we have mostly treated lowpass filters (with cutoff frequency ω0 = 1). The 
reason is that that is what you start with and then you just ‘transform’ your filter to 
whatever type and frequency you want in your application. We will present these 
transformation equations here.
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Fig. 9.29 Comparing filter models (passband ripple = 3 dB, stopband ripple = 20 dB)

9.6.1 Lowpass to Lowpass 

If you have a lowpass filter with cutoff frequency ω0 and want a lowpass filter with 
cutoff frequency ω'

0 
, you do the following substitution: 

s → 
ω0 

ω'
0 

· s (9.23) 

Example 9.1 What is the transfer function of a first-order lowpass filter with cutoff 
frequency 8 rad/s? 

Solution The transfer function of a first-order lowpass filter with cutoff frequency 
= 1 is 1/(1  + s). Substituting s/8 for s gives us the new transfer function: 

H (s) = 1 

1 + s/8 
= 8 

s + 8 

The amplification diagram is plotted in Fig. 9.30. 

Fig. 9.30 A lowpass filter with cutoff frequency 8 rad/s
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Fig. 9.31 A highpass filter with cutoff frequency 8 rad/s 

9.6.2 Lowpass to Highpass 

If you want to transform a lowpass filter with cutoff frequency ω0 to a highpass filter 
with cutoff frequency ω'

0 
, you do the substitution 

s → 
ω0ω

'
0 

s 
(9.24) 

Example 9.2 What is the transfer function of a first-order highpass filter with cutoff 
frequency 8 rad/s? 

Solution Substituting 8/s for s: H (s) = 1 
8/s+1 = s 

s+8 . Figure 9.31 illustrates the 
amplification diagram. 

9.6.3 Lowpass to Bandpass 

To transfer a lowpass filter with cutoff frequency ω0 to a bandpass filter with the 
upper and lower cutoff frequencies ωu and ωl, you do the substitution: 

s → 
s2 + ωlωu 

s · (ωu − ωl) 
· ω0 (9.25) 

Example 9.3 What is the transfer function of a second-order bandpass filter with 
upper and lower cutoff frequencies 25 and 20 rad/s, respectively? 

Solution ωuωl = 25·20 = 500 and ωu – ωl = 5. The substitution we need to do is 

s → 
s2 + 500 

5s
⇒ H (s) = 1 

s2+500 
5s + 1 

= 5s 

s2 + 5s + 500 

Figure 9.32 illustrates the amplification diagram.
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Fig. 9.32 A bandpass filter 

9.6.4 Lowpass to Bandstop 

You transform a lowpass filter with cutoff frequency ω0 to a bandstop filter with 
upper and lower cutoff frequencies ωu and ωl, respectively, with the substitution 

s → 
s · (ωu − ωl) 
s2 + ωuωl 

·ω0 (9.26) 

Example 9.4 What is the transfer function of a second-order bandstop filter with 
upper and lower cutoff frequencies 55 and 45 rad/s, respectively? 

Solution ωuωl = 55·45 = 2475 and ωu – ωl = 10. The substitution we need to do is 

s → 10s 

s2 + 2475 
⇒ H (s) = 1 

10s 
s2+2475 + 1 

= s2 + 2475 
s2 + 10s + 2475 

The amplification diagram of this transfer function is plotted in Fig. 9.33. 

Fig. 9.33 A bandstop filter
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9.7 Time Domain 

In the frequency domain, we find the system’s output by multiplying the input signal’s 
Laplace transform (or the Fourier transform) with the system’s transfer function, see 
Fig. 9.34. In the time domain, the system is represented by the system’s impulse 
response (see Example 7.8), which is the inverse Laplace transform of the transfer 
function (h(t) = H (s)−1 ). 

It is a common misunderstanding that you should also multiply h(t) by  x(t) to  
get the output y(t); that is not the case! In time space, you must convolve the input 
signal with the impulse response. This is illustrated in Fig. 9.35 where the symbol 
⊗ represents ‘convolution’. Since this is a widely misunderstood concept, we will 
elucidate it in detail here. 

9.7.1 Convolution 

First, convolution is an integral: 

y(t) = h(t) ⊗ x(t) = 
∞ 

−∞ 

h(τ )x(t − τ )d τ (9.27) 

This integral causes most students a lot of problems, so take a minute to really look 
at it. First, we have the temporal variable τ that we only use inside the integral; the 
integral output is still a function of t! Second, most people have trouble visualizing 
the function x(t –  τ ) and we will discuss that in detail in a minute, and third we 
integrate over all τ s, where the two functions overlap. The output is the area of 
the ‘product function’ at each time t. The key to understanding convolution is to 
understand exactly where (in τ space) the function x(t – τ ) is for  every time  t and 
exactly what the integral limits are (expressed in t). 

So, before we do any convolution, let’s look at the function x(t – τ ) and what it 
looks like in τ space. First, in τ space, t is a constant! Let’s consider the straight line 
x(τ ) = 2τ – 1. This signal is plotted in Fig. 9.36. The signal x(–τ ) is the ‘mirror’ of 
x(τ ) around τ = 0, see Fig. 9.37.

Fig. 9.34 Frequency space: 
Multiplication 

Fig. 9.35 Time space: 
Convolution 
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Fig. 9.36 x(τ ) = 2τ – 1  

Fig. 9.37 x(–τ ) = –2τ – 1  

Next, we consider the function x(τ – t); remember that τ is our time variable here 
and t is a constant. In that case, x(τ – t) is a  delayed copy of x(τ ) (delayed by t). For 
example, if t = 1, then x(τ – 1)  = 2(τ – 1) – 1  = 2τ – 3, and if t = 2, then x(τ – 2)  
= 2(τ – 2) – 1  = 2τ – 5, see Fig. 9.38.

And that brings us to the key question; what does x(t – τ ) look like? Well, x(t – τ ) 
= x(–(τ – t)), i.e., it is the ‘mirror’ of x(t – τ ) around τ = t. For example, if t = 1, 
then x(1 – τ ) = 2(1 – τ ) – 1  = –2τ + 1, and if t = 2, then x(2 – τ ) = 2(2 – τ ) – 1  = 
–2τ + 3, see Fig. 9.39.

In Figs. 9.40 and 9.41, we compare x(τ – t) and x (t – τ ) for the same t values, 
and we can see that x(t – τ ) is just the mirror image of x(τ – t) around τ = t. We  
can draw two conclusions from this; first, as t increases, x(t – τ ) moves to the right
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Fig. 9.38 x(τ – t) for  t = 0, 
1 and  2

Fig. 9.39 x(t – τ ) for  t = 
–1, 0, 1 and 2

along the τ-axis, and second, if t < 0,  x (t – τ ) moves to the left. t = –∞ is to the 
far left and t = + ∞  is to the far right. Hence, when t goes from –∞ to + ∞, the  
function x(t – τ ) ‘slides’ from left to right along the τ-axis, see Fig. 9.42.

Now, let’s go back to Eq. (9.27). h(τ ) doesn’t move with t (independent of t); 
for each time t, we must figure out where x(t – τ ) is, multiply it with h(τ ) and then 
integrate over all τ , i.e., over all τ s where the two functions overlap. If you understand 
Fig. 9.42, you will know where x(t – τ ) is, but that is only half the problem; the second 
part is what the integration limits are. We illustrate that with an example. 

Example 9.5 Figure 9.43 illustrates h(t) and Fig. 9.44 illustrates x(t). What is the 
convolution of h(t) and x(t); find y(t) = h(t) ⊗ x(t).
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Fig. 9.40 x(1 – τ ) is  x(τ 
– 1) mirrored in  t = 1 

Fig. 9.41 x(2 – τ ) is  x(τ – 2) mirrored in τ = 2

Solution First, we plot x(t – τ ) for some different t values to make sure we understand 
what goes on, see Fig. 9.45. In Fig.  9.45, we can see that as x(t – τ ) slides from left 
to right, there is no overlap between x(t – τ ) and h(τ ) until right after t = 0; hence 
the convolution h(t) ⊗ x(t) = 0 for  t < 0. Figure 9.46 illustrates the situation for 0 
< t < 1. From Fig.  9.46, we can see that the integration limits are τ = –1 and τ = 
–(1 – t) = t – 1. In this interval, x(t – τ ) = 1 and h(τ ) = τ + 1. Now we can calculate 
the convolution expression (9.27) for  t ∈ [0, 1]:
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Fig. 9.42 x(t – τ ) ‘slides’ from left to right as t increases

Fig. 9.43 h(t) 

Fig. 9.44 x(t)
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t−1 

−1 

(τ + 1) · 1d τ =
[
1 

2 
τ 2 + τ

]t−1 

−1 
= 

1 

2 
(t − 1)2 + t − 1 −

(
1 

2 
− 1

)

= 
1 

2

(
t2 − 2t + 1

)
+ t − 

1 

2 
= 

1 

2 
t2 for 0 ≤ t < 1 

Figure 9.47 illustrates the signals for 1 < t < 2.  
From Fig. 9.47, we can see that we need to integrate τ + 1 between τ = t – 2 and 

0, and τ – 1, between 0 and t – 1:

Fig. 9.45 x(t – τ ) for different times t 

Fig. 9.46 0 <  t < 1
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Fig. 9.47 1 <  t < 2

0 

t−2 

(τ + 1) · 1d τ + 
t−1 

0 

(τ − 1) · 1d τ =
[
1 

2 
τ 2 + τ

]0 

t−2 

+
[
1 

2 
τ 2 − τ

]t−1 

0 

= −  
1 

2 
(t − 2)2 − t + 2 + 

1 

2 
(t − 1)2 − t + 1 =  · · ·  =  −t + 1.5 for 1 ≤ t < 2 

Figure 9.48 illustrates the signals for 2 < t < 3.  

Fig. 9.48 2 <  t < 3
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Fig. 9.49 The convolution h(t) ⊗ x(t) of the signals in Figs. 9.43 and 9.44 

From Fig. 9.48, it is clear that we should integrate τ – 1 over the interval t – 2 <  
τ < 1:  

1 

t−2 

(τ − 1) · 1d τ =
[
1 

2 
τ 2 − τ

]1 

t−2 

= 
1 

2 
− 1 −

(
1 

2 
(t − 2)2 − (t − 2)

)
= 

· · ·  =  −  
1 

2 
t2 + 3t − 4.5 for 2 ≤ t < 3 

In Fig. 9.49, we have plotted the convolution expressions for all ts. 
Convolution can really challenge your patience, but remember, there are two keys; 

understanding how x(t – τ ) moves in τ space and figuring out what the integration 
limits are. You need to do a couple of convolution integrals on your own before the 
penny drops. 

9.8 Solved Problems 

Problem 9.1 Prove that the simple RC filter in Fig. 9.50, under certain circumstances, 
is an integrator, i.e., that uy ∼

 
uxdt. 

Solution The output voltage uy equals the voltage over the capacitor which is the 
charge Q divided by the capacitance and the charge is the integral of the current 
i: uy = uC = Q 

C = 1 
C

 
idt. If  R >> XC = 1/ωC, then the current i ≈ ux/R and

Fig. 9.50 First-order RC filter 
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uy = 1 
C

 ux 
R dt = 1 

RC

 
uxdt. Hence, the first-order lowpass filter in Fig. 9.50 is an 

integrator if R >> 1/ωC, i.e., if RC = τ � 1 
ω = T 

2π . 
Conclusion: The lowpass filter acts as an integrator if the filter time constant is 

much greater than the signal period. 

Problem 9.2 Consider the filter H (s) = 12.5s 
s2+12.5s+625 . a What kind of filter is this? 

b What is ω0? c What is Q? d What is the maximum amplification? e Plot the 
amplification diagram. 

Solution First, H(s) = 0 for  s = 0 and s = ∞, so it is a bandpass filter. Second, we 
can rewrite the transfer function as H (s) = 12.5s 

s2+ 25 
2 s+252 

⇒ H (ω) = 12.5jω 
12.5jω+252−ω2 ⇒ 

|H (ω)| = |12.5ω| /
12.52 ω2+(252−ω2 )

2 
, and hence ω0 = 25 rad/s and Q = 2. We can also see 

that |H (ω)| has its maximum value when ω = 25 rad/s and |H (ω = 25)| = 1. The 
amplification diagram is plotted in Fig. 9.51. 

Problem 9.3 Derive the transfer function of the Sallen–Key link in Fig. 9.13 
(Eq. (9.15)). 

Solution Referring to Fig. 9.52, the potential at point B is 

UB = 
1/sC2 

R2 + 1/sC2 
UA = UA 

1 + sR2C2 
⇒ UA = UB(1 + sR2C2) (9.28)

Fig. 9.51 Bandpass filter 

Fig. 9.52 The Sallen–Key link (second order) 
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At point A, i1 = i2 + i3: 

X (s) − UA 

R1 
= 

UA − Y (s) 
1/sC1 

+ 
UA − UB 

R2 
= sC1(UA − Y (s)) + 

1 

R2 
(UA − UB) 

⇒ X (s) = UA + sR1C1(UA − Y (s)) + 
R1 

R2 
(UA − UB) (9.29) 

Next, we insert Eq. (9.28) into Eq. (9.29): 

X (s) = UB(1 + sR2C2) + sR1C1(UB(1 + sR2C2) − Y (s)) + 
R1 
R2 

(UB(1 + sR2C2) − UB) 

Since the op amp has negative feedback, the potential at point B follows y(t) and 
UB = Y (s): 

X (s) = Y (s)
(

(1 + sR2C2) + sR1C1((1 + sR2C2) − 1) + 
R1 

R2 
((1 + sR2C2) − 1)

)

= Y (s)
(
1 + sR2C2 + s2 R1R2C1C2 + sR1C2

)

The transfer function is H(s) = Y (s)/X(s): 

H (s) = 1 

s2R1R2C1C2 + s(R1 + R2)C2 + 1 
= 1/R1R2C1C2 

s2 + s(R1 + R2)/R1R2C1 + 1/R1R2C1C2 

And we have Expression (9.15). 

Problem 9.4 Design a second-order bandstop filter, Chebyshev 1 type, with lower 
and upper cutoff frequencies 100 and 200 rad/s, respectively. 

Solution From Table 9.2, we get the transfer function of a first-order lowpass filter 
with cutoff frequency 1 rad/s: 

H (s) = 
1.024 

s + 1.024 
(9.30) 

To transform this into a bandstop filter, we use the substitution in Eq. (9.26): 

s → 
s(200 − 100) 
s2 + 200 · 100 =

100s 

s2 + 20000

Table 9.2 Chebyshev 1 filter 
polynomials (passband ripple 
= 3 dB)  

Order Polynomial 

1 1.024/(s + 1.024) 
2 0.5012/

(
s2 + 0.6449s + 0.7079

)

3 0.2506/
(
s3 + 0.5972s2 + 0.9283s + 0.2506

)
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Inserted into Eq. (9.30): 

H (s) = 1.024 
100s 

s2+20000 + 1.024 
= 1.024

(
s2 + 20000

)

100s + 1.024
(
s2 + 20000

) = s2 + 20000 
s2 + 97.7s + 20000 

The amplification diagram of this filter is illustrated in Fig. 9.53. 

Problem 9.5 A filter has an impulse response as illustrated in Fig. 9.54. What is the 
output y(t) if Fig.  9.55 represents the input signal x(t)? 

Fig. 9.53 Bandstop filter 

Fig. 9.54 Impulse response 

Fig. 9.55 Input signal x(t)
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Fig. 9.56 x(t –  τ ) for different t 

Fig. 9.57 a h(t) and  x(t –  τ ) at times 0 < t < 1.  b h(t) and  x(t –  τ ) at times  1 <  t < 2.  

Solution Fig. 9.56 illustrates the function x(t – τ ) at some times t, and Fig. 9.57a 
illustrates h(t) and x(t –  τ ) for times 0 < t < 1. Since x(t) = t (in Fig. 9.55), x(t –  τ ) 
= t –  τ . Hence:

 t 

0 
1 · (t − τ )d τ =

[
tτ − 

1 

2 
τ 2

]t 

0 

= t2 − 
1 

2 
t2 = 

1 

2 
t2 

Figure 9.57b illustrates the signals for 1 < t < 2:  

1 

t−1 

1 · (t − τ )d τ + 
t 

1 

(−1) · (t − τ )d τ =
[
tτ − 

1 

2 
τ 2

]1 

t−1 
−

[
tτ − 

1 

2 
τ 2

]t 

1 

= t − 
1 

2 
−

(
t(t − 1) − 

1 

2 
(t − 1)2

)
−

(
t2 − 

1 

2 
t2 − t + 

1 

2

)
=  · · ·  =  −t2 + 2t − 

1 

2
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Fig. 9.58 h(t) and  x(t –  τ ) at times 2 < t < 3  

Fig. 9.59 The convolution h(t) ⊗ x(t) 

Figure 9.58 illustrates the signals for 2 < t < 3:  

2 

t−1 

(−1)(t − τ )d τ = 
2 

t−1 

(τ − t) d τ =
[
1 

2 
τ 2 − tτ

]2 

t−1 

= 2 − 2t −
(
1 

2 
(t − 1)2 − t(t − 1)

)
=  · · ·  =  

1 

2 
t2 − 2t + 

3 

2 

The convolution signal is illustrated in Fig. 9.59.



Chapter 10 
Digital Filters 

Abstract In this chapter digital filters are introduced. While an analog filter is 
implemented in hardware, a digital filter is implemented in software; it is a computer 
algorithm. Hence, this chapter works with sampled signals and the objective is to 
do the same thing with sampled signals as we did with analog signals (non-sampled 
signals) in Chap. 9, but instead of using hardware, software algorithms are presented 
that do the filtering. First, discrete-time convolution is defined, but the focus is on 
the FIR and IIR filters, which are the two most common digital filter algorithms for 
sampled signals. The reader will learn two design techniques for digital filters; the 
inverse Fourier transform method and the bilinear transformation method. 

10.1 Introduction 

In the previous chapter we looked at analog filters which are implemented in hard-
ware. In this chapter, we will demonstrate how we can achieve the same signal 
processing results using computer algorithms. These computer algorithms are based 
on samples (from an ADC, see Chap. 11) and are called ‘digital filters’. Compared 
to analog filters, digital filters have some advantages but certainly also some disad-
vantages and we will carefully point out the pros and cons of digital filters in this 
chapter. The objective here is to be able to design any (?) filter specified from an 
amplification diagram. 

This chapter will depend heavily on our results from the z transform Sect. 7.4.2 
and we will also refer to solved Problem 7.10. 

Figure 10.1 illustrates our general model of an analog filter.
In Sect. 9.8 we learned that in the time domain, the output from this filter is the 

convolution between h(t) and x(t), Eq. (9.27): 

y(t) =
 ∞ 

−∞ 
h(τ )x(t − τ )dτ (9.27) (10.1) 

To get a digital filter, we need to sample the signal, i.e., t → nTS:
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x(t) h(t) y(t) 

Fig. 10.1 Signal model

Fig. 10.2 The discrete-time Dirac impulse 

Fig. 10.3 Impulse and 
impulse response 

y(t) → y(nTS) = y(n) = yn = 
+∞∑

i=−∞ 

hi xn−i (10.2) 

In Eq. (10.2), hn is still the impulse response; the system’s output when the input 
is an impulse. Figures 10.2 and 10.3 illustrate the Dirac impulse in discrete time. 

First, we will assume that all our filters are ‘causal’. That means that there can’t 
be any output signal before there is an input signal. In Fig. 10.2, the impulse appears 
at time n = 0. If the system is casual, then hn must = 0 if  n < 0. (We could have 
non-causal digital filters, just not in real time. However, we limit the scope here to 
include only the causal filters.) That means that the summation in Eq. (10.2) should 
start at i = 0: 

yn = 
∞∑

i=0 

hi xn−i (10.3) 

Second, if we write out Eq. (10.3) explicitly, then 

yn = h0xn + h1xn−1 + h2xn−2 + h3xn−3 . . . (10.4) 

xn is the ‘latest’ sample and xn – 1  is the second last sample, etc. Notice that we ‘time 
reverse’ the samples, just like we did in analog convolution (see Fig. 9.45). Table 10.1 
illustrates the case where we have a time series of five samples x = {x0, x1, x2, x3, x4} 
and four impulse response coefficients.
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Table 10.1 Convolution in discrete time 

x =[x0  x1  x2  x3  x4] h0 h1 h2 h3 yn 

x4  x3  x2  x1 y0 = h0 x0 

x4  x3  x2 h1 x0 y1 = h0 x1 + h1 x0 

x4  x3 h1 x1 h2 x0 y2 = h0 x2 + h1 x1 + h2 x0 

x4 h1 x2 h2 x1 h3 x0 y3 = h0 x3 + h1 x2 + h2 x1+ h3 x0 

h0 x0 

h0 x1 

h0 x2 

h0 x3 

h0 x4 h1 x3 h2 x2 h3 x1 y4 = h0 x4 + h1 x3 + h2 x2+ h3 x1 

h1 x4 h2 x3 h3 x2 y5 =             h1 x4 + h2 x3+ h3 x2 

h2 x4 h3 x3 y6 =                         h2 x4+ h3 x3 

h3 x4 y7 =                                    h3 x4 

y8 = 0 

In general, there are two kinds of digital filters. They all use input samples to 
calculate the next output sample, but some filters also use previous output samples in 
the algorithm to produce the next output sample. Just like analog filters, digital filters 
are represented by a transfer function that is a quotient between two polynomials; of 
course, for a digital filter it is a polynomial in z: 

H (z) = 
B(z) 
A(z) 

= 
b0 + b1z−1 + b2z−2 + . . .  
1 + a1z−1 + a2z−2 + . . .  

(10.5) 

The filters that don’t use previous output samples in the next output sample algo-
rithm are characterized by having A(z) = 1, and these are the filters we will start 
with. 

10.2 FIR Filters 

If A(z) = 1, then 

H(z) = b0 + b1z−1 + b2z−2 + . . . (10.6) 

Also, remember that the transfer function is by definition the quotient between 
the output and input signals’ transforms (the z transforms in this case): 

H (z) = 
Y (z) 
X (z) 

= b0 + b1z−1 + b2z−2 +  · · ·  ⇒  

Y (z) = X (z)
(
b0 + b1z−1 + b2z−2 + . . .

) = 
= b0X (z) + b1X(z)z−1 + b2X(z)z−2 + . . . (10.7)
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Fig. 10.4 The block 
diagram of a FIR filter 

If we take the inverse z transform of both sides of Eq. (10.7) we get, remembering 
from Problem 7.10 that the z transform of xn−n0 is X (z)z−n0 : 

yn = b0xn + b1xn−1 + b2xn−2 + . . . (10.8) 

Comparing with Eq. (10.4), we can see that in this case, the filter coefficients bi 

are also the impulse response coefficients. This means that the number of impulse 
response coefficients is limited by the number of filter coefficients, which is a finite 
number; this kind of filters are called ‘FIR’ filters; Finite Impulse Response filters. 
Figure 10.4 illustrates the block diagram of an FIR filter. 

Notice in Fig. 10.4 that each sample must be ‘saved’ and pushed downwards in the 
delay chain. Notice also that each ‘delay box’ is represented by ‘z−1’; this represents 
the delay of one sample (in frequency space). (In time space it would be TS.) 

Also, each ‘branch’ in the delay chain is called a ‘tap’ and filters are sometimes 
characterized by the number of taps used: An n-tap filter has n delay taps. 

Example 10.1 Plot the frequency response of the following FIR filter: 

yn = 0.25xn + 0.25xn−1 + 0.25xn−2 + 0.25xn−3 

Solution This filter produces the average of four samples; we expect a lowpass 
behavior. To find the transfer function, we must first take the z transform of both 
sides: 

Y (z) = 
1 

4

(
X(z) + X(z)z−1 + X(z)z−2 + X (z)z−3

) = 

= 
1 

4

(
1 + z−1 + z−2 + z−3

)
X(z) ⇒ 

H (z) = 
Y (z) 
X (z) 

= 
1 

4

(
1 + z−1 + z−2 + z−3

) = 
1 

4

(
z1.5 + z0.5 + z−0.5 + z−1.5

) · z−1.5
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Fig. 10.5 The frequency response of the averaging filter 

We get the Fourier transform by setting z = ejΩ: 

H (Ω) = H (z)|z=ejΩ = 
1 

4

(
ej1.5Ω + ej0.5Ω + e−j0.5Ω + e−j1.5Ω

)
· e−j1.5Ω = 

= 
1 

4 
· 2(cos 0.5Ω + cos 1.5Ω) · e−j1.5Ω ⇒ |H (Ω)| = 

1 

2 
· |cos 0.5Ω + cos 1.5Ω| 

The amplification diagram is plotted in Fig. 10.5, and as we expected, it has a 
lowpass characteristic. 

In Sect. 7.4 we learned about poles and zeros of a system; the roots of the numerator 
polynomial in Eq. (10.5) are the ‘zeros’, and the roots of the denominator polynomial 
are the ‘poles’. Obviously, a FIR filter doesn’t have any poles; that makes it inherently 
stable. The averaging FIR filter in Example 10.1 has three zeros: 

1 + z−1 + z−2 + z−3 = 0 ⇒ z1 = −1 z2,3 = ±j 

These zeros are illustrated in Fig. 10.6. Compare this diagram to the frequency 
response in Fig. 10.5 and remember that the Fourier transform is on the unit circle in 
the z plane. Figure 10.6 indicates that we should have a zero response for ‘frequencies’
Ω = π/2 and π, which is confirmed by the amplification diagram in Fig. 10.5.

10.3 IIR Filters 

Let’s see what happens if the denominator polynomial in Eq. (10.5) is /= 1. For 
example, if B(z) = 1 and A(z) = 1 + a1z–1 then 

H (z) = 1 

1 + a1z−1 
= 

Y (z) 
X (x) 

⇒ Y (z)
(
1 + a1z−1

) = X (z) 

Y (z) + a1Y (z)z−1 = X (z) ⇒ yn = −a1yn−1 + xn 

Let’s see what the impulse response is: xn = δn ⇒ yn = hn
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Fig. 10.6 Zeros of FIR filter 
in Example 10.1

y0 = −a1yn−1 + δ0 = 0 + 1 = 1 = h0 

h1 = −a1h0 + δ1 = −a11 + 0 = −a1 

h2 = −a1h1 = a2 
1 

h3 = −a1h2 = (−a1)
3 ⇒ hn = (−a1)

n 

From this simple example we can see that the number of impulse response coef-
ficients is infinite; when A(z) /= 1, we have an Infinite Impulse Response filter, an 
‘IIR’ filter. Since the nth impulse response coefficient is (−a1)n, we conclude that 
the filter is unstable if |a1| ≥ 0. The filter pole is 

1 + a1z−1 = 0 ⇒ z p = −a1 

Figure 10.7 illustrates the pole’s location for the case where |a1| > 1 and |a1| < 1.
From Fig. 10.7 we can see that the filter is unstable if the pole is outside the unit 

circle; for digital filters all poles must be within the unit circle. This conclusion is 
general and consistent with our results in Sect. 7.4.2 (Fig. 7.38). 

Equation (10.5) represents the general expression for a second-order IIR filter: 

H (z) = 
b0 + b1z−1 + b2z−2 

1 + a1z−1 + a2z−2 
= 

Y (z) 
X (z) 

(10.9) 

Taking the inverse z transform of Eq. (10.9) gives us the difference equation for 
the output sample: 

yn = −a1yn−1 − a2yn−2 + b0xn + b1xn−1 + b2xn−2 (10.10) 

Figure 10.8 illustrates the block diagram.
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Fig. 10.7 Stable if poles are 
inside the unit circle

Fig. 10.8 Block diagram of 
second-order IIR filter 

Example 10.2 Consider the filter (z) = 1−z−2 

1+0.81z−2 . 

a Where are the poles and the zeros? b What is the Fourier transform? c Find and 
plot the amplification diagram. d What is the difference equation? e Draw the block 
diagram. f What is the impulse response? g What is the output if the input is x = [2, 
−1, 0.5]? 

Solution We can re-write the transfer function as follows: 

H(z) = 
z2 − 1 

z2 + 0.81 
= (z + 1)(z − 1) 

(z + 0.9j)(z − 0.9j) 

and it is obvious that we have two zeros (±1) and two poles (±0.9j). To find the 
Fourier transform, we replace z with ejΩ:

H (Ω) = ej2Ω − 1 
ej2Ω + 0.81 

=
(
ejΩ − e−jΩ

) · ejΩ
cos 2Ω + j sin  2Ω + 0.81 

= 2j sinΩ · ejΩ
(0.81 + cos 2Ω) + j sin  2Ω

=
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Fig. 10.9 The amplification diagram 

= 2 · |sinΩ| √
(0.81 + cos 2Ω)2 + (sin 2Ω)2    

=|H (Ω)| 

· ej(Ω+π/2) 

ejtan−1(sin 2Ω/(0.81+cos 2Ω))

|H(Ω)| is plotted in Fig. 10.9. (Remember that we have a pole in z = +0.9j, i.e., 
at Ω = π/2.) 

The difference equation: 

Y (z) 
X (z) 

= 1 − z−2 

1 + 0.81z−2 
⇒ Y (z) + 0.81Y (z)z−2 = X(z) − X (z)z−2 ⇒ 

yn = −0.81yn−2 + xn − xn−2 

Figure 10.10 illustrates the block diagram. 
We get the impulse response by setting xn = δn: 

h0 = δ0 = 1 h1 = 0 h2 = −0.81 · 1 − δ0 = −1.81 h3 = 0 
h4 = −0.81 · (−1.81) = 1.47 h5 = 0 h6 = −0.81 · 1.47 = −1.19 h7 = 0 . . . .  

The impulse response is plotted in Fig. 10.11.

Fig. 10.10 The block 
diagram 
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Fig. 10.11 The impulse response 

To find the output for the input x = [2, −1, 0.5], we could use a convolution 
table as in table 10.1, but here we take the opportunity to illustrate discrete-time 
convolution graphically, see Fig. 10.12. 

In Fig. 10.12, we have plotted the signal xn−i, for  n = −1, see Eq. (10.3), and as 
time (n) increases, xn−i slides right, and at each time (n) we stop and multiply all 
overlaps between xn−i and hi and then we sum all the products. Compare Fig. 10.12 
to Fig. 9.42 in Chap. 9. Figure 10.13 illustrates the resulting output from the filter.

Fig. 10.12 Discrete time convolution 
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Fig. 10.13 Filter output 

10.4 Designing Digital Filters 

10.4.1 FIR Filters: The Inverse Fourier Transform Method 

Now that we understand how IIR and FIR filters work, we need to learn how to design 
them. There are several methods to design digital filters, but here we will only learn 
one method for FIR filters and one method for IIR filters. We start with FIR filter 
design. 

We use the inverse Fourier transform method to design FIR filters. This method 
starts from the amplification diagram |H (Ω)| of the desired filter’s frequency 
response. We get the FIR filter coefficients by taking the inverse Fourier transform 
of|H (Ω)|: 

bk = 
1 

2π

 π 

−π 
|H(Ω)| · ejkΩ (10.11) 

Example 10.3 Design an FIR filter with a frequency response as illustrated in 
Fig. 10.14. 

Solution The filter coefficients are

Fig. 10.14 Desired frequency response 
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bk = 
1 

2π

 π/4 

−π/4 
1 · ejkΩdΩ = 1 

2πjk

[
ejkΩ

]π/4 

−π/4 

= 
1 

πk 
· 1 
2j

(
ejk π 

4 − e−jk π 
4

)
= 

1 

πk 
sin 

kπ 
4 

Table 10.2 contains the filter coefficient values for the first eleven coefficients. 
Notice two things in Table 10.2. First, we have truncated the table since we must 

limit the number of coefficients. Second, there are ‘negative-time’ filter coefficients. 
That means that we must ‘shift’ the coefficients right (delay) to get a causal filter. 
Below are the difference equations for the 3-, 9- and 11-‘tap’ filters (b±4 = 0): 

yn = 0.225xn + 0.250xn−1 + 0.225xn−2 

yn = 0.075xn + 0.159xn−1 + 0.225xn−2 + 0.250xn−3 + 0.225xn−4+ 
+ 0.159xn−5 + 0.075xn−6 

yn = −0.045xn + 0.075xn−2 + 0.159xn−3 + 0.225xn−4 + 0.250xn−5+ 
+ 0.225xn−6 + 0.159xn−7 + 0.075xn−8 − 0.045xn−10 

Figure 10.15 illustrates the frequency response of these three filters (and a 21-tap 
filter). 

From Fig. 10.15 it is obvious that the more taps we implement, the closer is the 
frequency response to the ideal response. 

In general, IIR filters are more ‘computational efficient’ than FIR filters; they get 
the job done with less taps (less ‘multiply-and-add’ operations). So why use FIR 
filters at all? Well, we have already seen one reason; the lack of poles makes them 
inherently stable. But that is not the most important reason. The most important 
reason is stated in the following theorem:

Table 10.2 Filter coefficients 

b−5 b−4 b−3 b−2 b−1 b0 b1 b2 b3 b4 b5 

−0.045 0.000 0.075 0.159 0.225 0.250 0.225 0.159 0.075 0.000 −0.045 

Fig. 10.15 The frequency response of the three FIR filters 
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Theorem FIR filters with a symmetric set of filter coefficients have linear phase 
diagrams. 

Proof We will not give general proof here, only a ‘convincing’ example. ‘Symmetric’ 
filter coefficients means that if we have an n-tap filter, then b0 = bn−1, b1 = bn−2, 
etc. Let’s take a symmetric 3-tap filter: 

yn = b0xn + b1xn−1 + b2xn−2 = b0xn + b1xn−1 + b0xn−2 ⇒ 

Y (z) = X(z)
(
b0 + b1z−1 + b0z−2

) ⇒ H (z) = (
b0z1 + b1 + b0z−1

) · z−1 ⇒ 

H (Ω) = (
b0e

jΩ + b1 + b0e−jΩ
) · e−jΩ = (b1 + 2b0 cosΩ) · e−jΩ

(Remember that filters with linear phase diagrams don’t distort the signal.) And 
we can see that the phase function is ϕ(Ω) = −Ω, i.e., it is a linear function in Ω. 
This will hold true for any number of taps as long as the coefficients are ‘symmetric’, 
and it is not restricted to odd numbers of taps. See Example 10.1, where we had n = 
4 and symmetric taps. The phase function was ϕ(Ω) = −1.5Ω. 

10.4.2 IIR Filters: The Bilinear Transformation Method 

When we design IIR filters, we start from an analog filter and then we try to mimic 
its frequency response in discrete time. Let’s take the simple first-order RC filter in 
Fig. 10.16 as an example. 

The transfer function is 

H (s) = 1 

1 + s RC  
⇒ (10.12) 

H(Ω) = 1 

1 + jωRC 
⇒ |H (Ω)| = 1/(

1 + (ωRC)2
) (10.13)

Fig. 10.16 First order RC 
filter 
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Fig. 10.17 The ω axis must be squeezed in between −π and +π 

This is a lowpass filter and its amplification diagram is illustrated in the top 
diagram in Fig. 10.17. 

To mimic this behavior in discrete time, we must shoehorn the entire ω axis into 
the range ±π on the Ω axis, see Fig. 10.17. 

We are looking for a transformation that transforms −∞ to −π, 0 to 0 and + 
∞ to +π. Do we know any such function? Yes, we do! The tan−1ω has the range 
±π/2, hence, if we just multiply it by 2, we will have our transformation formula. 
However, for reasons that we will explain later, we will multiply ω by k (tan−1kω 
has the same range):

Ω = 2 · tan−1 kω (10.14) 

Equation (10.14) is a transformation between the Fourier transforms in continuous 
and discrete time. Since we prefer working in the z and s spaces, we need to translate 
this expression into a transformation from s space to z space. We solve for kω and 
multiply both sides by j: 

jkω = jtan
Ω

2 
= 

j sinΩ/2 

cosΩ/2 
= 

1 
2

(
ejΩ/2 − e−jΩ/2

)
1 
2

(
ejΩ/2 + e−jΩ/2

) = 

= 
ejΩ/2

(
1 − e−jΩ

)
ejΩ/2

(
1 + e−jΩ

) = 
1 − e−jΩ

1 + e−jΩ
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Now we substitute s for jω on the left-hand side and z for ejΩ on the right-hand 
side: 

ks = 
1 − z−1 

1 + z−1 
⇒ s = 

1 

k 
· 1 − z−1 

1 + z−1 

All we need now is to determine the constant k. If we look at Fig. 10.17, we realize 
that there will be some distortion of the frequency response in the transformation 
from s to z space. In most digital applications we try to ‘oversample’, i.e., we stay as 
far away from f S as possible. That means that we are more concerned about having 
the right frequency response for ‘low’ frequencies. This is what we use the constant 
k for; in the transformation we prioritize a correct representation of the low end of 
the ω axis. For ‘low’ frequencies, tan Ω/2 ≈ Ω/2, and then 

jωk ≈ j
Ω

2 
⇒ k = Ω

2ω 
= 

ωTS 

2ω 
= 

TS 

2 
⇒ s = 

2 

TS 
· 1 − z−1 

1 + z−1 
(10.15) 

Equation (10.15) is the  bilinear transformation that we use to ‘convert’ an analog 
transfer function into a corresponding digital IIR filter. 

Example 10.4 Assuming in Eq. (10.12) that RC = 0.01, use bilinear transformation 
to design a corresponding digital IIR filter. The sampling rate of the digital filter is 
1 kS/s. Plot the frequency response for both the analog and the digital filters and 
compare their cutoff frequencies. 

Solution 
H (z) = 1 

1 + 2 
TS 

· 1−z−1 

1+z−1 RC 
= 1 + z−1 

1 + z−1 + 2RC 
TS

(
1 − z−1

) = 

= 1 + z−1(
1 + 2RC 

TS

)
+

(
1 − 2RC 

TS

)
z−1 

= 1 + z−1 

21 − 19z−1 
= 

0.048 + 0.048z−1 

1 − 0.905z−1 
= 

Y (z) 
X (z) 

⇒ Y (z) − 0.905Y (z)z−1 = 0.048X (z) + 0.048X(z)z−1 

yn = 0.905yn−1 + 0.048xn + 0.048xn−1 

The Fourier transform is H(Ω) = 0.048+0.048e−jΩ

1−0.905e−jΩ . In Fig.  10.18, we have plotted 
the amplification diagram of this filter with absolute frequencies on the x-axis, and 
in Fig. 10.19, we have plotted the frequency response of the original analog filter. 
Notice in Figs. 10.18 and 10.19 that the cutoff frequency is the same (100 rad/s). 
This is expected; from Eq. (10.14) we predict the ‘analog’ frequency of 100 rad/s to 
be transformed to

Ω = 2tan−1 TS 

2 
ω = 2tan−1 0.001 

2 
100 = 0.1 rad  ⇒ 0.1 

1000 

2π 
= 15.9Hz  = 100 rad/s
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Fig. 10.18 Digital filter from bilinear transformation 

Fig. 10.19 Analog ‘model’ filter 

Notice also how well the shape of the analog filter transfers to the digital filter’s 
frequency response. 

10.5 Solved Problems 

Problem 10.1 Design a FIR filter with a frequency response as in Fig. 10.20. 
Use only the first nine non-zero filter coefficients. Plot the frequency response of 

the resulting filter.

Fig. 10.20 A bandpass filter 



224 10 Digital Filters

Table 10.3 FIR filter coefficients 

k 0 ± 1 ± 2 ± 3 ± 4 ± 5 
bk 0.250 0.093 −0.159 −0.181 0 0.109 

Solution Remember that we need to integrate from −π to +π and that the Fourier 
transform is symmetric: 

bk = 
1 

2π

( −π/4 

−π/2 
1 · ejkωdω +

 π/2 

π/4 
1 · ejkωdω

)
= 

1 

2π 
· 1 
jk

([
ejkω

]−π/4 

−π/2 
+

[
ejkω

]π/2 

π/4

)
= 

= 
1 

πk 
· 1 
2j

(
e−jkπ/4 − e−jkπ/2 + ejkπ/2 − ejkπ/4

) = 
1 

πk

(
sin k 

π 
2 

− sin k 
π 
4

)

Table 10.3 lists the first eleven coefficients. Since b±4 = 0 and since we need “the 
first nine non-zero coefficients” we must also use b±5. Hence, the difference equation 
is 

yn = 0.109xn − 0.181xn−2 − 0.159xn−3 + 0.093xn−4 + 0.25xn−5 + 0.093xn−6− 

−0.159xn−7 − 0.181xn−8 + 0.109xn−10 

The frequency response is plotted in Fig. 10.21. 

Problem 10.2 First, plot the frequency response of the analog filter H(s) = 
s/(s + 10). What type of filter is it and what is the cutoff frequency? Next, use 
bilinear transformation to design the corresponding IIR filter using a sampling rate 
of 100 S/s. Plot the frequency response of this filter. What is the cutoff frequency of 
the IIR filter? 

Solution The Fourier transform is

Fig. 10.21 The frequency response 
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Fig. 10.22 Frequency response of analog filter 

H (ω) = 
jω 

jω + 10 
= |ω| √

ω2 + 102 
· ej(90◦−tan−1ω/10) = |H (ω)| · ejϕ(ω) 

The frequency response is plotted in Fig. 10.22; it is a highpass filter with a cutoff 
frequency of 10 rad/s. 

Since 2/TS = 2/(1/100) = 200, the bilinear transformation to z space is 

H(z) = 200 · 1−z−1 

1+z−1 

200 · 1−z−1 

1+z−1 + 10 
= 1 − z−1 

1 − z−1 + 0.05
(
1 + z−1

) = 1 − z−1 

1.05 − 0.95z−1 
= 

= 
0.952 − 0.952z−1 

1 − 0.905z−1 
= 

Y (z) 
X (z) 

⇒ 

⇒ Y (z) − 0.905Y (z)z−1 = 0.952X (z) − 0.952X (z)z−1 ⇒ 

⇒ yn = 0.905yn−1 + 0.952xn − 0.952xn−1 

The frequency response is plotted in Fig. 10.23. 
The cutoff frequency of 10 rad/s in analog space has been transformed to 0.1 rad 

in z space. This is expected since

Fig. 10.23 Frequency response of the IIR filter 



226 10 Digital Filters

Fig. 10.24 IIR filter

Ω = 2tan−1 TS 

2 
ω = 2tan−1 10 

200 
= 0.1 rad  

This corresponds to a frequency of 0.1 2π 100 = 1.6Hz  = 10 rad/s. 

Problem 10.3 Look at the IIR filter in Fig. 10.24. What does this filter do? What is 
the application of such a filter? 

Solution The difference equation is yn = 0.2yn−100 + xn and the transfer function 
is 

H (z) = 1 

1 − 0.2z−100 
Poles: 1 − 0.2z−100 = 0 ⇒ z100 = 0.2 ⇒

(
A · ejϕ)100 = 0.2 · ej(0◦±n360◦) ⇒ A = 0.21/100 = 0.98 ϕ = ±n · 3.6◦ 

The poles’ location in z space is illustrated in Fig. 10.25; there are 100 poles and 
only the first 10 poles are marked in Fig. 10.25. The frequency response is illustrated 
in Fig. 10.26.

From the look of the frequency response, this kind of filter is sometimes called 
a ‘comb’ filter. What does it do? It adds an attenuated delayed output sample to the 
present output sample; that will generate an ‘echo’ effect. This has obvious audio 
applications where the input is the microphone, and the output is the loudspeaker.
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Fig. 10.25 Pole chart; first ten poles (of 100) 

Fig. 10.26 Frequency response of ‘comb’ filter



Chapter 11 
ADCs and Sampling 

Abstract Almost all real signals are analog by nature and almost all measurement 
systems are digital. That means that in most measurement systems, the signal must 
be converted from the analog world to the digital world and a basic understanding of 
this process is paramount. First, quantization and quantization noise are discussed in 
general and then a few different analog-to-digital converter techniques (ADCs) are 
presented. The first one is the successive approximation ADC (SAR) followed by the 
flash ADC, the pipeline ADC, and the dual slope ADC. Level-crossing ADCs and 
the sigma-delta ADCs are also presented (but they are less common in the physics 
lab). The theory also includes the concept of an equivalent number of bits (ENOB) 
and ‘dithering’. This chapter also digs a little deeper into the sampling process; the 
benefit of oversampling and how to achieve extreme sampling rates (time-interleaved 
sampling and equivalent-time sampling). 

11.1 Introduction 

We have previously ‘sampled’ to ‘discretize’ an analog signal, but we never got into 
the details of how this is implemented in hardware. The sampling unit is a central 
component in any measurement system, but the sampling itself is only part of the 
secret. The ‘sample’ value of an analog signal can have any value; its range is all real 
numbers (∈ R). Since the ‘end station’ of most samples is ‘some kind of computer’ 
(digital device), the sample must also be ‘digitized’ (we will call it ‘quantized’). The 
quantization is done by an analog-to-digital converter (ADC) and there are only a 
handful techniques to implement an ADC in electronics. Finally, we will discuss 
some ‘advanced’ aspects on sampling and quantization theory.
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Fig. 11.1 Sampling 

11.2 Sampling 

For the quantization process to work (the analog-to-digital conversion), the sample 
value must be constant during the entire conversion process. This is illustrated in 
Fig. 11.1; the dotted line represents the input value to the ADC. It is the responsibility 
of the sample and hold unit to take a sample and hold it constant until the quantization 
is completed. 

Figure 11.2 illustrates a sample and hold unit. The S&H unit consists of three 
components: A voltage follower, a capacitor, and a switch. The switch is controlled 
by the sampling clock signal. It is ‘closed’ during the ‘positive’ period of the sampling 
clock and during this time the capacitor is charged to the input signal level. The high 
input impedance of the op-amp ensures that it doesn’t discharge during the ‘negative’ 
period. Hence, the output of the voltage follower will be the dotted line in Fig. 11.1.

11.3 Quantization and Quantization Noise 

An ADC takes an analog voltage (the sample) and converts it into an integer (a 
binary integer) that is proportional to the sample voltage. An ADC is characterized 
by two parameters. The most important parameter is the number of bits, n, in the  
digital (binary) output integer. The second parameter is the reference voltage U ref. 
Figure 11.3 illustrates an n-bit ADC.

The ADC divides the reference voltage into 2n equidistant levels (usually). If, for 
example, U ref = 3.3 V and n = 8, we will have 256 levels, and the distance between 
each level is

ΔU = 
Uref 

2n 
= 

3.3 

28 
= 12.89 mV (11.1)

ΔU is the resolution of the ADC.1 Figure 11.4 illustrates how the reference voltage 
is divided into 256 levels (2n levels in the general case).

1 Sometimes just the number of bits (n) is used for the resolution: “The ADC has a resolution of 12 
bits.” 
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Fig. 11.2 Sample and hold unit

Fig. 11.3 Analog-to-digital conversion

Notice that there are 256 levels, numbered from 0 to 255; there is no level 256. 
The last voltage level is U ref – ΔU. The  sample  Ain from the sample and hold unit is 
simply assigned the integer level number that is closest to the sample value: 

Dout = round
(

Ain

ΔU

)
(11.2)
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Fig. 11.4 The reference voltage is divided into 2n levels

Our sample of 2.397338662 in Fig. 11.3 will be converted to 

Dout = round
(
2.397338662 

0.01289

)
= round(185.984) = 186 

Of course, the ADC will produce it in binary format: 

Dout = 101110102 = 18610 

This is the number that is sampled by the data acquisition computer, and it will 
be re-converted to a voltage: 

A
Δ

in = Dout × ΔU = 186 × 0.01289 = 2.39765625 V (11.3) 

Notice a few details in Fig. 11.4. The digital output value changes in the middle of 
the twoΔU levels. A consequence of that is that the width of the first interval is only
ΔU/2 and the last interval is 3ΔU/2. Figure 11.5 illustrates the in–out characteristics 
of an 8-bit ADC.

We can see in Eq. (11.3) that there is a small discrepancy between our estimate 
A
Δ

in and the ‘true’ Ain sample, an uncertainty, because of the rounding in Eq. (11.2). 
The ‘true’ value Ain can be anywhere in the interval 

(Dout − 0.5) × ΔU ≤ Ain ≤ (Dout + 0.5) × ΔU (11.4)
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Fig. 11.5 In–out characteristics of 8-bit ADC

Fig. 11.6 The quantization 
adds noise to the signal 

The discrepancy between A
Δ

in and Ain is called the quantization noise (or the 
‘residual’) and is a stochastic variable with a uniform distribution between ±ΔU/2. 
We can model this as noise that is added to the sample, see Fig. 11.6. 

In Fig. 11.7 we have sampled a sinusoidal signal and plotted the quantization 
noise in the same graph (×20); the quantization noise will set a limit to how small 
signal changes we can detect with the ADC.

We will have more to say about quantization noise later. 

11.4 Digital-to-Analog Converters 

A Digital-to-Analog converter (DAC) does exactly the opposite of an ADC; the input 
is an integer (the ‘digital’) and the output is an analog voltage, see Fig. 11.8. The  
analog output voltage is
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Fig. 11.7 The quantization noise in sampling (Uref = 5.0 V, 8-bit ADC)

Aout = 
Din 

2n 
× Uref (11.5) 

We will not go into the details of DACs here. They are much easier to implement 
in hardware than ADCs; the two dominating techniques are (a) an ‘R-2R ladder’ 
circuit and (b) lowpass filtering of a PWM signal. (You can easily google that if 
you are interested.) The only reason we mention them here is because some ADCs 
depend on a DAC to do an analog-to-digital conversion. 

11.5 SAR ADCs 

The successive approximation register (SAR) ADC is one of the most common 
and popular ADCs since it is a good compromise between speed and resolution. 
Figure 11.9 illustrates the SAR architecture. 

The DAC generates an analog voltage that is compared with the analog input 
sample in a comparator. The comparator output is fed back to the ‘SAR logic’ which 
changes the DAC input value until it equals Ain. The ‘cleverness’ in the circuit is 
the order in which the SAR logic changes the input values to the DAC to minimize 
the conversion time. In the first input value to the DAC, only the most significant

Fig. 11.8 Digital-to-analog 
converter
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Fig. 11.9 SAR ADC 
architecture

bit is set: 10000 … 00 (binary). This corresponds to a DAC output value of U ref/ 
2. If the comparator output is ‘1’, we know that Ain > U ref/2, and the only way to 
get a larger analog output from the DAC is if we keep the most significant bit = 1. 
If the comparator output is ‘0’, we know that Ain < U ref/2, and the most significant 
bit must be = 0; in a single comparison, we have determined the value of the most 
significant bit. In the next comparison, we set the second most significant bit to ‘1’, 
and the comparator output determines if we should keep it or not. We continue until 
all bits have been compared and the digital output value is the output from the n-bit 
register used as the DAC input. An n-bit SAR ADC needs n comparisons to do an 
analog-to-digital conversion. The comparison process for an 8-bit SAR is illustrated 
in Fig. 11.10. 

The SAR algorithm is by no means a contemporary invention. It was first suggested 
by an Italian mathematician, Tartaglia, in 1556. However, he was not concerned with 
SAR ADCs, he suggested the SAR algorithm to optimize the weighting on balance 
scales: Start with the heaviest counterweight and keep it if the weight is too small. 
Next, take the second heaviest counterweight, etc.

Fig. 11.10 Ain = 1.87 V ⇒ Dout = 1001 00012 = 145 (Uref = 3.3 V) 
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11.6 Flash ADCs 

When it comes to conversion speed, there is no design that can beat the flash ADC. 
The flash technique is illustrated in Fig. 11.11. In a flash ADC, the input sample 
is fed to the minus input of many comparators and the plus inputs are provided a 
successively higher potential from a resistor network; if the input sample voltage is 
higher than the potential on the comparator’s plus input, the output will be ‘0’. In 
general, the comparators at the bottom will have a ‘0’ output, and the comparators at 
the top will have an output = ‘1’. The number of 0s at the bottom will be proportional 
to the input sample voltage and the ‘decoder’s’ job is simply to count the number of 0s 
and produce this number on the output (a 2n – to –  n decoder). Since all comparisons 
are performed simultaneously, it is sometimes called a parallel ADC.

It is easy to see why this technique is so fast; all comparisons take place at the same 
time and the only delay is caused by the signal propagation delays in the comparators 
and the decoder. It is also easy to see the disadvantage; an n-bit flash ADC requires 
2n comparators (minus 1); a 16-bit flash ADC would need 65,535 comparators. This 
is not possible to implement in silicon and for that reason, you will only find flash 
ADCs with ‘low’ resolution (8–10 bits). In the next section we will see how to remedy 
this. 

11.7 Pipeline ADCs 

To solve the problem with the large number of comparators in a flash ADC, pipeline 
ADCs are used. We will present the pipeline ADC with an example. First, a sample 
voltage of Ain = 2.65 V would be converted to 

round

(
2.65 

5.00/213

)
= 4342 = 10F616 = 1 0000 1111 01102 (11.6) 

in a 13-bit ADC with a +5.00-V reference voltage. (We keep this in mind to verify 
our result later.) If the ADC is the flash ADC in Fig. 11.11, we would need 213 – 1  
= 8191 comparators. With the pipeline ADC, we only need 36! (At the cost of some 
minor additional delay.) Figure 11.12 illustrates the pipeline ADC. The secret of the 
pipeline ADC is the electronics in the ‘stages’. Figure 11.13 illustrates the contents 
of stage 1.

In stage 1, Ain is first converted by a 3-bit (flash) ADC and the ADC output is then 
DA converted back to an analog voltage. This analog voltage is subtracted from Ain 

to get the ‘residual’ of the 3-bit AD conversion. This residual could be anywhere in 
the range ±ΔU/2; if it is negative, our circuit would add it to Ain. For that reason, 
we will assume that we have a truncating ADC (which is only a modification of 
the resistor network in Fig. 11.11) and then the residual will always be positive in 
the range 0 to ΔU = Uref /23. This residual is multiplied by 4 (22) before it is fed
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Fig. 11.11 Flash ADC

forward to the next stage. Hence, the maximum voltage fed forward to the next stage 
is 

Uref 

23 
× 22 = 

Uref 

2 
(11.7) 

(Which means that the reference voltage of the ADC in the next stage should be 
half of the reference voltage in the previous stage.) Our 3-bit ADC in Fig. 11.13 has 
a resolution of 5/23 = 0.625 V. The ADC output is |2.65/0.625| = 4 = 1002. This  
is also the input to the DAC and the DAC output will be 4 × 0.625 = 2.50 V and the
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Fig. 11.12 A pipeline ADC 

Fig. 11.13 Stage 1

residual is 2.65 – 2.50 = 0.15 V. The voltage fed forward to stage 2 is 4 × 0.15 = 
0.60 V. 

Stage 2 is identical to stage 1, except that the reference voltages have been divided 
by 2, see Fig. 11.14.

In stage 2, the ADC resolution is 2.5/8 = 0.3125 and the ADC output is 
|0.6/0.3125| = 1 = 0012. The DAC output is 1 × 0.3125 = 0.3125 V, and the 
residual is 0.6000 – 0.3125 = 0.2875 V. The voltage fed forward to stage 3 is 4 × 
0.2875 = 1.15 V. Stage 3 is identical to stage 2, except that the reference voltages 
have again been divided by 2, see Fig. 11.15.

The ADC resolution its now 1.25/8 = 0.15625 V and the ADC output is 
|1.15/0.15625| = 7 = 1112. The DAC output is 7 × 0.15625 = 1.09375 V, and 
the residual is 1.15 – 1.09375 = 0.05625 V. The voltage fed forward to the final stage 
is 4 × 0.05625 = 0.225 V. 

Stage 4 is a 4-bit flash ADC (rounding, not truncating) with a reference voltage 
that has again been divided by 2, see Fig. 11.16.
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Fig. 11.14 Stage 2; reference voltages have been divided by 2

Fig. 11.15 Stage 3

Fig. 11.16 Stage 4 

The resolution of this ADC is 0.625/24 and with an input voltage of 0.225, the 
output is round

(
0.225/

(
0.625/24

)) = 6 = 01102. Putting all the digital outputs in 
Figs. 11.13, 11.14, 11.15 and 11.16 together, we see that the 13-bit output is
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1 0000 1111 01102 = 4342 (11.8) 

Which agrees exactly with our prediction in Eq. (11.6). 
Notice first, that stages 1–3 used a 3-bit flash ADC, i.e., a total of 3 × (23 – 1)  

= 21 comparators. Stage 4 used a 4-bit flash which needs 24 – 1  = 15 comparators 
and hence the entire pipeline ADC design in Fig. 11.12 only needs a total of 36 
comparators (compared to the 8191 comparators that would be required in a ‘real’ 
13-bit flash ADC). 

The disadvantage of the design is that it will take a little longer to complete the 
conversion compared to a ‘real’ flash ADC. However, the extra delay is very small 
since it only depends on gate delays in the circuits (there is no clock involved). And 
second, we can make up for this delay; if the result from the first stage is ‘latched’ 
in a register, then we can start the conversion of the next sample as soon as the first 
stage is completed (samples are ‘pipelined’). Hence, the effective conversion time is 
¼ of the total conversion time of the ADC. 

11.8 Dual Slope ADCs 

The dual slope ADC is the dominating ADC technique used in DMMs. The dual slope 
ADC is also called the ‘integrating’ ADC. The reason is that it uses an integrator as 
part of the design. 

11.8.1 The Integrator 

Figure 11.17 illustrates an integrator. 
The op-amp in Fig. 11.17 has negative feedback, indicating that the inverting input 

is at virtual ground, and hence the current I must be U in/R. By definition, current is 
‘charge variation per time unit’:

Fig. 11.17 Integrator 
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I = 
Uin 

R 
= 

d Q  

dt 
=⇒ d Q  = I dt  = 

Uin 

R 
dt (11.9) 

=⇒ Q =
∫

I dt  = 
1 

R

∫
Uindt (11.10) 

The voltage across the capacitor is 

Uc = 
Q 

C 
= 

1 

RC

∫
Uindt (11.11) 

The op-amp output Uout = −Uc: 

Uout = −  
1 

RC

∫
Uindt (11.12) 

We conclude that the output of the circuit in Fig. 11.17 is the integral of the 
input signal and if the input signal is constant (positive), the output will be a linearly 
decreasing signal: 

Uout = −  
1 

RC 
· Uin · t (11.13) 

That is what we need to explain the dual slope ADC. 

11.8.2 The Dual Slope Circuit 

The dual slope ADC is illustrated in Fig. 11.18.
We can see an integrator (with output signal U I), a comparator, and a binary 

counter. There are two input voltages to the integrator: The input sample Ain and the 
reference voltage U ref. The switches S1 and S2 decide which voltage is fed to the 
integrator. For the design to work, U ref < 0, and |Ain| < |Uref|. Ain is assumed to be 
≥0 V.  

At time t = 0, the controller closes switch S1 and opens switch S2; Ain is the input 
signal to the integrator and hence the integrator output is−Ain · t/RC (see Eq. (11.13)); 
U I decreases linearly with time at a rate that depends on the input sample Ain. Since 
the integrator output is < 0, the comparator output will be ‘0’. Also, at t = 0, the 
binary counter is reset, and the clock starts to increase the binary counter value (from 
0). The integrator output decreases until the binary counter reaches its maximum 
count value and ‘overflows’ (after 2n clock pulses). This happens after time t1 and 
Fig. 11.19 illustrates the integrator’s and the comparator’s output and the counter 
value at t = t1.

When the control logic senses the overflow signal from the binary counter, it opens 
switch S1 and closes switch S2; the (negative) reference voltage will now discharge
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Fig. 11.18 The dual slope ADC

Fig. 11.19 Phase 1: charging

the capacitor, and the voltage on the integrator output will ‘turn upwards’. It is still < 
0 though, so the comparator output is still ‘0’. The binary counter just starts over 
from 0. Figure 11.20 illustrates the signals sometime after t1.

When the integrator output crosses the ‘zero line’ (after time t2) the comparator 
output goes high and when the control logic senses this, the clock to the binary 
counter is immediately stopped and the binary counter output stops on Dout, see  
Fig. 11.21.

We will now prove that this an ADC; by definition, it is an ADC if the relationship 
between the input sample Ain and the digital output Dout is 

Ain = Dout × 
Uref 

2n 
(11.14)
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Fig. 11.20 Phase 2: discharging

Fig. 11.21 Done!

After time t1 the integrator output will stop on 

UI,max = −  
1 

RC 
· Aint1 (11.15) 

During time t2, U ref will discharge the same voltage: 

UI,max = −  
1 

RC 
· Ureft2 = −  

1 

RC 
· Aint1 ⇒ 

t2 
t1 

= 
Ain 

Uref 
(11.16) 

We also know that the clock frequency is constant during phase 1 and phase 2. 
The clock frequency f c is 

fc = 
2n 

t1 
= 

Dout 

t2 
⇒ 

t2 
t1 

= 
Dout 

2n 
(11.17)
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Fig. 11.22 Phase 1: charging time is constant. Phase 2: discharging rate is constant 

Combining Eqs. (11.16) and (11.17) will give us Eq. (11.14) and we have proved 
that the circuit in Fig. 11.18 is indeed an ADC. 

Notice that the result above is independent of the R and C values which means 
that the design is independent of variations of these components (due to aging, 
temperature, etc.). We could have designed a much simpler solution, a single-slope 
ADC, but then the result would depend on the component values. The cleverness of 
the dual slope ADC is that it is independent of variations in R and C. 

From the design we can draw two conclusions: (1) It is not very fast. Charging 
and discharging of the integrator capacitor takes a ‘long’ time. (2) It is easy to design 
a dual slope ADC with high resolution; binary counters with many bits are easy 
to build. Hence, we have a slow ADC but with high-resolution potential. (Just the 
opposite of flash ADCs.) 

Figure 11.22 summarizes the dual slope function. During phase 1 the time is 
always constant (the time it takes for the binary counter to overflow). During phase 
2, the discharging rate is always constant (determined by the reference voltage). 

Slow but ‘high-resolution’ is exactly what we need in a DMM and DMMs are 
always based on dual slope ADCs. 

11.9 Level-Crossing ADCs 

Traditional sampling is based on a constant sampling time TS = 1/f S; samples 
are taken at regular intervals (see Fig. 11.1). This is sometimes referred to as 
‘synchronous’ sampling. Synchronous ADCs are characterized by a periodicity in 
time and equidistant quantization levels. Because of the fixed equidistant quantiza-
tion levels, each sample will have an uncertainty, an error, see Fig. 11.23, and the 
size of the error is determined by the ADC’s resolution: 

Max error = ±  
1 

2 
× ΔU = ±  

1 

2 
× 

Uref 

2N 
(11.18)
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The ‘problem’ with synchronous ADCs is when ‘sparse’ or ‘burst-like’ signals 
are analyzed. Sparse or burst-like signals are signals with long periods of no, or very 
low, activity, resulting in a lot of identical samples (that really doesn’t carry any 
net information). Sparse and burst-like signals are, for example, radar and speech 
signals and electro cardiograms, see Figs. 11.24 and 11.25. For these situations, asyn-
chronous sampling is sometimes used. Asynchronous sampling is also sometimes 
called level-crossing sampling. 

The level-crossing ADC (LC-ADC) was first suggested by Inose et al. in 1966 
[1] and in an LC-ADC the sampling is triggered by the signal activity rather than

Fig. 11.23 Synchronous sampling: uncertainty in voltage 

Fig. 11.24 An ECG signal is ‘sparse’
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Fig. 11.25 A speech signal is ‘burst-like’

by a fixed time interval. Instead of sampling regularly, the time between predefined 
level-crossings is registered. 

Hence, the ‘sample’ is now a ‘time’ and not a ‘voltage’. Also, the sample must 
indicate the ‘direction’ of the change (up or down). The sample is a ‘time with a sign’. 
If the sample is −0.346 μs, it means that the signal has decreased one level during 
the last 0.346 μs and if it is +0.346 μs it has increased. Figure 11.26 illustrates the 
signal from Fig. 11.23 sampled asynchronously. 

Notice the irregular sampling intervals; the sample density follows the signal 
derivative. But notice most of all, that there is now no uncertainty in the samples’ 
voltage levels! The voltage levels are predefined. The sampling problem has been 
transferred from quantizing voltage to quantizing time. And, as we will see in the 
next chapter, we can quantize time much more accurately than voltage. There are 
other advantages with the LC-ADCs too. First, for sparse and burst-like signals we 
take less samples and save memory. Second, since sampling is sparse, power-saving 
is implied since the sampling computer can revert to an ‘idle’, low-power mode 
between samples.

Fig. 11.26 Asynchronous sampling (‘level-crossing’): uncertainty in time 
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11.10 Equivalent Number of Bits 

The uncertainty in a synchronous sampling ADC is ±ΔU/2 (see Eq. (11.18)). We 
consider this uncertainty as the ‘noise’ in the ADC output with a ‘uniform’ probability 
distribution (see Sect. 13.5). The ‘power’ of this noise (produced in a 1-Ω resistor) 
is the variance of the corresponding stochastic variable, and it is (see Eq. (13.27)) 

Pnoise = σ 2 = 
1 

3 
×

(
ΔU 

2

)2 

= ΔU 2 

12 
(11.19) 

The ADC range is 2n × ΔU; a maximum range sinusoidal would have an ampli-
tude of 2n × ΔU/2. The power of that signal (produced in a 1-Ω resistor) would 
be 

Psignal = RMS2 =
(

A √
2

)2 

= 
1 

2

(
1 

2 
2nΔU

)2 

= 
1 

8 
22nΔU 2 (11.20) 

The signal-to-noise ratio of the ADC output (of the signal in Fig. 11.7) is  

SNR = 10 · log Psignal 

Pnoise 
= 10 · log 2

2nΔU 2 /8

ΔU 2 /12 
= 10 · log

(
3 

2 
· 22n

)
= 

= 10 · log 3 
2 

+ 20n · log 2 = 1.76 + 6.02n (11.21) 

This is the ‘raw’ signal-to-noise ratio in the ADC’s output. Circumstances can 
make this larger or smaller. External noise can make it smaller and signal processing 
tricks can make it larger. It is common to express the signal-to-noise ratio as the 
‘equivalent number of bits’ (ENOB); just solve for n in Eq. (11.21): 

ENOB = 
SNR − 1.76 

6.02 
(11.22) 

11.11 Oversampling 

11.11.1 As a Means to Reduce Noise 

According to the sampling theorem, a signal with bandwidth f b must be sampled 
at a rate higher than 2f b. Most systems sample faster than that and we define the 
oversampling rate (OSR) as how many times faster than the Nyquist limit 2f b we 
sample:
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OSR = 
fS 
2 fb 

(11.23) 

The obvious reason for oversampling is to get a better resolution in the time–space 
representation of the signal, but there are other advantages too. In Eq. (11.19), we 
found that the noise in the ADC output, due to the quantization, is ΔU 2/12. Due  
to aliasing, this noise ends up in the frequency band 0…f S/2. Hence, the spectral 
density of the quantization noise is 

p = ΔU 2/12 

fS/2 
= ΔU 2 

12 
· 2 

fS

[
W 

Hz

]
(11.24) 

The noise power in the frequency range of interest is the noise within the signal’s 
bandwidth f b: 

pb = p · fb = ΔU 2 

12 
· 2 fb 

fS 
= ΔU 2 

12 
· 1 

OSR 
(11.25) 

From Eq. (11.25) we can see that the noise power within the signal’s bandwidth 
decreases with the oversampling rate; oversampling improves the signal-to-noise 
ratio. This is illustrated in Fig. 11.27. In the first case, the signal is sampled at the 
Nyquist limit ( f S is just above 2f b) and in the second case, the signal is oversampled 
by a factor of K. 

According to Hauser [2], the SNR expression in Eq. (11.21), for a full-scale 
sinusoidal signal oversampled by a factor of K, is improved to

Fig. 11.27 The distribution of quantization noise 
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SNR = 6.02n + 1.76 + 10 log K (11.26) 

Or, if we express the oversampling rate in octaves L (K = 2L), then 

SNR = 6.02(n + 0.5L) + 1.76 dB (11.27) 

Oversampling an n-bit ADC by a factor of K = 2L generates the same quantization 
noise as an (n + 0.5L)-bit ADC sampled at the Nyquist rate! For example, an 8-bit 
ADC oversampling by a factor of 64 (= 26) will only produce quantization noise 
(in the signal bandwidth) corresponding to that of an 11-bit ADC sampling at the 
Nyquist limit. 

Another advantage of oversampling is that the anti-aliasing filter requirements 
are relaxed. If we sample at the Nyquist limit, we need a very ‘steep’ (high order) 
anti-aliasing filter, but if we oversample, we might even get away with a first-order 
filter, see Figs. 11.28 and 11.29. 

Fig. 11.28 Sampling at the Nyquist limit requires a high-order anti-aliasing filter 

Fig. 11.29 Oversampling relaxes the anti-aliasing filter requirements
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11.11.2 As a Means to Improve Resolution 

A 10-bit ADC with a reference voltage of +5 V has a resolution of 5/210 = 
4.88 mV. However, suppose our application needs a resolution of 1.0 mV. That 
would correspond to 

5 

2n 
≤ 1.0 · 10−3 ⇒ n > log2 5000 = 12.2877 . . .  bits (11.28) 

I.e., we would need a 13-bit ADC. According to our results in the previous section, 
that corresponds to an oversampling rate of 

10 + 0.5L = 13 ⇒ L = 6 ⇒ K = 26 = 64 (11.29) 

Hence, if we oversample by a factor of 64, we get the same quantization noise 
as a 13-bit ADC. However, the ADC itself still produces a 10-bit integer. The 13-bit 
number must be derived in ‘software’. 

If we add two n-bit numbers, the result is (in general) an (n + 1)-bit number. If 
we add m n-bit numbers, we get a (n + log2m)-bit number. 

If we oversample by a factor of 64 (26) we get 64 samples in the same time interval 
as if we take one sample at the Nyquist limit. If we add all these 26 n-bit samples,2 

we get a 10 + 6 = 16-bit number. If we divide this number by 28 (which is only a 
binary right-shift by three), we get the 13-bit number (with the 1.0 mV resolution) 
that we are looking for. This technique is called filtering and decimation and is used 
to increase the resolution of low-resolution ADCs. (It is also called interpolation 
sometimes because we read values between the original ADC’s levels.) 

11.12 Dithering 

The ‘filtering and decimation’ trick in Sect. 11.11.2 only works if there is enough 
noise in the ADC output. If there is no noise, we will get the same output each time, 
and filtering and decimation would not improve anything. In those cases, where the 
noise level is smaller than the ADC resolution, we must add noise to improve the 
resolution. This is called dithering. 

It seems contradictory that adding noise can improve things, but this has been 
known for a long time. During the second World War, airplane bombers were 
controlled by mechanical ‘computers’, and engineers were puzzled by the fact that 
the airplanes seemed to perform much better when flying than what was indicated by 
simulations in the laboratory. They concluded that this was attributed to the vibrations 
induced (by the engines) into the mechanical control system; the vibrations helped

2 We average them, but that includes adding them. 
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overcome the friction in the mechanical parts. This is the first known example of 
how noise injection can improve performance. 

We can use the same trick to improve the performance of an ADC; the quantization 
levels correspond to the mechanical system’s ‘friction’. By inserting noise, we can 
help the ADC to overcome this ‘friction’ and read between the quantization levels. 

An 8-bit ADC with a reference voltage of +5 V, has a resolution of 5/256 = 
19.53 mV. An input signal of 1.12 V will generate round(1.12/0.01953) = 57 at the 
ADC output. The quantization error is |1.12 − 57 · 0.01953| = 6.72 mV (an error 
of 0.6%). If there is no noise in the signal, there is nothing we can do about this; 
averaging samples won’t help, since we would get the same ADC output each time 
(= 57), see Fig. 11.30. 

However, by adding (Gaussian) noise to the signal, we force a variation of the 
output sample values. By averaging theses samples, we will be able to read ‘in 
between’ the quantization levels (interpolating) and get a more accurate estimate of 
Ain, see Figs. 11.31 and 11.32.

For example, adding Gaussian noise with a standard deviation equal to 2×ΔU to 
the 1.12-V signal in Fig. 11.30, and taking 64 samples, see Fig. 11.32, generated the 
sample distribution illustrated by the histogram in Fig. 11.33. Averaging the samples 
enables us to interpolate between the quantization levels. The sample average is 57.17 
which corresponds to a residual error of only 0.3%.

Fig. 11.30 If there is no noise, we get the same sample value every time 
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Fig. 11.31 Adding noise (Gaussian) 

Fig. 11.32 Adding noise will produce a variation in output samples
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Fig. 11.33 Sample distribution after dithering 

11.13 Sigma-Delta ADCs 

11.13.1 Background 

The Sigma-Delta ADC (∑Δ ADC) technology emerged from the Δ-modulation 
technique developed for data transmission. In a Δ-modulator, the actual sample 
value is not transmitted, but rather the difference between successive samples. If the 
transmitted value is positive, a positive signal change has occurred since the last 
sample and vice versa; a Δ-modulator tracks the signal’s derivative. (And hence, the 
receiving end must integrate the signal to restore it.) In fact, true Δ-modulators only 
transmit 1-bit values; 1s or 0s indicating a positive or negative signal change, see 
Fig. 11.34. 

This is implemented by feeding back the quantized signal via an integrator, see 
Fig. 11.35. 

The ‘recovered’ signal in Fig. 11.34 corresponds to the demodulator signal before 
the lowpass filter; the lowpass filter ‘smooths’ the edges of the recovered signal to 
recover the original signal exactly.

TheΔ-modulator was developed for the purpose of improving signal transmission 
and had nothing to do with ADCs. The modulator was later improved by Inose et al. 
[3] (still for the purpose of transmitting signals) and they also coined the term ‘∑Δ

modulation’. Here is how they reasoned: 
First, integration is a linear operation;

∫
a · x(t)dt = a

∫
x(t)dt , which indicates 

that it doesn’t matter if we integrate first and do ‘something else’ second, or vice 
versa, see Fig. 11.36. In Fig.  11.35, that means that the integrator at the receiving 
end can be moved to the front without changing the result, see Fig. 11.37.

Another consequence of the linearity of integration is that it doesn’t matter if we 
integrate first and add second:

∫
x(t)dt + ∫

y(t)dt = ∫
(x(t) + y(t))dt . Hence, in 

Fig. 11.37, we can replace the two integrators with just one if we move it inside the 
loop, after the summing circuit, see Fig. 11.38. 

Inose et al. named it ‘∑Δ modulator’ because ‘sigma’ refers to the summing 
component and ‘delta’ refers to the differentiator. However, it wasn’t until 1969
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Fig. 11.34 Δ-modulated signal

Fig. 11.35 Δ-modulator 

Fig. 11.36 Integration is a linear process; the order doesn’t matter 

Fig. 11.37 Modified Δ-modulator
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Fig. 11.38 Inose’s (et al.) modified Δ-modulator [3] 

that it was suggested that this modulator could be used explicitly for the purpose of 
analog-to-digital conversions [4]. 

It has been debated in the community whether the correct name is ‘∑Δ ADC’ 
or ‘Δ∑ ADC’. In 1990, the editor of Analog Dialog addressed this problem in an 
editor’s note and concluded that the correct name is indeed ‘∑Δ ADC’ and urged 
application engineers in the community to promote that name. That name is now 
well-established in the community. That was the historical background of the ∑Δ

ADC. Let’s look at why it has become such a popular ADC technology. 

11.13.2 Theory 

The ∑Δ ADC differs significantly from the other ADC techniques; it produces 
(primarily) a bitstream of 1s and 0s and the density of 1s in the bitstream is propor-
tional to the sample voltage. A post-processing, digital averaging filter will convert 
this bitstream to a conventional integer, but the primary output of a ∑Δ ADC is 
a bitstream whose density of 1s represents the sample voltage. The advantage of
∑Δ ADCs is that it offers extreme resolution (number of bits), but at the expense of 
speed. (It is a competitor to dual slope ADCs). But, as we will see later, it has another 
unique property; it will shape the quantization noise, boosting the SNR beyond the 
theoretical limit suggested in Eq. (11.21) and even beyond Eq. (11.27). Here we will 
only describe the first-order ∑Δ ADC and this description is mostly based on works 
by Kester [5] and Hauser [2]. Figure 11.39 illustrates a first-order ∑Δ ADC. 

If we disregard the digital filter for now, the first-order∑ΔADC has four compo-
nents: An analog summing circuit, an integrator, a comparator, and a 1-bit DAC. The

Fig. 11.39 First order ∑Δ ADC 
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output of the comparator will be a stream of logic 1s and 0s that will be sampled by 
the digital filter. The 1-bit DAC produces either +U ref or −U ref depending on the 
comparator’s output. Even though the DAC only has a two-level output, the conse-
quence of the negative feedback loop is that the average output of the DAC equals 
the input voltage x. If the input x increases, so will the average output of the 1-bit 
DAC which means that the stream of 1s from the comparator output increases; the 
density of 1s at the comparator output will be proportional to x. 

However, the cleverest feature of the ∑Δ design is its inherent ability to ‘shape’ 
the quantization noise, pushing it towards higher frequencies. To understand the 
noise-shaping, we re-draw Fig. 11.39; we idealize the 1-bit DAC and replace it 
with a transfer function = 1. The transfer function of the integrator is 1/s and the 
comparator is in fact a 1-bit ADC, which means that the comparator output is a 
(rough) digitized estimate of the input. Since we have previously modeled an ADC 
output as the input plus some quantization noise (see Fig. 11.6), we can re-write 
Fig. 11.39 as in Fig. 11.40. 

Figure 11.40 looks simple enough, but this is a very clever circuit! To see that we 
need to figure out what it does both to the signal x and to the noise q. We start with 
the signal; to see what happens to the signal, we temporarily cancel the noise; q(t) 
= 0. That gives us Fig. 11.41. 

The system’s transfer function is easily calculated: 

Y (s) = 
1 

s 
(X(s) − Y (s)) ⇒ sY (s) = X(s) − Y (s) 

(1 + s)Y (s) = X (s) ⇒ H (s) = 
Y (s) 
X (s) 

= 1 

s + 1 
(11.30)

Fig. 11.40 A simplified 
model of a first-order ∑Δ

ADC 

Fig. 11.41 To see what 
happens to the signal, we 
cancel the noise 
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Fig. 11.42 To see what 
happens to the noise, we 
cancel the signal 

From Eq. (11.30), we can see that as far as the input signal is concerned, the 
system is a first-order lowpass filter. 

To see how the system treats the noise, we cancel the input signal, see Fig. 11.42. 
The transfer function is now 

Y (s) = Q(s) − 
1 

s 
Y (s) ⇒ sY (s) = s Q(s) − Y (s) 

s Q(s) = Y (s) · (s + 1) ⇒ H (s) = 
Y (s) 
Q(s) 

= 
s 

s + 1 
(11.31) 

From Eq. (11.31), we can see that the system highpass filters the quantization 
noise! The system lowpass filters the signal and highpass filters the noise. That means 
that an even larger part of the quantization noise will be attenuated by a lowpass filter 
and that even less noise ends up within the signal’s bandwidth. This is illustrated in 
Fig. 11.43.

This means that the SNR (due to quantization noise) is increased beyond even 
Eq. (11.27). According to Hauser (1991) the SNR of a first-order ∑Δ is 

SNR = 6.02(n + 1.5L) − 3.41 dB (11.32) 

11.14 Extreme Sampling Rates 

There are a few ways to ‘boost’ the sampling rate to ‘extreme’ rates without using 
a flash ADC. The pipeline ADC is one solution, but it still contains too many 
analog components to be a favorite among ASIC designers of oscilloscope chips. 
Techniques have been developed that can take ‘traditional’ ADCs (such as SARs) 
beyond the sampling rate of what is indicated by the limit of individual ADCs. We 
will here describe the interleaved SARs technique and the equivalent-time sampling 
techniques.
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Fig. 11.43 The noise is pushed to high frequencies by the ∑Δ ADC

11.14.1 Interleaved SARs 

In an interleaved SAR (sometimes called time-interleaved), m SAR ADCs are 
synchronized to achieve an effective sampling rate that is m times higher than the 
sampling rate of each individual ADC. Figure 11.44 illustrates an interleaved SAR 
with m = 4.

Each n-bit SAR ADC has a sample and hold circuit, and the ‘sample’ input signals 
are phase-shifted 90° relative to each other (360°/m in the general case). The output 
of each ADC is connected to a multiplexer that interleaves the ADCs’ outputs to the 
common Dout. Figure 11.45 illustrates the timing diagram of the clock signals and 
Dout.

In Fig. 11.45 we can see that a new Dout is produced at a speed four times higher 
than the output of each individual ADC. This is the ADC technique used in advanced 
high-speed digital oscilloscopes (such as Tektronix’s ‘Mixed Signal Oscilloscopes’). 

11.14.2 Equivalent-Time Sampling 

Another technique used to boost the sampling rate in oscilloscopes is equivalent-
time sampling (as opposed to real-time sampling). With equivalent-time sampling, 
extreme sampling rates can be achieved, but the restriction is that it only works 
for periodic signals (which is what we have in most cases anyway). Figure 11.46 
illustrates the idea behind equivalent-time sampling.
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Fig. 11.44 Time-interleaved SARs

Fig. 11.45 The throughput speed is four times higher
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Fig. 11.46 Equivalent-time sampling 

The top graph illustrates traditional, real-time sampling where the time between 
samples is TS and that is exactly what you see on the oscilloscope screen (you see the 
‘real signal’). The middle graph illustrates equivalent-time sampling. In equivalent-
time sampling, the scope takes a sample, the ADC converts it and then the scope 
waits for the next trigger condition to occur. At the next triggering, it waits some 
time Δt before it takes the next sample. 

Each time the scope triggers, it adds another Δt delay before sampling. On the 
scope display, samples are plotted only Δt apart, making Δt the equivalent-time 
sampling period and f S = 1/Δt. The ADC will have plenty of time between samples 
and the sampling rate is no longer limited by the ADC’s conversion time, but by how 
small (and accurate) we can make Δt. Equivalent-time sampling oscilloscopes with 
f S > 10 GS/s are available. But remember, the equivalent-time sampling trick only 
works for periodic signals. 

Equivalent-time sampling oscilloscopes are often called just sampling oscillo-
scopes. 

11.15 Solved Problems 

Problem 11.1 Consider Fig. 11.47. What is Dout?

Solution The temperature sensor resistance is 100
(
1 + 3.85 · 10−3 · 50) = 

119.25 Ω. U− = 1 · 1000/(1000 + 119.25 + 1000) = 0.47187 volt. U+ = 
1 · 1119.25/2119.25 = 0.52813 = 0.47187 + 0.05626 (CM + NM) volt.
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Fig. 11.47 Measuring temperature with an ADC

Fig. 11.48 Thermocouple reading with an ADC 

The common mode suppression of the instrumentation amplifier is FCM = 
10/1060/20 = 0.01. The ADC input signal is Ain = 10 · 0.05626 + 0.01 · 0.47187 = 
0.56732, and hence, the ADC output is Dout = round

(
0.56732/

(
5/216

)) = 7436. 

Problem 11.2 In Fig. 11.48, an ADC is used to read the temperature from a type T 
thermocouple. 

a What is the temperature range of this system? b How many bits resolution does 
the ADC need, to resolve temperature changes of the order of 0.1 °C? 

Solution a The maximum input to the ADC is +5.00 V which means that the 
maximum thermocouple emf is 5.00 mV. First, we do a cold junction compensation; 
a google search for a ‘thermocouple type T chart’ gives first that 20 °C corresponds 
to an emf of 0.790 mV. Adding 5 mV to that gives us a maximum emf of 5.790 mV, 
corresponding to 131 °C (see thermocouple table). Hence, the temperature range (for 
the hot junction) is 20–131 °C. 

b The thermocouple chart has a 1 °C resolution only, but the smallest emf change 
between two adjacent temperatures is 39 μV. This would indicate a 3.9 μV change in 
the thermo emf for a 0.1 °C change in temperature (assuming a linear interpolation). 
This would be amplified to 3.9 mV at the ADC input; the ADC needs to be able to 
resolve input changes of 3.9 mV: 

5 V  

2n 
≤ 3.9mV  ⇒ n = 11
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Problem 11.3 If we have an 8-bit ADC with reference voltage+ 5.00 V in Fig. 11.48, 
and the digital output is 0xB3, in what temperature range is the temperature at the 
hot junction? 

Solution ΔU = 5/256 = 0.01953 V. 0xB3= 179⇒ Ain = (179 ± 0.5)×0.01953 V. 

3.486 V ≤ Ain ≤ 3.506 V 

3.486 mV ≤ emf ≤ 3.506 mV 

CJC (add 0.790 mV): 4.276 mV ≤ emf ≤ 4.296 mV 

The type T thermocouple emf table gives that this thermo emf corresponds to 
approximately 100 °C. A linear interpolation between 99 and 101 °C gives that 
T = 21.505 × emf + 7.991 ◦C. Hence, we can convert the emf values above to a 
temperature range: 

99.9 ◦C ≤ Thot ≤ 100.4 ◦C 

Problem 11.4 In Fig. 11.49, an ADC is used to measure time. a Prove that Δt is 
proportional to Dout. b If Dout = 0x3AC, what is Δt? 

Solution First, 0x3AC = 940. The charge on the capacitor is Q = I ·Δt = UC ·C = 
Ain · C. Hence,

Δt = 
C 

I 
× Ain = 

C 

I 
× Dout × 

Uref 

2n 
= 

100 · 10−9 

1 · 10−3 · 940 · 5 

212 
= 114.7 μs 

Problem 11.5 The signal x(t) = 2(cos(100t − 0.875) + 1) is sampled at a rate of 
150 S/s. 

a Is the sampling theorem met? 
b If the sampling starts at t = 0, what are the exact values of the first three samples 

(after the sample and hold unit, but before the ADC)? 
c What are the values of these three samples after the ADC, if we use a 12-bit 

ADC with a reference voltage of +5 V?

Fig. 11.49 Measuring time 
with an ADC 
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d If the ADC produces the integer 2075, in what range is then the input sample 
voltage? 

Solution a f = 100/2π = 15.9 Hz < 150/2 = 75 Hz. Yes, the sampling complies 
with the sampling theorem. 

b x(0) = 2(cos(0 − 0.875) + 1) = 3.282 V x(1) = 2(cos(100/150 − 0.875) + 
1) = 3.957 V. x(2) = 2(cos(100 · 2/150 − 0.875) + 1) = 3.794 V. 

c ΔU = 5/212 = 1.22 mV ⇒ 3.282/0.00122 = 2689 3.957/0.00122 = 
3242 3.794/0.00122 = 3108. 

d x = ΔU · (Dout ± 0.5) = 0.00122 · (2075 ± 0.5) ⇒ 2.5323 < x < 2.5336 V. 

Problem 11.6 A scientist uses instruments in a ‘NIM’ rack and one of the instruments 
is an ADC module. To use it, he/she needs to know what the sampling rate of this 
ADC is. However, the module is old, and nobody knows where the manual is. The 
scientist decides to figure out the sampling rate by performing a simple experiment. 

He/she first connects a 10 kHz sinusoidal signal from a waveform generator to 
the ADC input. The computer, reading the samples from the NIM module, correctly 
recreates the 10 kHz sine signal. 

Next, the scientist slowly increases the frequency of the sine signal and when the 
sine wave frequency reaches 190 kS/s, the computer again displays a 10 kHz sine 
signal. 

a What is the sampling rate of the ADC module? 
b If the frequency is increased even more, what would be the next sine frequency 

that the computer would interpret as 10 kHz? 

Solution a Since the frequency was increased slowly, 190 kHz, was the first 
frequency that produced 10 kHz as an aliasing signal. For a signal with frequency 
f 0, sampled at f S, aliasing frequencies appear at nf S ± f 0. Hence, the first one is 1 · 
f S – 10  = 190 ⇒ fS = 200 kS/s. 

b The second one is 1 · f S + 10 = 200 + 10 = 210 kHz. 

Problem 11.7a In an experiment, a 10-bit AD converter was used to measure a 
voltage X, see Fig. 11.50. In this measurement, Dout was consistently = 852 (dec). 
Find X and the quantization uncertainty: In what range is X?

Solution X = Dout · Uref 
2n ± 1 2 · Uref 

2n X = 852 · 5 
210 ± 1 2 · 5 

210 X = 4.1602 ± 0.0024 V 

Problem 11.7b It was decided that the uncertainty was too high. Unfortunately, they 
did not have an ADC with higher resolution. To overcome the problem, they added 
some noise (zero mean, Gaussian) to X, see Fig. 11.51. By doing that, Dout varied 
from sample to sample. Instead of taking just one sample, they took 16 samples and 
added them. The 16 samples were: 855, 850, 847, 855, 851, 851, 850, 850, 852, 854, 
854, 853, 851, 854, 851, 851.

Make a new estimate of X from these samples. 

Solution Adding 16 10-bit numbers gives us a 10 + log216 = 14-bit number. The 
14-bit sample is (= the sum of the samples) 855 + 850 + 847 + … 851 = 13,629. 
Hence:
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Fig. 11.50 AD conversion of sample

Fig. 11.51 AD conversion with dithering

X = 13629 · 5 

214 
± 

1 

2 
· 5 

214 
= 4.15924 ± 0.00015 V
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Chapter 12 
Time-to-Digital Converters 

Abstract Accurate time measurements are critical in many disciplines such as laser, 
atomic, and nuclear physics and we need a way to convert time to a digital number 
with extreme resolution and extreme accuracy. That is what a TDC does (Time-to-
Digital converter). This chapter presents the two dominating TDC techniques: the 
Vernier principle and time stretching. 

12.1 Introduction 

A lot of experiments in a physics laboratory depend on accurate time measurements 
(decay times, time-of-flight mass spectroscopy, reaction times, etc.). And, just as in 
the ‘voltage problem’ addressed in the previous chapter, we prefer to measure time 
in digital units. Since time is by nature an analog quantity, we will need a ‘Time-to-
Digital Converter’, a TDC. There are basically two situations we encounter; either 
we need to measure the time between a start and a stop signal or, we need to measure 
the duration of a pulse. Some TDCs are designed for the first case and others are 
designed for the latter case, but that is not important; one case can easily be translated 
to the other case with some simple digital electronics. For example, a ‘start’ and a 
‘stop’ signal pair can be translated to a pulse with just an xor gate, see Fig. 12.1.

Similarly, a pulse signal can easily be translated to a start/stop pair with two D 
flip-flops, see Fig. 12.2.

(Notice that in both Figs. 12.1 and 12.2, both signals suffer from the same gate 
delay.) Even if we usually prefer digital TDCs, some are analog, or at least ‘semi-
analog’. A common semi-analog TDC technique is to integrate the pulse and then use 
an ADC to digitize the time, see Fig. 12.3. (See Fig. 11.7 for an integrator circuit.)

The main disadvantage of the analog TDC is that it contains analog circuitry that 
doesn’t scale very well; all-digital circuitry scales much better in VLSI designs than 
mixed-signal circuitry. For that reason, TDCs are almost always counter based. That 
means that they in principle, simply count the pulses from an oscillator during the 
start and stop interval (or during the pulse duration).
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Fig. 12.1 From start/stop to 
pulse (an SR latch would 
work too)

Fig. 12.2 Pulse to start/stop 
pair

Fig. 12.3 Analog TDC

∫ 

Figure 12.4 looks simple enough but notice that the start and stop signals are 
asynchronous (to each other and to the reference clock). Figure 12.5 illustrates a 
typical timing diagram. 

If we assume that we have a positive edge-triggered counter, we can see from 
Fig. 12.5 that the start-stop interval T is

Fig. 12.4 Digital TDC
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Fig. 12.5 Timing diagram of asynchronous TDC

T = N · tc + ∆tstart − ∆tstop (12.1) 

(Where N = 4 in Fig.  12.5). Since both ∆tstart and ∆tstop ∈ [0, tc], the inherent 
quantization error of counting TDCs is ± tc. Hence, the quantization error scales 
with the reference clock’s period. However, increasing the clock frequency raises 
two other issues; first, the power consumption increases. Second, there is a limit to 
the maximum oscillator frequency that can be implemented in CMOS technology. 
Other tricks must be implemented to overcome the inherent quantization uncertainty. 
For example, if the signal is repetitive, we could average several measurements; if 
we average n measurements the uncertainty will decrease to tc/ 

√
n (see Eq. (13.18)). 

For non-repetitive transients, more advanced tricks are needed. 
Most of the tricks improve the resolution by interpolating between the clock cycle 

pulses (without increasing the clock frequency). These techniques are referred to as 
Vernier time measurements. The name refers to the inventor of the metric caliper, 
Pierre Vernier (1580–1637), which can indeed perform a mechanical interpolation 
between the millimeter markers of a ruler; it has a ‘Nonie’ scale (Fig. 12.6). 

Fig. 12.6 A Vernier caliper
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So how can we implement a Nonie scale in our TDC in Fig. 12.4? In fact, the 
Nonie scale is what characterizes, or even defines a TDC; the counter gives you the 
‘coarse’ time only, but a TDC will also give you the ‘fine structure’ (interpolation). 

12.2 The Vernier Principle 

Even if all interpolation techniques could be referred to as ‘Vernier’ methods, the 
one presented here is the one that is most often implied when we refer to the ‘Vernier 
method’. In this method, interpolation between clock cycles is implemented by 
engaging two oscillators with slightly different frequencies, f 1 = 1/T 1 and f 2 = 1/T 2, 
respectively, where f 2 > f 1 (slightly larger). There are two different implementations 
of the Vernier TDC principle: With or without a reference clock. 

12.2.1 Vernier TDC with no Reference Clock 

Figure 12.7 illustrates the timing diagram of the first method (not using a reference 
clock) [1]. 

Oscillator 1, with frequency f 1 < f 2, starts on the positive edge of the start signal. 
The second oscillator with frequency, f 2, is triggered by the positive edge of the stop 
signal. Since f 2 > f 1, the pulses from the f 2 oscillator will eventually ‘catch up’ with 
the pulses from the f 1 oscillator. When this happens, both oscillators are stopped 
(‘moment of coincidence’) and at this point both oscillators have generated the same 
number of pulses, i.e., N1 = N2 = N. From Fig.  12.7, we can see that

∆t = N1T1 − N2T2 = N (T1 − T2) = N · ∆T (12.2)

Fig. 12.7 The Vernier TDC (no reference clock) 
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From Eq. (12.2) we can see that the time resolution depends on the difference ∆T 
in the clocks’ cycle periods; we can read values in between the clock pulses of the 
individual clocks. 

12.2.2 Vernier TDC with a Reference Clock 

The alternative approach is to use a reference clock that runs asynchronously to the 
Vernier clocks, see Fig. 12.8. The reference clock’s cycle period is T ref and we make 
the Vernier clocks’ cycle period slightly longer; T vern = T ref(1 + 1/N), where N is 
an integer that determines the overall time resolution. The ‘start’ Vernier clock starts 
on the positive edge of the pulse and the ‘stop’ Vernier clock starts on the negative 
edge. tstart is the time it takes for the start clock’s edges to align with the reference 
clock’s edges and tstop is the time it takes for the stop clock’s edges to align with the 
reference clock’s edges. 

From Fig. 12.8, we can see that

∆t + tstop = tstart + tdiff
∆t = tstart + tdiff − tstop = n0Tvern + n1Tref − n2Tvern (12.3) 

where n0 is the number of T vern-pulses counted during tstart, n1 is the number of 
T ref-pulses counted during tdiff, and n2 is the number of T vern-pulses counted during

Fig. 12.8 The Vernier TDC (with reference clock) 
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tstop. If we insert T vern = T ref(1 + 1/N), we get that

∆t = Tref
(
n0

(
1 + 

1 

N

)
+ n1 − n2

(
1 + 

1 

N

))
= 

= Tref
(
n1 + (n0 − n2)

(
1 + 

1 

N

))
= 

= Tref(n1 + n0 − n2) + 
Tref 
N 

(n0 − n2) (12.4) 

and we can see from (12.4) that this design offers a time resolution of T ref/N. We can 
easily translate a specified time resolution into a difference in clock cycle periods: 

Tvern = Tref
(
1 + 

1 

N

)
=⇒ ∆T = Tvern − Tref = Tref × 

1 

N 
(12.5) 

12.3 Delaylines 

If you design a TDC in CMOS technology (VLSI designers) there are a few alternative 
implementations to the Vernier techniques in Sect. 12.2. Figure 12.9 illustrates the 
basic idea. 

The start signal is connected to the first of an array of cascaded buffers. The 
start signal’s high level will propagate through the chain of buffers at a speed corre-
sponding to each buffer’s gate delay τ delay. The output of each buffer is the data input 
to an edge-triggered flip-flop. The flip-flops are latched by the stop signal arriving 
sometime later. When the stop signal arrives and latches the flip-flops, some of them 
will have a high (‘1’) data input, and some will have a low (‘0’) data input, depending 
on how far the start edge has propagated through the buffer chain when the stop edge 
appears. This is illustrated in Fig. 12.10.

When the stop signal latches the flip-flops, the flip-flops’ output will be a ‘ther-
mometer’ bit code representing how far the start signal’s positive edge has propa-
gated. The resolution of this TDC is τ delay. Notice that it doesn’t involve a counter/

Fig. 12.9 Delayline for clock cycle subdivision 
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Fig. 12.10 The stop signal latches the flip-flops

oscillator. This means that the range is limited to the number of buffers (=N); the 
range is N · τ delay. However, it is all-digital and therefore scalable. Since time-to-
digital conversion in this case is immediate, it is sometimes referred to as the ‘flash’ 
TDC. 

Figure 12.9 represents the ‘basic’ tapped delayline; the resolution depends on 
the buffers’ delay τ delay. The ‘next-generation’ TDCs take this technique one step 
further; the resolution depends on the difference in buffers’ delay. This is illustrated 
in Fig. 12.11. 

The buffers in the top delayline have a delay of τ 1 that is slightly longer than 
the delay τ 2 of the buffers in the bottom delayline; τ 1 > τ 2. Hence, when the start 
and stop signals arrive, the stop signal will propagate faster through the delayline 
than the start signal does. If the start signal is leading, 1s will be latched into each 
flip-flop when the stop signal (= latch signal) arrives. At some point though, the stop 
signal will catch up and pass the start signal (since it propagates faster) and from that 
point on, 0s will be latched into each flip-flop. The ‘temperature’ code formed by the 
flip-flops’ outputs represents the time difference between the arrivals of the start and

Fig. 12.11 A ‘Vernier’ delayline [2] 
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stop signal and the resolution is now equal to the difference in the delay between the 
buffers in the first delayline and the second delayline. 

12.4 Time Stretching 

Figure 12.12 illustrates the ‘basic’ digital time measurement system. We learned in 
Sect. 12.1 that this system has an inherent uncertainty of ±1 tc, i.e.,

∆t
∆

= (N0 ± 1) × tc (12.6) 

if we count N0 pulses during∆t; the resolution is tc and the uncertainty is ± tc. Next,  
suppose that we could stretch the time interval by a factor of k (Fig. 12.13). 

If we measure the stretched time interval ∆T with the same instrument as in 
Fig. 12.12, we get

∆T
∆

= (N1 ± 1) × tc = N1tc ± tc (12.7) 

(if we count N1 pulses during ∆T ). But, since ∆t = ∆T /k, then

∆t
∆

= 
1 

k
∆T
∆

= N1 
tc 
k 

± 
tc 
k 

(12.8) 

Hence, if the time interval is stretched by a factor of k, both the resolution and 
the uncertainty improve by a factor of k. Figure 12.14 illustrates how a pulse can be 
stretched.

In Fig. 12.14, i1 >> i2. The time stretching is a two-step process. In step one, 
the switch is closed during ∆t and the capacitor is charged by a constant current i1

Fig. 12.12 A basic digital time measurement system 

Fig. 12.13 A pulse stretcher 
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Fig. 12.14 Time stretching [3]

– i2. The comparator’s output goes high immediately after the switch is closed. The 
switch opens when the time interval ∆t expires and at that time the voltage across 
the capacitor is 

UC = 
Q 

C 
= 

1 

C

 
(i1 − i2)dt  = 

1 

C 
(i1 − i2) · ∆t (12.9) 

When the switch opens, the capacitor is discharged by the constant current i2. The  
capacitor will be discharged after some time Td : 

1 

C 
i2Td = 

1 

C 
(i1 − i2) · ∆t =⇒ Td = 

i1 − i2 
i2 

· ∆t =
(
i1 
i2 

− 1
)

· ∆t (12.10) 

The comparator’s output will be high for a time

∆t + Td = ∆t +
(
i1 
i2 

− 1
)

· ∆t = 
i1 
i2

∆t (12.11) 

Hence, if we compare the comparator’s output with the input pulse, we can see 
that the time interval has been stretched by a factor of k = i1/i2, see Fig. 12.15. 

Time resolutions of <10 ps have been reported [4] with the time stretching tech-
nique and is used in, for example, pulsed time-of-flight laser radars with a 4.5 mm 
precision over a range from 1.5 to 370 m [5].
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Fig. 12.15 Pulse stretching 

Fig. 12.16 ‘Basic’ TDC 

12.5 Solved Problems 

Problem 12.1 A ‘basic’ TDC has a reference clock of 100 MHz, see Fig. 12.16. 
a If you want to detect/measure a pulse of a few hundred ns with a resolution 

of 50 ps, how much would you have to stretch it if you are going to use the TDC in 
Fig. 12.16? 

b Suggest a Vernier solution for this problem, assuming the reference clock above 
is one of the Vernier clocks.
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Solution a The resolution of the ‘basic’ TDC in Fig. 12.16 is 1/100 · 106 = 10 ns. 
After stretching: 10 ns/k = 0.050 ns ⇒ k = 200 times. 

b ∆t = T 1 – T 2 ⇒ 0.05 = 10 ns – T 2 ⇒ T 2 = 9.95 ns ⇒ f2 = 100.5 MHz. 

Problem 12.2 In a physics lab, scientists are ionizing a graphite sample and they 
want to know the distribution of carbon-12 and carbon-13 in the sample. They use a 
1-m-long time-of-flight mass spectrometer where the ions are accelerated by 1 kV, 
see Fig. 12.17. They have a TDC that measures the time between the ionization pulse 
(= ‘start’) and the detector pulse (‘stop’). 

In this experiment, they used the basic TDC in Fig. 12.16 to measure the flight 
times. After how many ‘counts’ will the carbon-12 and carbon-13 ions show up on 
the mass spectrum? 

Solution The ions are accelerated by a voltage U = 1 kV, which means that they 
enter the field-free flight area with a kinetic energy of qU. Hence, 

qU = 
1 

2 
mv2 ⇒ v = 

/
2qU 

m 

The flight time is 

t = 
s 

v 
= 

1 m  

v 
= v−1 =

/
m 

2qU 

The flight times for the two carbon isotopes are 

t13 =
/

13 · 1.66 · 10−27 

2 · 1.602 · 10−19 · 103 = 8.207 µs

1 kV 

13C 12C 

1 m 

+ – 

Fig. 12.17 Time-of-flight mass spectrometer 
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t12 =
/

12 · 1.66 · 10−27 

2 · 1.602 · 10−19 · 103 = 7.885 µs 

The basic TDC has a resolution of 10 ns, so the flight times correspond to 8.207/ 
0.01 = 820 counts and 7.885/0.01 = 788 counts, respectively. 
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Chapter 13 
Statistics 

Abstract This chapter summarizes the basic concepts of statistics with the only 
purpose of laying the ground for the next chapter (about measurement uncertainty). 
Basic statistical concepts are defined, such as stochastic variables and the most 
common probability distribution functions (normal, uniform). The expectation value, 
the variance, and the standard deviation of a stochastic variable are defined, and the 
difference between the population variance and the sample variance is stressed. This 
leads to interval estimations, the Student-t distribution, and the central limit theorem. 

13.1 Introduction 

In any measurement, noise is omnipresent (see Chap. 2); it is only a matter of what 
level of accuracy you are considering. Noise will cause a ‘flickering’ on the display 
of a voltage meter; if there is no flickering, it only means that the noise is less than the 
voltage represented by the least significant digit on the display. Figure 13.1 illustrates 
our signal model of a DMM measurement.

Noise adds to the system in either normal or common mode; the DMM’s sample 
value is in general: 

Um = U0 + UNM (+FCM · UCM ) (13.1) 

However, in the following, we will disregard the CM residual in the output and 
only focus on the normal mode noise. If we assume that the noise (UNM) is ‘white 
Gaussian’ (variance σ 2), then the voltage measured by the DMM is 

UNM ∈ N(0, σ  ) ⇒ Um ∈ N(U0, σ  ) (13.2) 

Figure 13.2 illustrates the density function of the measured voltage.
Hence, the conclusion is that the voltage we measure with the DMM is a stochastic 

variable. The density function expression is
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Fig. 13.1 Signal model

Fig. 13.2 The sample is a stochastic variable

f (Um) = 1 

σ 
√
2π 

· e− (Um−U0)
2 

2σ 2 (13.3)



13.2 Expectation and Variance 281

13.2 Expectation and Variance 

Usually, we don’t need the density function expression; instead, we use three param-
eters that characterize the stochastic variable; the expectation value, the  variance, 
and the standard deviation: 

The expectation value of a stochastic variable X is defined as 

E(X ) =
 ∞ 

−∞ 
xf (x)dx = μ (13.4) 

We will refer to μ as the mean value. In our example in Fig. 13.2, E(Um) = U0. 
The variance of the stochastic variable X is defined as 

V(X ) = E
{
(x − μ)2

} =
 ∞ 

−∞ 
(x − μ)2 f (x)dx = σ 2 (13.5) 

The variance is a number that tells us something about the ‘spread’ of the values 
around the expectation value. However, the variance unit is ‘voltage squared’ [V2] 
and when we talk about ‘spread’, it makes more sense to express spread in the same 
unit as the stochastic variable. For that reason, we have the standard deviation as the 
square root of the variance: 

σ = √
V(X ) (13.6) 

We also need to find expressions for the expectation and variance values of some 
functions of X. First, we multiply X by a constant a: 

Y = aX (13.7) 

The expectation value of Y is E(aX), but since the expectation is an integral, which 
is a ‘linear’ operation, E(aX) = aE(X) and hence: 

E(Y ) = aE(X ) = aμ (13.8) 

We also need the variance of Y: 

V(Y ) = E
{
(Y − E(Y ))2

} = E
{
(aX − aμ)2

} = E
{
a2 (X − μ)2

} = 

= a2 E
{
(X − μ)2

} = a2 V(X ) = a2 σ 2 (13.9) 

The next function of stochastic variables that we need to analyze is the sum of 
two variables: 

Y = X1 + X2 (13.10)
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It is important for the following that the stochastic variables X1 and X2 in 
Eq. (13.10) are  iid, i.e., independent, and identically distributed. We justify that 
assumption by remembering that X1 and X2 are two DMM samples and they are iid 
because we assume that the first sample has no influence on the second sample, which 
seems reasonable. Under what circumstances would they not be iid? Well, if we look 
at the sample and hold circuit in Fig. 11.2, they could be dependent if the ‘holding’ 
capacitor is not allowed enough time to charge/discharge between samples, i.e., if we 
sample too fast, but that would be a design flaw in the measurement system. Since 
the samples come from the same ‘population’ in a measurement, they are always 
identically distributed. 

The expectation of Y is 

E(Y ) = E(X1 + X2) = E(X1) + E(X2) = μ + μ = 2μ (13.11) 

We can easily see how this result can be generalized for a sum of N variables: 

Y =
∑N 

i=1 
Xi ⇒ E(Y ) = N μ (13.12) 

The variance of Y is 

V(Y ) = V(X1 + X2) = E
{
(X1 + X2 − 2μ)2

} = E
{
((X1 − μ) + (X2 − μ))2

} = 

= E
{
(X1 − μ)2 + (X2 − μ)2 + 2 · (X1 − μ) · (X2 − μ)

} = 

= E
{
(X1 − μ)2

}+ E
{
(X2 − μ)2

}+ 2 · E{(X1 − μ)(X2 − μ)} = 

= V(X1) + V(X2) + 2 cov(X1, X2) = σ 2 + σ 2 + 0 = 2σ 2 (13.13) 

where the last equal sign comes from the assumption that our samples are iid; the 
covariance of iid variables is zero. Again, we can easily generalize this result: 

Y =
∑N 

i=1 
Xi ⇒ V(Y ) = N σ 2 (13.14) 

13.3 Unbiased Estimators 

In a typical measurement we try to estimate the value of some unknown parameter 
and our estimation is usually based on sampled data (not always). The ‘estimator’ is 
‘unbiased’ if its expectation value equals the mean. For example, the best unbiased 
estimator of the mean is the average:
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Average: X = 
1 

N 
·
∑N 

i=1 
Xi (13.15) 

This is an unbiased estimator of the mean because: 

E
{
X
} = E

 
1 

N 

N∑
i=1 

Xi

 
= 

1 

N 
E

 
N∑
i=1 

Xi

 
= 

1 

N 

N∑
i=1 

E{Xi} = 

= 
1 

N

∑N 

i=1 
μ = 

1 

N 
N μ = μ (13.16) 

(We can change places between the ‘sum’ and the ‘expectation’ operators since 
integration is a linear operation). We also need the variance of the average: 

V
(
X
) = V

(
1 

N

∑N 

i=1 
Xi

)
= 

1 

N 2 
V
(∑N 

i=1 
Xi

)
= 

1 

N 2 
N σ 2 = 

σ 2 

N 
(13.17) 

where we have used the results from Eqs. (13.9) and (13.14). We now define the 
standard error as the standard deviation of the mean: 

σX =
/
V
(
X
) = 

σ √
N 

(13.18) 

Hence, if our ‘raw’ samples have the distribution N(μ, σ ), the average of N 
samples has the distribution 

X ∈ N(μ, σ/ √N) (13.19) 

Notice that the mean value μ is ‘what we are looking for’, and the parameter 
value that we try to estimate (by our samples); μ is the ‘signal level’. σ represents 
the ‘noise’ in our samples. Hence, we can define the signal-to-noise ratio (for normal 
mode coupled noise) as 

SNR(X ) = 
μ 
σ 

(13.20) 

The signal-to-noise ratio for the averaged value is then: 

SNR
(
X
) = μ 

σ/
√
N 

= √
N 

μ 
σ 

= 
√
N × SNR(X ) (13.21) 

From Eq. (13.21) we conclude that averaging improves the SNR by a factor of √
N . Figure 13.3 illustrates a sinusoidal signal superimposed with white Gaussian 

noise and what it looks like after 4 and 64 averages, respectively.
Equation (13.15) gives us the unbiased estimator for the mean. We also need an 

unbiased estimator for the variance; in most cases we will not know the variance 
and we need to estimate it. We refer to σ 2 as the population variance (the ‘true’
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Fig. 13.3 Averaging improves the SNR

variance), and we estimate it with the sample variance, s2: 

s2 = 1 

N − 1
∑N 

i=1

(
Xi − X

)2 
(13.22) 

(The reason we are using N−1 and not N in the denominator in (13.22) is because 
we lose one degree of freedom when we use X instead of μ). 

13.4 Interval Estimations 

The estimator in Eq. (13.15) is ‘only’ a ‘point estimator’; it has some ‘uncertainty’. 
In a typical measurement, you don’t report only the point estimation, you report an 
‘interval estimation’. You report an interval x0 = x

∆ ± U , but remember that we are 
dealing with stochastic variables here that in most cases are normally distributed, or 
close to normally distributed. That implies that to be 100% sure of that x0 is in the 
interval x0 ± U , U would have to be infinitely large, and that information would be 
useless (since x0 is obviously in the interval ±∞). For that reason, we will have to 
settle with a U value that does not guarantee 100% inclusion of x0. This is expressed
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Fig. 13.4 The 68% confidence interval 

as a confidence level: ‘I am  X % sure that x0 is in the interval x0 ± U ’. The larger U is 
the more ‘confident’ we are that x0 is within the interval (the ‘confidence interval’). 
For example, if we take one sample from a normal distribution, we can be 68% 
confident that the sample will be in the interval Xm = U0 ±σ = μ± σ , see Fig. 13.4. 

However, we don’t really want to know the probability that our sample is in 
a certain interval; our objective with the measurement is to estimate the unknown 
parameter μ; we want to find an interval for μ , not for Xm. Well, we can remedy 
that with some simple probability juggling. The fact that Xm is in the interval μ ± σ 
with a probability of 68%, can be expressed as 

P(μ − σ <  Xm < μ  + σ ) = 0.68 (13.23) 

(where ‘P’ is the ‘Probability’). Next, we subtract, Xm and μ from each value: 

P(−Xm − σ <  −μ <  −Xm + σ ) = 0.68 (13.24) 

We can change the ‘ < ’ to ‘ > ’ if we also change all the signs: 

P(Xm + σ  > μ >  Xm − σ ) = 0.68 (13.25) 

From Eq. (13.24) we conclude that if we take a sample Xm, we can say that μ (the 
parameter that we are trying to estimate) is in the interval Xm ± σ with a probability 
of 68%; we are 68% confident that μ is in this interval. 

The interval ±σ corresponds to 68% probability. This is usually considered to 
be ‘too uncertain’; there is a 32% probability that μ is not in this interval! For that 
reason, it is generally recommended that you use the interval ±2σ which represents 
a 95% probability of finding μ within the interval. Actually, the probability is 95.4%; 
you need to multiply by 1.96 if you want 95% exactly.
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Hence, if we take N samples and instead use the average as our estimator, the 
95% confidence interval for μ becomes 

μ = x ± 1.96 
σ √
N 

(13.26) 

(Notice how the confidence interval decreases with N; the more information we 
collect, the less uncertainty we have). 

The calculations above assumed that σ is known. When you think about it, that is 
usually not the case; in most measurements, we don’t know the standard deviation of 
the population (We may not even know it is normal). In those cases, we must make 
do with the sample variance in Eq. (13.22). The fact that we don’t know σ adds to 
the uncertainty; we replace σ in Eq. (13.26) with an estimation (s) and of course 
that makes our estimation a little more precarious. The consequence is that we will 
probably have to multiply by a larger number (a larger coverage factor) than 1.96 to 
get a confidence level of 95%. 

Even if that is true in general, we may keep the 1.96 if the circumstances are 
‘right’. Here, we lean on the central limit theorem (CLT) which says that if you 
average enough samples, the distribution is still normal even if the original samples 
are not normal. ‘Enough’ samples are generally considered to be ’30 or more’; if N 
≥ 30, we will still use Eq. (13.26) and just replace σ with s. Our problems appear 
when N < 30; in these cases, we need to find a new value for the coverage factor 
(a larger value) because the average value’s distribution is in general no longer an 
exact normal distribution; it has a Student-t distribution. 

The Student-t distribution looks like the normal distribution, but it is ‘wider’ 
(reflecting a larger spread of the samples). As a matter of fact, the Student-t distri-
bution is not just one distribution, it is a series of distributions: one for each degree 
of freedom. (The degree of freedom v = N−1). When N → ∞, the  t-distribution 
becomes the normal distribution. Figure 13.5 illustrates the t density function for 
different degrees of freedom.

If our average value has a t-distribution, then the 95% confidence interval is 

μ = x ± tυ,α × 
s √
N 

(13.27) 

where α = 1− confidence = 1−0.95 = 0.05. For example, if N = 10 and we want a 
95% confidence level, we must find the t9,0.05 value. A quick googling for ‘two-tailed 
t-table’ immediately gives us something like Table 13.1; the value we are looking 
for is t9,0.05 = 2.262.
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Fig. 13.5 The t-distribution (plotted in MATLAB using the tpdf command)

Table 13.1 The two-tailed t-table 

Significance level (α) 

Degrees of freedom (df ) 0.2 0.15 0.1 0.05 0.025 

: 

8 1.397 1.592 1.860 2.306 2.752 

9 1.383 1.574 1.833 2.262 2.685 

10 1.372 1.559 1.812 2.228 2.634 

: 

13.5 The Uniform Distribution 

Finally, we will need the variance and standard deviation of a uniform probability 
distribution, see Fig. 13.6. A uniformly distributed stochastic variable can take any 
value between the upper and lower limits with equal probability (‘uniform’ proba-
bility). The variance of a (symmetric) uniform distribution as the one in Fig. 13.6 is 
straightforward:

σ 2 = V(X ) = E
{
(X − μ)2

} = E
{
X 2
} =

 +∞ 

−∞ 
x2 f (x)dx =

 +c 

−c 
x2 

1 

2c 
dx =
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Fig. 13.6 A uniform distribution (‘rectangular’)

= 
1 

2c 
· 1 
3

[
x3
]+c 

−c 
= 

1 

2c 
· 1 
3

(
c3 + c3

) = 
1 

3 
c2 (13.28) 

Hence, the standard deviation of a uniformly distributed variable is 

σ = 
1 √
3 

· c (13.29) 

This is all we need to set up an ‘uncertainty budget’ to find the uncertainty of a 
measurement. 

13.6 Solved Problems 

Problem 13.1 Using a 6 ½ DMM,  N samples were taken of a DC voltage. The 
average of the samples was 4.17698 V, and the sample standard deviation was s = 
0.76 mV. Find the 95% confidence interval of this measurement if a N = 100, b N 
= 12. 

Solution a The ‘standard error’ is s/
√
N = 0.76/ 

√
100 = 0.076 mV, and 1.96·0.076 

= 0.149 mV ≈ 0.15 mV. Hence, Um = 4.17698 ± 0.00015 V (95%). 
b 0.76/ 

√
12 = 0.219 mV. Degrees of freedom = 12 – 1  = 11 ⇒ cover factor 

2.201. 2.201·0.219 = 0.483 mV ≈ 0.49 mV. Hence, Um = 4.17698 ± 0.00049 V 
(95%). 

Problem 13.2 The quantization uncertainty of an ADC is ± 1 
2∆U (see Eq. (11.4)). 

What is the standard deviation of the output from a 12-bit ADC with + 5 V reference 
voltage?
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Solution Eq. (13.29) gives that 

σ = 
1 √
3 

× 
1 

2 
× 

Uref 

2n 
= 

1 √
3 

× 
1 

2 
× 

5 

212 
= 0.352 mV 

Problem 13.3 A noisy DC voltage is normally distributed with μ = 3.30 V and σ = 
60 mV. If we measure this voltage once, what is the probability that we will measure 
a voltage a < 3.35 V and b > 3.20 V?  

Solution a First we ‘normalize’ the distribution by calculating the z value: 

z = 
x − μ 

σ 
= 

3.35 − 3.30 
0.06

= 0.83 

Looking up this number in a normal z-table gives that this corresponds to a 
probability 

p(U < 3.35) = p(Z < 0.83) = 0.7967 

b 

z = 
3.2 − 3.3 
0.06 

= −1.67 ⇒ p(Z < −1.67) = 0.0475 = p(U < 3.20) 

⇒ p(U > 3.20) = 1 − p(U < 3.20) = 1 − 0.0475 = 0.9525 

Problem 13.4 If we measure the voltage in problem 13.3, 15 times, what is the 
probability that the average of these samples is > 3.33 V? 

Solution Since the individual samples are normally distributed, the average will 
also be normally distributed with a standard deviation of σ/

√
N = 0.06/ 

√
15 = 

0.0155 volts. 
Hence, 

z = 
3.33 − 3.30 

0.0155 
= 1.94 

p(U > 3.33) = 1 − p(U < 3.33) = 1 − p(z < 1.94) = 1 − 0.9738 = 0.0262 

Problem 13.5 In problem 13.4 we knew that the samples were normally distributed, 
and we knew the mean and the standard deviation. That is usually not the case. What 
do we do if we don’t know the distribution, the mean, and the standard deviation? 

Solution Then we must use the t-table instead of the z-table (for N–1 degrees of 
freedom).



Chapter 14 
Uncertainty Budgets 

Abstract All measurement numbers have finite accuracy, and it is good practice to 
always state the uncertainty in a measurement. The uncertainty is typically expressed 
as an uncertainty interval ± U around the measurement number and it is extremely 
important to understand how to find U and what it represents. This should always 
be done by setting up an uncertainty budget. This chapter introduces the uncertainty 
budget and defines concepts like the coverage factor, the standard uncertainty, and 
the effective degrees of freedom. 

14.1 Introduction 

All measurements should be reported as a confidence interval; a point estimation is 
in general not enough. It is the responsibility (and privilege) of The International 
Bureau of Weights and Measures (the BIPM1 ) in Paris to provide guidelines for 
the community of exactly how to report uncertainties. These guidelines have been 
published in a document that the community refers to as the ‘GUM’ document [1]. 
However, this document is very extensive and could be overwhelming for the average 
engineer. For that reason, local organizations have published ‘light versions’ of the 
original GUM document with step-by-step instructions on how to conduct a proper 
uncertainty analysis. In this chapter, we will follow the guidelines presented in the 
European Accreditation’s publication Evaluation of the Uncertainty of Measurement 
in calibration [2]. 

14.2 Signal Models 

First, we need to update our signal model in Fig. 13.1; instead of separating the 
signal and the (external) noise, we combine them and attribute the noise to the signal 
source itself (which may very well be the case anyway). Hence, if the noise has a

1 BIPM: Bureau International des Poids et Mesures. 
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normal distribution, we model the measurand as a stochastic variable with a normal 
distribution, an expectation value of X0, and a standard deviation of σ , see Fig. 14.1. 

Next, we also need a signal model for the DMM; the DMM is not perfect, it too 
has some inherent ‘noise’. Figure 14.2 illustrates an excerpt from a DMM datasheet. 

Notice in Fig. 14.2 how the instrument’s accuracy is specified as ‘ ± (% of 
reading + % of range)’. This represents the uncertainty of the instrument display 
value, and this implies that even if there is no noise in the input signal, there is still 
an uncertainty in the measurement because of the limitations of the instrument itself. 
We will take the instrument’s uncertainty into account by modeling that as an internal 
noise source, see Fig. 14.3.

The ± accuracy number in Fig. 14.2 should be interpreted as the upper and lower 
limits, ± c, in a uniform distribution, and according to Eq. (13.29), the standard 
deviation of such a distribution is c/ 

√
3. From Fig. 14.3, we have that 

Xm = X1
,,,,

N(X0,σ/
√
N) 

+ X2
,,,,

U(0,c/
√
3) 

(14.1)

Fig. 14.1 Signal model 

Fig. 14.2 Typical instrument specifications [3] (Published courtesy of Keysight Technologies, Inc.) 
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√ 

Fig. 14.3 Instrument model

where we have assumed that  X1 is the average of a sample from a population with 
known variance σ 2. (If variance is unknown, we use s2.) 

Our objective here is to present the measurement result as a 95% confidence 
interval. In the publication reference EA4-02 M, this is expressed as follows: 

X0 = X̂ ± U = X̂ ± k · u
(

X̂
)

(14.2) 

where U is the expanded uncertainty of the measurement (and should represent a 
95% confidence interval), k is the coverage factor (and should ‘almost always be 

= 2’, see Sect. 14.3.) and u
(

X̂
)

is the standard uncertainty of the estimate output. 

Hence, we need to find u
(

X̂
)

. If all the contributions are uncorrelated (which we 

will always assume), we can add the variances (according to Eq. (13.14)): 

u2
(

X̂
)

=
∑

all i 

u2 (Xi ) (14.3) 

Finally, if y = f (x), then 

u(y) = c(x)u(x) where c(x) = 
d f  

dx

|

|

|

|

x=x̂ 

(14.4) 

where c(x) is the  sensitivity coefficient (a number that represents the uncer-
tainty propagation). The GUM document recommends that an uncertainty analysis 
is performed by using an uncertainty budget.
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14.3 Uncertainty Budgets 

When you calculate the uncertainty of an output estimate there will inevitably be a 
lot of numbers and just keeping track of all these numbers is a challenge. The use 
of an uncertainty budget is a suggested remedy for this. But, as we will see later, 
the uncertainty budget is more than just a way to organize all the numbers; it will 
provide important information about the measurement. We will illustrate that later. 

Table 14.1 illustrates an uncertainty budget template. 
In Table 14.1, ŷ is the output estimate and u

(

ŷ
)

is the standard uncertainty of ŷ. 
If all contributions are uncorrelated, we add the variances to get the total standard 
uncertainty: 

u
(

ŷ
) = 

[

|

|

√

n
∑

i=1 

(c(xi )u(xi ))
2 (14.5) 

The expanded uncertainty U (representing the 95% confidence interval) is the 
coverage factor k times u

(

ŷ
)

. When the conditions of the central limit theorem can 
be assumed to be sufficiently fulfilled (‘enough data’), the coverage factor k = 2, 
should be used. When the conditions of the central limit theorem are not met, we 
must first find the effective degrees of freedom, veff, and then find the proper k value. 
The effective degrees of freedom are given by the Welch–Satterthwaite formula: 

νe f  f  = u4
(

ŷ
)

∑n 
i=1 

(c(xi )u(xi ))
4 

υi 

(14.6) 

In Eq. (14.6), vi is the degrees of freedom for each individual contribution. For 
contributions from type A uncertainties (uncertainties based on data samples), the 
degrees of freedom are N−1. If the uncertainty is not based on data samples (= type 
B uncertainties), we must estimate the degrees of freedom in each case. However, 
according to the GUM document, when the uncertainty comes from a contribution 
where it has been estimated with the upper and lower limits of a uniform distribution, 
the degrees of freedom can be assumed to be infinite. Also, the effective degrees of

Table 14.1 An uncertainty budget 

Quantity Estimate u(xi) c(xi) c(xi)·u(xi) 
x1 x̂1 u(x1) c(x1) c(x1)·u(x1) 
x2 x̂2 u(x2) c(x2) c(x2)·u(x2) 
: : : : : 

xn x̂n u(xn) c(xn) c(xn)·u(xn) 
y = f (x1,..,xn) ŷ u

(

ŷ
)
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Table 14.2 Coverage factors k for 95% confidence (95.45%) 

veff 1 2 3 4 5 6 7 8 9 10 

k 13.97 4.53 3.31 2.87 2.65 2.52 2.43 2.37 2.32 2.28 

veff 11 12 13 14 15 16 17 18 19 20 

k 2.25 2.23 2.21 2.20 2.18 2.17 2.16 2.15 2.14 2.13 

veff 25 30 35 40 45 50 ∞ 
k 2.11 2.09 2.07 2.06 2.06 2.05 2.00 

freedom calculated from Eq. (14.6) will in general not be an integer, and the number 
should then be truncated to the nearest lower integer. 

Once we know the effective degrees of freedom, the coverage factor is given by 
Table 14.2 (which is really the two-tailed t-table for a 95.45% confidence interval). 

The use of an uncertainty budget is best illustrated by examples. 

14.3.1 Examples 

Example 14.1 Figure 14.4 illustrates a DC voltage measurement where the DMM 
range is 10 V and according to the DMM’s manual, the instrument’s uncertainty on 
this range is ± (0.04% of reading + 0.03% of range). 

We took ten samples: 

x(1) = 9.0125 V 
x(2) = 8.9763 V 

x(3) = . . .  
: 

x(10) = . . .  

⎫ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎬ 

⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎭ 

x = 9.0068 V 
s = 0.01752 V 

s/ 
√
10 = 0.00554 V 

According to Eq. (14.1) we have that 

ŷ(= Xm) = X1 + X2 = x + 0 = 9.0068 V

Fig. 14.4 DCV 
measurement 

VX1 Xm 
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Table 14.3 An uncertainty budget 

Quantity Estimate u(xi) c(xi) c(xi)·u(xi) 
x1 9.0068 V 5.54 mV 1 5.54 mV 

x2 0 V 3.81 mV 1 3.81 mV 

y 9.0068 V 6.72 mV 

The uncertainty of X1 is s/ 
√
N = 0.00554 V and the uncertainty of X2 is (see 

Eq. (14.1)): 

1 √
3

(

0.04 
1 

100 
· 9.0068 + 0.03 

1 

100 
· 10

)

= 3.81 mV 

and since all df /dxi = 1 in this case, we have the uncertainty budget in Table 14.3. 
Equation (14.5) gives us the total uncertainty for the output estimate. 

u
(

ŷ
) =

√

5.542 + 3.812 = 6.72 mV 

Since we only took ten samples in this case, we cannot assume that the output 
estimate has a normal distribution, hence we need to calculate the effective degrees 
of freedom to find the proper coverage factor. 

υe f  f  = 6.724 

5.544 
9 + 3.814 ∞ 

= 19.5 → υe f  f  = 19 → k = 2.14 

Hence, the expanded uncertainty U is 

U = 2.14 × 6.72 mV = 14.38 mV = 0.015 V 

Since the uncertainty is of the order of 15 mV, it really doesn’t make sense to 
report the output estimate with four decimals. This is how we would present the 
result of our measurement in a ‘scientific’ report: 

In order to estimate the accuracy in the measurement, an uncertainty analysis was conducted 
according to the guidelines in reference [1, 2]. The uncertainty budget produced a standard 
uncertainty of 6.72 mV, and a coverage factor of 2.14 was used to get the 95% confidence 
interval: 

y = 9.007 ± 0.015 V 

(Reference [1, 2] would be the GUM and the EA-4/02 documents.) 
Notice a few details in this example: 

• We made no ‘t compensation’ in the uncertainty budget for u(x1) even though 
we had less than 30 samples; the ‘t compensation’ was only introduced at the 
last stage with the use of the Welch–Satterthwaite formula to find the expanded 
uncertainty. This makes sense; since the total uncertainty has more contributions



14.3 Uncertainty Budgets 297

(just one more in this case) the ‘t problem’ is mitigated; according to the central 
limit theorem, the more things we add, the closer to a normal distribution we get. 
For that reason, we should ‘t compensate’ the final uncertainty value only. 

• The number of significant digits in the uncertainty is two; this is what is generally 
recommended. 

• The estimate and the uncertainty have the same number of decimals; the 
uncertainty determines how many significant digits are meaningful. 

• The estimate and the uncertainty have the same unit, if the estimate is in [V], the 
uncertainty should be in [V] (not [mV]!). 

Example 14.2 Figure 14.5 illustrates a current measurement; we use a DMM to 
measure the voltage across a resistor to get the current I. The uncertainty of the DMM 
is ± (0.04% of reading + 0.02% of range). We took 40 samples, and the average 
was 6.62953 V (range: 10 V) and the sample standard deviation was 6.83 mV. The 
resistor has color code marking that can be interpreted as ‘1800 Ω, ±1%’. What is 
the 95% confidence interval of this current measurement? 

Solution I = U R = X1+X2 
R = f (X1, X2, R) 

I = 
4.62953 + 0 

1800
= 2.5719611 mA u(X1) = 6.83/ 

√
40 = 1.08 mV 

u(X2) = 
1 √
3 
(0.0004 · 4.62953 + 0.0002 · 10) = 2.22 mV 

The uncertainty of the resistor is specified as ‘ ± 1%’. Since we have no other 
information about this value, we must assume that it represents the upper and lower 
limits in a uniform distribution: 

u(R) = 
1 √
3 

· 1800 · 1 

100 
= 10.4 Ω

Before we design the uncertainty budget, we calculate the sensitivity coefficients:

Fig. 14.5 Current 
measurement 

V 

I 

R 
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c(X1) = 
d f  

d X1 
= 

1 

R 
= 

1 

1800 
= 5.56 · 10−4 Ω−1 = c(X2) 

c(R) = 
d f  

d R  
= (−) 

X1 + X2 

R2 
= 

4.62953 

18002 
= 1.43 · 10−6 VΩ−2 

Now we have what we need to setup the uncertainty budget (Table 14.4): 
We sum the squares of the uncertainties to get the uncertainty of the estimate: 

u(I ) =
√

0.6012 + 1.242 + 14.92 = 14.96 μA 

In this case, we have enough samples not worry about any ‘t compensation’; we 
use the coverage factor k = 2 to get the expanded uncertainty: 

U = 2 × u(I ) = 29.93 μA = 0.030 mA 

Hence, only three decimals make sense when we report the measurement: 

I = 2.572 ± 0.030 mA (95 % ) 

From this example we can learn something more about the use of uncertainty 
budgets: 

• Use at least three significant digits in the budget; only round (upwards) to two 
digits in the last stage when you calculate the expanded uncertainty. 

• We get important information from the budget. From the budget it is obvious that 
it is the lack of information about the resistor that is hurting our accuracy. To 
improve the accuracy in this example we should try to get a more accurate value 
for R (by measuring it!); buying a new (more expensive) DMM would not help 
and taking more samples wouldn’t help either!

Table 14.4 The uncertainty budget 

Quantity Estimate u(xi) c(xi) c(xi)·u(xi) (μA) 
X1 4.62953 V 1.08 mV 5.56·10–4 Ω−1 0.601 

X2 0 V 2.22 mV 5.56·10–4 Ω−1 1.24 

R 1800 Ω 10.4 Ω 1.43·10–6 V Ω−2 14.9 

I 2.5719611 mA 14.96 
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14.4 ‘Guesstimating’ 

Sometimes we don’t have any information about the uncertainty of a quantity. For 
example, suppose we use a DMM to measure the resistance of a Pt-100 temperature 
sensor. We use the 4-wire method, a 7½ digit DMM and we take a thousand samples 
to really minimize the noise (the ‘type A’ uncertainty); the X1 and X2 uncertainties 
are so small that it implies a ppm accuracy (part per million). However, when we 
translate the resistance to temperature, we use the following formula: 

R = R0(1 + γ T ) ⇒ T = 
1 

γ

(

R 

R0 
− 1

)

= f (γ,  R, R0) (14.7) 

(In Eq. (14.7), R = R1 + R2 if we use a DMM, see Fig. 14.3). From Eq. (14.7), 
it is clear that the uncertainty of T doesn’t depend only on the uncertainty of the 
measured quantity R, it also depends on the accuracy of γ and R0. Suppose we use 
R0 = 100 Ω and γ = 3.85·10−3 °C−1, to calculate the temperature. What will the 
uncertainty of T be? 

Well, we don’t have any information about the uncertainties of R0 and γ, so  
we will have to estimate it by guessing (‘guesstimating’). We only know that γ = 
3.85·10−3 °C−1, and we will have to assume that this number has been ‘correctly 
rounded’. That implies that the ‘true’ value of γ is somewhere in the range 

3.845 · 10−3 < γ  <  3.855 · 10−3 

Any γ value in this range would be rounded to 3.85·10−3 °C−1 if you only use three 
significant digits. Hence, if the only information we have is that γ = 3.85·10−3 °C−1, 
then it is a reasonable assumption that γ = (3.850 ± 0.005) · 10−3 °C−1. And since 
we base that assumption on a ‘rounding’, the correct value can be anywhere in 
that range; it follows that we must assume a uniform distribution function. The 
standard uncertainty of γ , that we would use in the uncertainty budget, would be 
(see Eq. (13.29)) 

u(γ ) = 
1 √
3 

· 0.005 · 10−3 = 0.00289 · 10−3 ◦C−1 

With the same reasoning, the reasonable range of R0 would be 100.0 ± 0.5 Ω, 
with a standard uncertainty of 0.289 Ω. Both the uncertainties of γ and R0 are of the 
order of ‰. We would have to find the sensitivity coefficients to really understand the 
impact they have on the uncertainty of T, but considering the relative uncertainties 
of γ and R0, a ppm accuracy in the measured R-value is likely to be redundant. We 
will illustrate this with another example. 

Example 14.2 A BPW21 photo diode and a resistor are used to measure light flux. 
A 4½ digits DMM measures the voltage over the resistor, see Fig. 14.6. The resistor 
has a nominal resistance of 10 kΩ and has a 2% precision. The DMM uncertainty
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Fig. 14.6 Measuring light 
flux 

BP
W

21
 

R
 =

 1
0k

 

V 

ID 

is ± (0.08% of rdg + 2 digits) and the nominal sensor constant for the photodiode 
is 9.2 nA/lx. In a previous measurement, the sample standard deviation was s = 
4 mV. One sample reads 1.2843 V. If you were asked to determine the light flux in 
this experiment, how many samples would you take (how many samples would you 
average)? 

(‘x digits’ is sometimes used instead of ‘range’. It means ‘x’ units of the last 
display digit’s weight.) Using E for the light flux, we get 

Um = kE  R  ⇒ E = 
Um 

kR  
= 

X1 + X2 

kR
= f (X1, X2, k, R) 

u(X2) = 
1 √
3

(

0.08 
1 

100 
· 1.2843 + 0.002

)

= 0.7087 mV 

k = 9.20 ± 0.05 nA/lx ⇒ 

u(k) = 
1 √
3 
0.05 = 0.0289 nA lx−1 u(R) = 

1 √
3 
10000 · 2 

100 
= 115.5 Ω

c(X1) = 
d f  

d X1 
= 

1 

kR  
= 1 

9.2 · 10−9 · 10000 = 1.087 · 104 lx V−1 = c(X2) 

c(k) = 
d f  

dk  
= 

X1 + X2 

k2 R 
= . . .  = 1.517 · 1012 A−1 lx2 

c(R) = 
d f  

d R  
= 

X1 + x2 
kR2 

= . . .  = 1.396 lx Ω−1 

This gives us the uncertainty budget in Table 14.5. From this budget we can 
see that it is the uncertainty of R that dominates the contributions to the estimate’s 
uncertainty; it is about 20 times larger than the smallest contribution (from X2). We 
can conclude that an uncertainty of, say 10 lx, from X1 wouldn’t have any significant 
impact on the total uncertainty. That means that 

u(X1) · c(X1) = s √
N 

· c(X1) ≤ 10 ⇒ N ≥
(

s · c(X1) 
10

)2
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Table 14.5 The uncertainty budget 

Quantity Estimate u(xi) c(xi) c(xi)·u(xi) 
X1 1.2843 V s/ 

√
N V 1.087·104 lx V−1 u(X1)·c(X1) 

X2 0 V 0.709 mV 1.087·104 lx V−1 7.70 lx 

k 9.2·10–9 nA lx−1 0.0289 nA lx−1 1.5171.087·1012 A−1 lx2 43.9 lx 

R 10,000 Ω 115.5 Ω 1.396 lx Ω−1 161.2 lx 

E 13,959.5 lx u(E) 

N ≥
(

4 · 10−3 · 1.087 · 104 
10

)2 

= 18.9 

Conclusion: We don’t need to take more than 20 samples; after that, the uncertainty 
of the other quantities hurts us more than the uncertainty from the sample variation 
and the DMM uncertainty. 

14.5 Summary 

Being able to determine the uncertainty in a measurement is extremely important and 
should be considered as a ‘fundamental’ skill for any measurement personal. The 
math is not ‘advanced’, but there are a lot of numbers to handle, and the uncertainty 
budget is a good way to organize them. As we have seen in this chapter, the budget 
does not only produce the standard uncertainty of the output estimate, but it also 
provides important information about which quantity is hurting our overall accuracy 
most; we know what to do first if we need to improve the accuracy. 

In Fig. 14.2, we demonstrated that the uncertainty of a digital DMM is typically 
stated as ± (% of reading + % of range). Students often ask where these uncertainties 
come from. That information is not so easy to find in the literature (or DMM vendors’ 
manuals), but we can draw some conclusions from what we have learned so far. A 
digital DMM is of course based on an ADC, and we learned in Chap. 11 that ADCs 
have an inherent uncertainty of ± 0.5 LSB, which accounts for the ‘% of range’ 
uncertainty. 

The other contribution, ‘% of reading’, is a little harder to motivate; this is an 
uncertainty that increases with the input sample’s voltage level! To explain that we 
need to consider the hardware design of the dual slope. During the charging phase 
(see Fig. 11.18) a capacitor is charged, and this charging must be linear for the 
design to work. It is reasonable to assume that it is not linear and that it becomes 
more non-linear the more charge we have on the capacitor. That would explain why 
the uncertainty increases with the ‘reading’.
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14.6 Solved problems 

Problem 14.1 In Fig. 14.7 we measure the electric power generated in a resistor. 
The amp meter is a 3½ digits handheld DMM with uncertainty ± (0.2% of rdg + 1 
digit) and the display reads 0.467 A (stable, no flickering). The voltage meter is a 
6½ digits desktop DMM with uncertainty ± (0.02% of rdg + 0.04% of range). We 
took 18 samples with an average of 0.7594175 V and a sample standard deviation of 
s = 367 μV. What is the 95% confidence interval of the power in this measurement? 

Solution: The power is P = U I  = (U1 + U2) · (I1 + I2) = 
= (0.7594175 + 0) · (0.467 + 0) = 354.648 mW= f (U1, U2, I1.I2) 

u(U1) is the type A uncertainty of the voltage measurement: u(U1) = 367 √
18 

= 
86.50 μV. u(U2) is the type B uncertainty of the voltage measurement. Since the 
reading (average) is 0.7594175 V, we conclude that the range used was ‘1 V’: 

u(U2) = 
1 √
3

(

0.02 
1 

100 
· 0.759417 + 0.04 

1 

100 
· 1

)

= 318.6 μV 

The type A uncertainty of the current measurement, u(I1), is = 0 (since there was 
‘no flickering’ on the DMM display). The type B uncertainty is 

u(I2) = 
1 √
3

(

0.2 
1 

100 
· 0.467 + 0.001

)

= 1.117 mA 

Sensitivity coefficients are 

c(U1) = 
d f  

dU1 
= I1 + I2 = 0.467 A = c(U2) 

c(I1) = 
d f  

d I1 
= U1 + U2 = 0.7594175 V = c(I2)

Fig. 14.7 Power 
measurement 

V 

A 
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This gives us the uncertainty budget in Table 14.6. The standard uncertainty of 

the power is u
(

P̂
)

= 
√
40.402 + 148.82 + 848.32 = 862.2 μW. Since the number 

of samples are less < 30, we need to find the effective degrees of freedom: 

υe f  f  = 862.24 

40.404 
17 + 148.84 ∞ + 848.34 ∞

>> 30 → k = 2 

U = 2 × 862.2 μW = 1.72 mW ⇒ 1.8 mW ⇒ P = 354.6 ± 1.8 mW  (95  %  )  

Problem 14.2 Figure 14.8 illustrates a flow measurement in a water pipe. The output 
voltage of the sensor depends on the volume flow q as Um = α × √q , and according 
to the datasheet, the sensor constant is 5.0 mV·(l/min)−0.5 . The differential amplifier 
has an amplification of 175 and a 5½ digits DMM was used. The DMM uncertainty 
was ± (0.08% of rdg + 0.05% of range). We took eight readings as reported in 
Table 14.7. What is the 95% confidence interval of the volume flow q in this case?

Solution: From Table 14.7 we conclude that the DMM range used was 10 V. 

um = α 
√
q · F ⇒ q = 

u2 m 
α2 F2 

= 
(X1 + X2)

2 

α2 F2
= f (X1, X2, α,  F) 

X1 = um = 
1 

8 
(2.6946 + . . . .  + 2.8276) = 2.7414375 V 

q̂ = 
(2.7414375 + 0)2 

0.0052 · 1752 = 9.81614 l · min−1 

s =
√

1 

8 − 1
(

(2.6946 − 2.7414375)2 + . . .  + (2.8276 − 2.7414375)2
) = 0.07802 V 

u(X1) = s/ 
√
8 = 0.07802/ 

√
8 = 0.0276 V 

u(X2) = 
1 √
3

(

0.08 
1 

100 
· 2.7414375 + 0.05 

1 

100 
· 10

)

= 0.00415 V

Table 14.6 The uncertainty budget 

Quantity Estimate u(xi) c(xi) c(xi)·u(xi) 
U1 0.7594175 V 86.50 μV 0.467 A 40.40 μW 

U2 0 V 318.6 μV 0.467 A 148.8 μW 

I1 0.467 A 0 A 0.7594175 V 0 μW 

I2 0 A 1.117 mA 0.7594175 V 848.3 μW 

P 354.648 mW 862.2 µW 
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Fig. 14.8 Flow 
measurement 

Table 14.7 We took eight samples 

Um (V) 02.6946 02.6650 02.7918 02.7186 02.7885 02.8256 02.6198 02.8276

We know nothing about the uncertainties of α and k, so we will have to 
‘guestimate’: 

α = 5.00 ± 0.05 mV · l−0.5 min0.5 ⇒ u(α) = 
1 √
3 

· 0.05 = 0.0289 mV · l−0.5 min0.5 

F = 175.0 ± 0.5 ⇒ u(F) = 
1 √
3 

· 0.5 = 0.289 

c(X1) = 
d f  

d X1 
= 

2 · (X1 + X2) 
α2 F2

= . . .  = 7.161 V−1 · l−1 · min = c(X2) 

c(α) = 
d f  

dα 
= (−)2 × 

(X1 + X2)
2 

α3 F2
= . . .  = 3926.5 V−1 · l3/2 · min−3/2 

c(F) = 
d f  

d F  
= (−)2 × 

(X1 + X2)
2 

α2 F3
= . . . .  = 0.1122 l · min−1 

u
(

q̂
) =

√

0.1982 + 0.02972 + 0.1142 + 0.03252 = 0.233 l · min
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Table 14.8 The uncertainty budget 

Quantity Estimate u(xi) c(xi) c(xi)·u(xi) 
X1 2.7414375 0.0276 7.161 0.198 l/min 

X2 0 0.00415 7.161 0.0297 l/min 

α 5.0 0.0289 3926.5 0.114 l/min 

F 175 0.289 0.1122 0.0325 l/min 

q 9.81614 l/min 0.233 l/min 

νe f  f  = 0.2334 

0.1984 
7 + 0.02974 ∞ + 0.02974 ∞ + 0.03254 ∞ 

= 13.4 = 13 → k = 2.21 

U = 2.21 × 0.233 = 0.52 q = 9.82 ± 0.52 l/min (95%) 

That gives us the uncertainty budget in Table 14.8. 
From the uncertainty table, it is obvious that we should take more samples. 
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Chapter 15 
The Lock-In Amplifier 

Abstract The lock-in amplifier (LIA) is a common instrument in physics labora-
tories that can detect signals with extremely low signal-to-noise ratios. However, to 
really take advantage of its potential, a basic understanding of its operating principle 
is necessary. This chapter first introduces the phase sensitive detector (PSD) and 
evolves it into a lock-in amplifier. At the end of this chapter, the dual-phase lock-in 
amplifier is introduced and the I and Q signals are defined. 

15.1 Introduction 

The fundamental problem that we address in this book is how to find a ‘sinusoidal 
signal in noise’. We have provided several solutions for that already (and will provide 
a few more) and the solution depends on the circumstances: What kind of noise do 
we have? (NM/CM? Random/periodic?) How large is the noise? (SNR?). Do we 
know the period of the sine or not? etc. Each problem has its ‘best’ solution. In this 
chapter we will address the problem where the sinusoidal frequency is known; in  
fact, we control the frequency. This is not unusual, think of the sinusoidal as the 
‘excitation frequency’ of the experiment. For example, in a physics lab we might 
use a pulsed laser (or a laser beam ‘chopper’) and then the laser pulse frequency 
is the ‘excitation frequency’ (which we control) of the experiment. So, we know/ 
control the frequency, and we want to determine the amplitude. The ‘catch’ is that 
the sine (or any periodic ‘response signal’) is ‘buried’ in noise; here we will assume 
an extremely low SNR (<< 1). 

Here is a common argument (misunderstanding): ‘If we know the frequency, why 
don’t we just design a resonance filter (as described in Chap. 9) with a resonance 
frequency that matches our sinusoidal signal?’. 

That won’t work for several reasons. First, the SNR is so low, that we would need 
an extremely narrow resonance filter (Q > 10,000) and such narrow resonance filters 
are impossible (?) to design with standard analog components. Second, even if we 
could design such a narrow filter it would need to have a stability on a ‘ppm level’ 
or the signal frequency would ‘slip off’ the filter resonance, and the signal would
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be ‘killed’ with the noise. All it would take is that the signal frequency, or the filter 
parameters, change just a little bit (due to temperature, humidity….) and we would 
fail to detect our sinusoidal signal. 

We will build a ‘resonance filter’ with an extremely high-Q value (> 106), but for 
that to work, we can’t use ordinary components as we did in Chap. 9. For such a 
high-Q filter to work, the signal frequency must be ‘locked’ to the filter’s resonance 
frequency; if one changes, the other must follow. Such a narrow ‘resonance filter’ is 
called a lock-in amplifier (LIA). 

15.2 Phase Sensitive Detector 

15.2.1 PSDs 

Before we get into the lock-in amplifiers, there are some electronics that we need to 
introduce. First, we need a phase sensitive detector (a ‘PSD’). Imagine that we have 
the following signal: 

x(t) = 0.01 sin 2π100t + 10 sin 2π120t + ‘lots of white noise’ (15.1) 

We assume that the 100 Hz signal is the ‘good’ signal that we want to detect, 
and the other signal parts are ‘noise’. By ‘detect’ we mean that we want to find its 
amplitude (we know the frequency, remember?). This signal is illustrated in Fig. 15.1. 

The signal-to-noise ratio here is so bad that there is not even the slightest hint of 
it in Fig. 15.1. Earlier, when we learned about Fourier transforms, we demonstrated 
that we could just do an FFT of the signal to ‘detect’ a small signal in a lot of noise.

Fig. 15.1 There is no trace of our 100 Hz signal 
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That won’t work here. First, we know what frequency we are looking for, we don’t 
need to do a spectral analysis to find the frequency. Second, the SNR is so poor 
that we wouldn’t see it anyway. (If you don’t believe it, Fig. 15.2 illustrates the FFT 
spectrum of the signal in Fig. 15.1.) Nevertheless, we need to detect it. That seems 
like ‘mission impossible’, but since we know what frequency we are looking for, 
we will find it; all it takes is some clever sampling and some time (or lots of time, 
depending on the SNR). Here is what we are going to do: The frequency is 100 Hz, 
i.e., the period of the signal is 10 ms. We are going to sample the signal with a 
sampling frequency of 5 ms (200 S/s), taking exactly two samples per period, see 
Fig. 15.3. 

Fig. 15.2 There is nothing at 100 Hz 

Fig. 15.3 PSD in software: take samples 180° apart and subtract [1]
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Fig. 15.4 Sampling a 120 Hz signal at 200 S/s 

(I know what you are thinking: The sampling in Fig. 15.3 violates the sampling 
theorem since the sampling rate is not > 2f signal. But we don’t worry about that 
here, because we are not going to do any FFT or filtering, so we don’t care about 
aliasing!) Notice in Fig. 15.3 that since we take our samples 180° apart, they will 
always have the same magnitude, but the opposite sign! Hence, if we subtract our 
samples pairwise, they will add; if the first sample is x(t) and the second one is x(t 
+ T /2), then x(t + T /2) = −  x(t), and x(t) − x(t + T /2) = 2x(t). If we take samples 
180° apart and subtract, we amplify the sample by a factor of two. Then we realize 
that if we add N ‘pairwise subtracted’ samples, we will amplify the signal 2N times! 
The sum of the 10 ‘sample pairs’ in Fig. 15.3 is ≈ 0.12. Compare that with the signal 
amplitude which is 0.01. 

Let’s see what happens to the other signal components in Eq. (15.1). In Fig. 15.4 
we sample the 120 Hz signal with the same sampling rate. 

It is obvious from Fig. 15.4 that two adjacent samples will not have the same 
magnitude and hence, they will not ‘amplify’ if we subtract them pairwise. If we 
subtract the samples in Fig. 15.4 pairwise and then add all the ‘subtracted pairs’, the 
sum would be ≈ −1! Compare that with the signal amplitude of 10. 

Let the power of this sink in; if we disregard the white noise for the moment, 
we have an SNR in the raw signal in Eq. (15.1) of 0.01/10 = 0.001. After twenty 
samples we have changed the relationship between the signal and the noise to 0.12/ 
1 = 0.12. With only twenty samples, we have improved the SNR by a factor of 120! 

From Figs. 15.3 to 15.4, we conclude that if we sample a signal with a sampling 
rate that is exactly T 0/2, and subtract samples pairwise, then any signal component 
with frequency f 0 = 1/T 0 will be amplified and signals with any other frequency will 
be attenuated! 

What about the white noise? If we treat our subtracted pairs as a random variable, 
Y = X1 – X2, where the X variables are normally distributed with a standard deviation 
of σ (same as the noise), then it is easy to prove that Y has a standard deviation of
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√
2σ . Hence, if we take the average of N subtracted pairs (just accumulating will not 

work, we will overflow), then we know from Chap. 13 that the standard deviation of 
the average will be σ 

√
2/N ; the random noise will also be reduced as we take more 

samples. 
Hence, if we just keep sampling the signal in Eq. (15.1) (at 200 S/s) and average 

‘subtracted pairs’, the signal with frequency f 0 will gradually materialize from the 
noise since this sampling technique gradually amplifies the f 0 signal and attenuates 
anything else. By ‘materialize’, we mean that we will be able to detect its presence 
despite the extremely poor SNR in the raw signal. 

The conclusion is that if the signal we are looking for is periodic, with a known 
period, we can always find it (at least in theory); it is only a matter of time (take 
enough samples). 

We can also learn something else from Fig. 15.3. We take the first sample at a 
phase angle of approximately 45° and the sample value is approximately 0.006. We 
realize that we could have done better! If we instead take the first sample at a phase 
angle of 90°, the first sample would be 0.01 and the amplification by accumulating 
pairwise subtractions would have been even larger. 

On the other hand, we could have done worse too. If we take the first sample at 
a phase angle of 0°, all samples would be 0 and there would be no amplification at 
all. So, this sampling strategy is a little precarious; the result depends on the phase 
angle of the first sample! In fact, what we have here is a phase sensitive detector, a  
PSD; the outcome depends on the phase angle. 

15.2.2 Analog PSDs 

The sampling technique illustrated in Fig. 15.2 is the ‘digital’ version of a PSD. It 
is ‘digital’ because the PSD is implemented in software. Figure 15.5 illustrates the 
classic ‘analog’ PSD that can be implemented in hardware. 

Here, the reference signal is a square signal that controls a bipolar switch; when 
the reference signal is ‘on’ the signal x(t) is routed through the switch, and when the 
reference signal is ‘off’, the signal −x(t) is routed through. If there is a sinusoidal 
in x(t) with a frequency that is exactly f 0 = 1/T 0, and in phase with r(t) (ϕ = 0°),

Fig. 15.5 The classic analog PSD 
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Fig. 15.6 We have a rectifier 

then the first part of the electronics in Fig. 15.5 is a rectifier. This is illustrated in 
Fig. 15.6. 

The post-processing lowpass filter will ‘smooth’ the signal to a DC voltage. Notice 
the phase angle regulator in Fig. 15.5; with this ‘knob’ we can adjust the phase angle 
arbitrarily to match the phase of x(t). In this case, the phase should be exactly 0° for 
a maximum output. A gradual phase shift from 0° to 180° would generate a change 
in u(ϕ) from  +1 to  −1; we have a phase sensitive detector. 

15.2.3 Multiplying PSDs 

The PSD in Fig. 15.5 has a disadvantage, the switch. Even if this switch is a semi-
conductor relay, it limits the frequency range we can use. Lock-in amplifiers, depend 
on PSDs, but they use a different technique, like the heterodyne technique we used 
in Chap. 8; we multiply the signal with the reference signal, see Fig. 15.7. 

If we multiply them, the multiplier output y(t) is (see Chap. 8) 

y(t) = A{cos((ωx + ω0)t + ϕx + ϕ0) + cos((ωx − ω0)t + ϕx − ϕ0)} (15.2)

Fig. 15.7 A multiplying 
PSD × 
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Fig. 15.8 A PLL shapes the 
reference signal 

The lowpass filter will stop the ‘sum frequency’ signal. We assume that the cutoff 
frequency of the lowpass filter is so low, that it blocks all frequencies /= 0; anything 
but DC is blocked by the lowpass filter. Hence, the only case where anything comes 
out of the lowpass filter is if ωx = ω0. In that case 

u(t) = A cos(ϕx − ϕ0) (15.3) 

From Eq. (15.3) it is obvious that the multiplier + filter in Fig. 15.7 is a phase 
detector. For a ‘perfect’ detection, we would need a phase angle shifter (as in Fig. 15.5) 
to match the phases of the signal and the reference signal. A lock-in amplifier does not 
need one though, at least not the more expensive ones. We explain that in Sect. 15.4. 

15.3 Phase-Locked Loops 

Before we present the lock-in amplifier, there is one more component we need to 
introduce. From Fig. 15.7 and Eq. (15.2) it is obvious that the detection depends on a 
reference signal that is a ‘good’ cosine. Keep in mind that the reference signal is the 
signal that we use to ‘excite’ the experiment. That could be a cosine, but more often it 
is not. In laser experiments, we either use a ‘pulsed’ laser or a ‘chopper’ to periodize 
a photo detector signal. In both cases the reference signal will be a square signal. 
It may also be ‘noisy’. For that reason, the reference signal in a lock-in amplifier, 
is first passed through a phase-locked loop (PLL). We will not go into the details 
of PLLs here. It is a versatile, standard component that can divide or multiply a 
signal’s frequency, but for our purposes, we will only use it as a ‘signal formatting’ 
component; we input a ‘noisy’ signal with some period, and the PLL will output a 
‘good’ cosine with the same frequency (Fig. 15.8). 

15.4 LIAs 

A lock-in amplifier (LIA) is an ‘advanced PSD’. The ‘simple’ LIAs have indeed 
a phase control knob that you have to adjust (manually) to ‘align’ the reference 
signal with the detector signal. (Which can be quite a challenge!). The ‘advanced’ 
LIAs produce a signal that is independent of the phase angle (but they still produce 
and display the phase angle). They achieve that by adding another multiplying PSD 
where the reference signal is phase-shifted 90° (converting a ‘cosine’ to a ‘sine’). To 
see how this works, we need a few basic trigonometric expressions. In Chap. 8 we 
multiplied two cosines. If we multiply a sine and cosine, we get Eq. (15.4).
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Fig. 15.9 Reference signal 
is phase-shifted 90° × 

sin α × cos β = 
1 

2 
(sin(α + β) + sin(α − β)) (15.4) 

In Fig. 15.9 we have a multiplying PSD where the reference signal is phase-shifted 
90° versus the signal. 

If we apply Eq. (15.4), and the same reasoning that gave us Eq. (15.3), we see 
that the filter output in Fig. 15.9 will be 

u(t) = A sin(ϕx − ϕ0) (15.5) 

Next, we apply the Pythagorean identity expression sin2 α + cos2 α = 1 to Eqs. 
(15.3) and (15.5): 

/
A2 cos2(ϕx − ϕ0) + A2 sin2 (ϕx − ϕ0) = A (15.6) 

From Eq. (15.6), we see that if we have ‘dual phase’ detectors, with a 90° phase 
shift, we can get an output that is independent of the phase shift between the signal 
and the reference (which saves you a lot of time and frustration in the lab, believe 
me!). Figure 15.10 illustrates a ‘dual phase’ lock-in amplifier. 

The ‘output box’ in Fig. 15.10 (the ‘squaring’ and ‘root squaring’) can be imple-
mented either in hardware or software; here we will just treat it as a ‘black box’. In 
a commercial LIA you will also find pre- and post-amplifiers, pre- and post-filters, 
several input signal options (current inputs, differential-ended inputs), etc. 

When you use a lock-in amplifier, you provide the reference signal (from the ‘exci-
tation device’ in your experiment) and the general rule is that you select a frequency

××Acos(ω0t + ϕx) + ’noise’ 

2cos(ω0t + ϕ0) 

LP 

× LP 

90º 

x 

x2 + y2 

y 

A 

I 

Q 

Fig. 15.10 ‘Dual phase’ lock-in amplifier 
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‘far away’ from the local power line frequency (50/60 Hz) and its harmonics. The 
reason is that in many situations the noise comes from the power line (see Chap. 2) 
and so you should use some ‘odd frequency number’. If the power line frequency is 
50 Hz, you don’t excite your system with 50 or 100 Hz, you use something ‘odd’ 
(like 217 Hz, for example). 

Finally, a few comments about LIAs. First, notice in Fig. 15.10 that we have named 
the phase detectors’ outputs ‘I’ and ‘Q’, respectively. ‘I’ stands for ‘In-phase’ (with 
the measurement signal) and ‘Q’ stands for ‘phase shifted a Quarter of a period’. 
That is ‘standard terminology’. Second, the LIA in Fig. 15.10 produces the signal 
magnitude only, but since we have access to both the I and Q parts, we can easily 
also produce the phase angle: 

ϕ = tan−1 Q/I (15.7) 

Some LIAs indeed do that and since they produce both the magnitude and the 
phase angle, they are sometimes referred to as ‘vector voltage meters’. 

Third, we can implement the ‘I’ and ‘Q’ parts in the digital (software) phase 
detector too. In 2011, Li et al. [2] presented an algorithm that accomplishes that. They 
took samples only π/2 apart (twice as fast as in Fig. 15.3) and showed that the I-part 
corresponds to (x(1) − x(3))/4 and the Q-part corresponds to (x(0) − x(2))/4. 

15.5 Solved Problems 

Problem 15.1 In a bioscience laboratory, researchers want to measure the resistance 
in a very thin cell tissue. The resistance is very small (mΩ) and since the properties of 
the cell sample are very temperature dependent, it is paramount that the sample is not 
heated during the measurement; the power must be minimized, i.e., the experiment 
conditions don’t allow you to just crank up the current through your sample. It has 
been estimated that the current must not exceed 1 μA. How would you solve this 
problem? 

Solution We measure resistance by sending current through the sample and measure 
the voltage across it. We will excite the sample with a cosine from a waveform 
generator (amplitude 1 V, frequency 217 Hz), and by adding a 1-MΩ series resistor, 
we make sure we don’t violate the 1 μA current restriction. This circuit is connected 
to a lock-in amplifier as illustrated in Fig. 15.11.

In Fig. 15.11, the sample resistance is <<1 MΩ, so we may assume that the current 
in the circuit is 1 μA. The output voltage has been amplified 200,000 times; hence, 
the voltage across the sample is 0.134 V/200,000 = 0.67 μV. The sample resistance 
is 0.67 μV/1 μA = 0.67 Ω. 

Problem 15.2 In an atomic physics experiment, atoms in a vacuum chamber are 
excited by a continuous wave (CW) laser, and the relaxation light is detected by a
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× 

× 

Fig. 15.11 Cell tissue experiment

photo sensor, see Fig. 15.12. However, due to low signal levels and ambient light, 
they are unable to detect the scattered relaxation light. 

How would you suggest they solve this problem? 

Solution The experiment must be ‘excited’, i.e., we must make sure that the light 
signal we are trying to detect only appears at the photo sensor with a certain frequency; 
a frequency that we control, or at least can measure confidently. To achieve that, we 
‘chopper’ the laser beam. This is ‘standard’ laser accessory; a round plate with holes 
in, rotated by a stepper or DC motor, see Fig. 15.13.

Fig. 15.12 Atomic excitation experiment 
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× 

× 

Fig. 15.13 ‘Excite’ the experiment 

That will ‘excite’ the system. The chopper system may provide a ‘sync’ signal, 
but if it doesn’t, we use a glass plate to deflect a small fraction of the laser beam to 
another photo sensor; that photo sensor provides the reference signal to our LIA. 

The entire solution is illustrated in Fig. 15.13. Even if this excites the detection 
signal to a unique frequency, it is usually a good idea to reduce the ambient light in 
the room anyway. Single photon detections have been reported with this technique 
[3]. 

For an introductory laboratory exercise, I recommend a paper by Libbrecht et al. 
[4].
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Chapter 16 
Correlation 

Abstract By ‘correlation’, this book primarily refers to temporal correlation. This 
chapter defines the auto- and cross-correlation functions and presents their applica-
tions in signal processing. The cross-correlation function is compared to the convo-
lution operator and from this a matched filter can be designed. Both analog and 
discrete-time correlation is treated, and computer implementations of correlation 
algorithms (such as ‘circular’ correlation) are discussed. 

16.1 Introduction 

In this context, ‘correlation’ refers to ‘time-correlation’ (or ‘temporal’ correlation). 
The (time) correlation function of two, time functions x(t) and y(t) is  

Rxy(t) = 
+∞ 

−∞ 

x(τ )y(t + τ )dτ (16.1) 

Does this expression look familiar? If we compare Eq. (16.1) with the convolution 
expression Eq. (9.27), we can see that they are identical, except that we don’t time-
reverse the second function. Hence, we can treat correlation just like convolution, 
except for the time-reversion (which for most students is easier to comprehend, 
conceptually). 

There are two cases of Eq. (16.1); when x(t) = y(t) and when x(t) /= y(t). The 
former case is called ‘auto-correlation’ (‘correlate with yourself’) and the second 
case is called cross-correlation (‘correlate with someone else’). Both are important 
in physics, and they are used in quite different applications. Auto-correlation is 
primarily used to find a periodic signal in stochastic noise and cross-correlation is 
used to find a ‘known’ signal in a lot of noise (such as a radar echo, for example). 

The close relationship with the convolution integral is also very important, and 
we will discuss this in detail in Sect. 16.2.1 (‘matched filters’). We will also present 
the discrete-time correlation functions and some practical computational problems 
when it comes to correlation.
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But first, we need some correlation theory, and we will start with cross-correlation. 

16.2 Cross-Correlation 

To illustrate the cross-correlation process (Eq. (16.1)), we will use the same signals 
that we used when we illustrated convolution in Sect. 9.8.1. First, we look at the 
signal y(τ ) = 2τ – 1. This signal is illustrated in Fig. 16.1, and Fig. 16.2 illustrates 
y(t + τ ) for different times t. 

Comparing with Figs. 9.38 and 9.39, we can see that y(t + τ ) is first, not time-
reversed and second, when t goes from −∞ to +∞, y(t + τ ) slides from right to left 
on the τ axis (the opposite direction compared to convolution). 

Example 16.1 Figure 16.3 illustrates x(t) and Fig. 16.4 illustrates y(t). Find the 
cross-correlation between x(t) and y(t). (Compare the result with Example 9.5).

Solution Figure 16.5 illustrates how y(t + τ ) moves along the τ axis relative x(τ ). 
We can see that there is no overlap between the two signals for times t < 0 and t > 3.  
Figure 16.6 illustrates the signals for 0 < t < 1. For this time interval, Eq. (16.1) is  

Rxy(t) = 
1 

1−t 

(τ − 1) · 1dτ =
[
1 

2 
τ 2 − τ

]1 
1−t 

= 
1 

2 
− 1 − 

1 

2 
(1 − τ )2 + (1 − τ ) =  · · ·  =  −  

1 

2 
τ 2

Figure 16.17 illustrates the two signals for 1 < t < 2. Equation (16.1) is now:

Fig. 16.1 y(τ ) = 2τ – 1
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Fig. 16.2 y(t + τ ) for  t = +  
3, 0 and −3

Fig. 16.3 x(t) 

Fig. 16.4 y(t)
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Fig. 16.5 x(t) and  y(t + τ ) for some t values 

Fig. 16.6 x(t) and  y(t + τ ) for some 0 < t < 1.  

Fig. 16.7 x(t) and  y(t + τ ) for some 1 < t < 2
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0 

1−t 

(τ + 1) · 1dτ + 
2−t 

0 

(τ − 1) · 1dτ =
[
1 

2 
τ 2 + τ

]0 
1−t 

+
[
1 

2 
τ 2 − τ

]2−t 

0 

= 0 −
(
1 

2 
(1 − t)2 + 1 − t

)
+ 

1 

2 
(2 − t)2 − 2 + t =  · · ·  =  t − 1.5 

Finally, Fig. 16.8 illustrates the signals for 2 < t < 3. The cross-correlation is 

2−t 

−1 

(τ + 1)dτ =
[
1 

2 
τ 2 + τ

]2−t 

−1 

= 
1 

2 
(2 − t)2 + 2 − t −

(
1 

2 
− 1

)

=  · · ·  =  
1 

2 
t2 − 3t + 4.5 

The resulting cross-correlation function is plotted in Fig. 16.9. 
Cross-correlation has the following properties: First, it is commutative, i.e., Rxy(t) 

= Ryx(t). Second, if x and y correlate to Rxy and x and z correlate to Rxz, then x and

Fig. 16.8 x(t) and  y(t + τ ) for some 2 < t < 3  

Fig. 16.9 The cross-correlation function 
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(y + z) correlate to Rxy + Rxz. Also, if we compare Fig. 16.9 with Fig. 9.49, we  
can confirm that cross-correlation corresponds to convolution with a time-reversed 
impulse response. 

So, what are the applications of cross-correlation? To see that, let’s first cross-
correlate white noise (x(t), Fig. 16.10) with the symmetric, bipolar square signal in 
Fig. 16.11. 

In Fig. 16.12, we have plotted x(t) and y(t + τ ) for some different times t. If  
we multiply x(t) and y(t + τ ), the resulting ‘area’ will be ≈ 0 for any time t; the  
cross-correlation of x(t) and y(t + τ ) is  ≈ 0 everywhere.

In Fig. 16.13, y(t) is a ‘small’, delayed copy of x(t). If we cross-correlate x(t) 
and y(t) (let  y(t) ‘slide’ left), Rxy(t) will be zero until they start to overlap (for t = 
t0 – 2).  Rxy(t) will have a maximum for t = t0 and then it will decrease to 0 again. 
Figure 16.14 illustrates Rxy(t).

Hence, the ‘peak’ in the cross-correlation function indicates the position of the 
‘small copy’ of x(t). This is how radar and sonar systems work. They emit a known 
‘signature’ chirp (x(t)), and they cross-correlate it with the echo detector signal and 
the ‘peak’ will correspond to the time it took for the chirp to travel back and forth to 
the ‘target’.

Fig. 16.10 White noise 

Fig. 16.11 Symmetric and bipolar 
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Fig. 16.12 Rxy(t) ≈ 0 for  all  t

Fig. 16.13 y(t) is a small delayed ‘copy’ of x(t) 

Fig. 16.14 The cross-correlation function

Figure 16.15 illustrates a radar chirp and an ‘echo’ and in Fig. 16.16 you can 
see the detector signal. The echo signal is not visible in the detector signal, but we 
have plotted it separately to indicate where it is. In Fig. 16.17, we have plotted the 
cross-correlation between the detector signal in Fig. 16.16 and the chirp signal in 
Fig. 16.15. From the  Rxy peak in Fig. 16.17, we can easily determine where the echo 
is in Fig. 16.16.

We conclude that cross-correlation is used to find ‘known’ signals buried in 
random noise. NB! The cross-correlation technique is extremely selective and in 
radar applications, the echo signal in Fig. 16.16 may be frequency-shifted due 
to the Doppler effect and that has a severe impact on the detectability. For that 
reason, radar detection is complemented with statistical hypothesis testing (called 
‘Neyman-Pearson’ detection).
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Fig. 16.15 A radar chirp and an ‘echo’ 

Fig. 16.16 Can you see the echo signal in the noise? 

Fig. 16.17 The cross-correlation function

16.2.1 Implementation: Matched Filters 

Consider the signal x(t). If we cross-correlate it with y(t) we get 

Cross-correlation: 

∞ 

−∞ 

x(τ )y(t + τ )dτ = 
∞ 

−∞ 

y(τ )x(t + τ )dτ (16.2)
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Fig. 16.18 Convolution versus cross-correlation 

Fig. 16.19 A 
cross-correlator

If we instead filter the signal y(t) in a filter with impulse response x(t) we get 

Convolution: 

∞ 

−∞ 

x(τ )y(t − τ )dτ = 
∞ 

−∞ 

y(τ )x(t − τ )dτ (16.3) 

In the cross-correlation case, x(t + τ ) slides from right to left when t increases, 
and in the convolution case, the time-reversed signal slides from left to right, see 
Fig. 16.18. 

That means that we can implement a cross-correlator in a filter by designing the 
filter such that its impulse response h(t) = x(−t). This is called a ‘matched’ filter, 
see Fig. 16.19. 

16.3 Auto-Correlation 

The auto-correlation function (ACF) is 

Rxx  (t) = 
∞ 

−∞ 

x(τ )x(t + τ )dτ (16.4) 

In auto-correlation, a time-shifted copy of the signal ‘slides over itself’, see 
Fig. 16.20. An inherent property of the ACF is that it is always symmetric around t 
= 0, i.e., Rxx(t) = Rxx(−t).
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Fig. 16.20 A copy of the signal ‘slides over itself’ 

Example 16.2 Plot the ACF of the signal in Fig. 16.21. 

Solution In auto-correlation, it is usually easier to find the integration limits by 
starting from x(0 + τ ) and then ‘slide left’ (in the positive t direction). Because of 
the inherent symmetric property of the ACF, we only need to find Rxx(t) for positive 
times t. In Fig.  16.22, we can see that for 0 < t < 2, we must integrate between τ = 
−1 and 1 – t. 

Rxx  (t) = 
1−t 

−1 

1 · 1dτ = [τ ]1−t 
−1 = 1 − t + 1 = 2 − t 

The ACF for the time interval − 2 <  t < 0 is then 2 + t. Figure 16.23 illustrates 
the ACF.

Fig. 16.21 Auto-correlate a 
square pulse 

Fig. 16.22 We only need to 
find the ACF for positive 
times t 
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Fig. 16.23 The ACF 

From Example 16.2, we can draw another conclusion about the ACF; it will always 
have a maximum for t = 0. 

Example 16.3 Find the ACF of a sine function, x(t) = sint. 

Solution For a periodic signal, we only need to integrate over one period, and the 
auto-correlation expression should also be divided by the period T: 

Rxx  (t) = 
1 

T 

T 

0 

sin τ × sin(t + τ)dτ 

= 
1 

2T 

T 

0 

⎛ 

⎜⎜⎜⎝ 
cos(−t)    

=cos t 
Independent of τ 

+ cos(2τ + t)    
=0 

Integrated over two periods 

⎞ 

⎟⎟⎟⎠dτ 

Rxx  (t) = 
1 

2T 
cos t 

T 

0 

dτ = 
1 

2 
cos t (16.5) 

From Example 16.3, we can draw some more conclusions about the ACF. First, 
if x(t) is periodic, then Rxx(t) has the same period as x(t); the frequency information 
is preserved in the auto-correlation process. Second, we auto-correlated a sine and 
got a cosine. As a matter of fact, we would always get a cosine for any sin(ωt + 
ϕ) function, independent of the phase angle ϕ; the phase information is lost in the 
auto-correlation process. 

So, what are the applications of auto-correlation? To see that, we first auto-
correlate white noise. Figure 16.24 illustrates white noise and a time-shifted copy of 
it. Imagine that we multiply the noise signal and the time-shifted copy at each time 
instant. If the time-shift is zero, then we just square the noise signal, and the product 
signal would be all-positive and if we integrated it, we would get a number > 0; this 
number is equal to the variance σ 2 of the noise (the noise power).
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Fig. 16.24 White noise (bandwidth-limited) 

Fig. 16.25 Auto-correlation 
of white noise 

However, if the time shift is > 0, then soon the product function between the noise 
and the time-shifted copy will be a random noise signal and integrating it over some 
time interval would just be ≈ 0 everywhere. This is illustrated in Fig. 16.25. 

How fast Rxx goes to zero from t = 0 depends on the noise bandwidth; if the noise 
is not bandlimited, then the ACF is actually a delta function: 

Ryy(t) =
 

σ 2 t = 0 
0 t /= 0 

(16.6) 

i.e., Rxx  (t) = σ 2δ(t). 
Next, suppose that the signal x(t) has the ACF Rxx(t), and that y(t) has the ACF 

Ryy(t). Then the signal x(t) + y(t) has the ACF Rxx(t) + Ryy(t) (provided that the two 
functions are statistically independent). The proof of this relies on statistics and is 
presented in Problem 16.6. 

Now, let’s suppose that we have a periodic signal (sint) with white noise; x(t) = 
(sint + white noise), see Fig. 16.26. The ACF of this signal is the sum of the ACF 
of the sine (= a cosine) and the ACF of the noise (a delta function). The ACF is 
illustrated in Fig. 16.27. Notice in Fig. 16.27 that (a) the noise is concentrated to t = 
0 and (b) the huge improvement of the signal-to-noise ratio.
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Fig. 16.26 Sine + white noise 

Fig. 16.27 The ACF 

Improving the signal-to-noise ratio in periodic signals with white noise is the 
obvious application of autocorrelation, but it doesn’t stop there. Auto-correlation is 
used in a huge range of applications, and we will present some of them in the next 
section. 

16.3.1 Auto-Correlation Applications 

Figure 16.28 illustrates a Photon Correlation Spectroscopy experiment (PCS). Here, 
auto-correlation is used to determine the diffusion coefficient and the size of colloidal 
particles in a solvent. 

If the size of the particles is smaller than the laser wavelength, then Rayleigh 
scattering will occur. If the distance d × sinθ between two adjacent light-scattering 
particles equals a multiple of the laser wavelength (mλ), then there will be construc-
tive interference in the photodetector resulting in a high photodetector current I(t). 
On the other hand, if the distance equals a multiple of λ/2, then there will be destruc-
tive interference resulting in a low photodetector current. Due to Brownian motion 
of the particles, the photodetector signal will vary randomly as the phase shift of 
the light from two adjacent particles will change gradually when the particles move. 
Figure 16.29 illustrates the photodetector signal.
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Laser 
Wavelength = λ 

Photo detector 

PD 
I(t)   

Colloidal particles 
in solvent Distance d d sinθ 

θ 

Fig. 16.28 Photo correlation spectroscopy (PCS) (or ‘Dynamic light scattering’, DLS) 

Fig. 16.29 The photodetector signal 

The photodetector signal is random, but not ‘white’ random; there is some corre-
lation between adjacent samples. This is reflected in the ACF, which will be an expo-
nentially decaying signal, see Fig. 16.30; the correlation between samples decreases 
with time. From the ACF parameters (time constant, baseline, max value), both 
the diffusion coefficient and the particle size can be derived [1]. For example, this 
technique has been used to study the homogeneity of proteins [2]. 

Fig. 16.30 The ACF
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It has also been used to measure particle-flow velocity [3]. When the particles pass 
through a laser beam, the moving particles ‘encode’ an intensity fluctuation in the 
backscattered light and the slope of the ACF is proportional to the particle velocity. 

Spatial autocorrelation has its own applications. For example, it is used in ecology 
to study the synchronous fluctuation of ecological variables over wide geograph-
ical areas (such as birds, butterflies, trees, hares…) [4]. It is also used to study the 
fluctuation of socio-economic variables over regional areas [5]. 

In the physics lab though, we mostly use it to detect periodic signals in random 
noise. 

16.4 Discrete-Time Correlation 

16.4.1 Cross-Correlation 

The discrete-time expression for cross-correlation is 

Rxy(n) =
∑∞ 

i=−∞xi yn+i (16.17) 

If we compare this expression with Eq. (10.3) (discrete-time convolution), we can 
see that it is in principle the same thing, except we don’t time-reverse yn. Writing it 
out explicitly we get (assuming all signals = 0 for  n < 0)  

Rxy(n) = x0 yn + x1yn+1 + x2 yn+2 + . . . .  

Table 16.1 illustrates the case where x = [x0, x1, x2] and y = [y0, y1, y2, y3]. If we 
compare this to Table 10.1, we can see that data is now ‘sliding’ in from the right 
side (and is not time-reversed). 

Example 16.4 Cross-correlate the signals in Figs. 16.31 and 16.32.

Table 16.1 Cross-correlation in discrete time 

Rxy(n) x0 x1 x2 y 

Rxy(−2) = x2y0 y0 y1 y2 y3 

Rxy(−1) = x1y0 + x2y1 y0 y1 y2 y3 

Rxy(0) = x0y0 + x1y1 + x2y2 y0 y1 y2 y3 

Rxy(1) = x0y1 + x1y2 + x2y3 y1 y2 y3 

Rxy(2) = x0y2 + x1y3 y2 y3 

Rxy(3) = x0y3 y3 
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Fig. 16.31 xn 

Fig. 16.32 yn 

Solution We start by delaying the yi signal by five samples (n=−5). From Fig. 16.33, 
we can see that there is no overlap until n = −4. 

Rxy(−4) = x4 y0 = 1 · 1 = 1 

Rxy(−3) = x3y0 + x4 y1 = 1 + 1 = 2 

Rxy(−2) = x2 y0 + x3y1 + x4 y2 = 1 + 1 + 1 = 3 

Rxy(−1) = x1y0 + x2 y1 + x3y2 + x4y3 = 1 + 1 + 1 − 1 = 2 

Rxy(0) = x0 y0 + x1y1 + x2 y2 + x3y3 + x4 y4 = 1 + 1 + 1 − 1 − 1 = 1 

Rxy(1) = x0 y1 + x1y2 + x2 y3 + x3y4 + x4 y5 = 1 + 1 − 1 − 1 − 1 = −1 

Rxy(2) = x0 y2 + x1y3 + x2 y4 + x3y5 = 1 − 1 − 1 − 1 = −2 

Rxy(3) = x0 y3 + x1y4 + x2 y5 = −1 − 1 − 1 = −3
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Fig. 16.33 No overlap until 
n = −4 

Fig. 16.34 The 
cross-correlation function 

1 

2 

n 

Rxy(n) 

Rxy(4) = x0 y4 + x1y5 = −1 − 1 = −2 

Rxy(5) = x0 y5 = −1 

The cross-correlation function is illustrated in Fig. 16.34. 

16.4.2 Auto-Correlation 

We get the discrete-time auto-correlation expression by just substituting yn+i for xn+i 
in expression (16.17): 

Rxx  (n) =
∑∞ 

i=−∞xi xn+i (16.18) 

We don’t give any examples of discrete-time autocorrelation. It works just like the 
cross-correlation in Eq. (16.17), and it has the same properties as the continuous-time 
ACF; frequency is preserved, but not the phase and it has a maximum for n = 0. 

Instead, we will investigate a ‘computational’ problem concerned with discrete-
time correlation.
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16.4.3 Circular Correlation 

Suppose that we sample a periodic signal like the sinusoidal in Fig. 16.35. 
When we auto-correlate a periodic signal with a period of N samples, we should 

only correlate over one period and the correct correlation expression is 

Rxx  (n) = 
1 

N

∑N−1 

i=0 
xi xn+i (16.19) 

However, we could execute this expression in two different ways. We could do 
it as indicated in Table 16.1, i.e., we just let the ‘copy slide’ by the ‘original’ signal 
and multiply and sum all the overlapping samples. This is illustrated in Figs. 16.36 
and 16.37. 

Fig. 16.35 Sampling a sine 

Fig. 16.36 ‘Common’ correlation 

Fig. 16.37 ‘Common’ correlation



16.4 Discrete-Time Correlation 337

With the correlation technique in Fig. 16.36, samples that are ‘shifted’ out are 
just discarded and the number of overlapping samples decreases gradually and that 
will ‘distort’ the ACF. We can make up for this in two different ways. One simple 
solution would be to ‘re-define’ N in Eq. (16.19) from representing the signal period 
to representing the number of overlapping samples. Then N would decrease with the 
shift to compensate for the decreasing number of overlapping samples. The downside 
of this solution is that there will be very few overlapping samples at the ‘ends’ and 
that gives us ‘poor statistics’. 

A better way to make up for it is to use ‘circular’ correlation. In circular correlation, 
the sample that is shifted out is not discarded but is instead ‘rotated’ back to the 
beginning of the sample array, see Figs. 16.38 and 16.39. 

Using this technique, we will always have N overlapping samples. Circular corre-
lation was used to produce the ACF in Fig. 16.27. Figure 16.40 illustrates what it 
would have looked like if we had used ‘common’ correlation. 

Fig. 16.38 ‘Circular’ correlation 

Fig. 16.39 ‘Circular’ correlation 

Fig. 16.40 Auto-correlation without ‘circular’ correlation (compare with Fig. 16.27)
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Notice in Fig. 16.40 how the amplitude of the sine is decreasing gradually because 
of the decreasing number of samples that we ‘multiply-and-add’. 

In MATLAB, you use the xcorr command for ‘common’ correlation and the 
cxcorr command for circular correlation. (However, you need the Signal Processing 
Toolbox to get access to the cxcorr command.) 

16.5 Solved Problems 

Problem 16.1 Prove that the lock-in amplifier we introduced in Chap. 15 is just a 
special case of cross-correlation; the lock-in amplifier output = Rxy(0). 

Solution Fig. 16.41 illustrates the lock-in amplifier system. The multiplier obviously 
produces the signal product. All we need to do is to prove that the lowpass filter 
integrates the product. To prove that we need to look at the lowpass filter hardware. 
Figure 16.42 illustrates a first-order RC lowpass filter. 

The output voltage b(t) equals the voltage across the capacitor: 

b(t) = Uc = 
Q 

C 
= 

1 

C 

t 

−∞ 

i (τ )dτ 

Hence, b(t) is the integral of the current. If  R >> 1/ωC, then almost all of a(t) 
falls over R and then i ≈ a(t)/R. Hence

Fig. 16.41 Lock-in 
amplifier ×× 

y(t) 

x(t) LP 
x(t)×y(t)

Fig. 16.42 First-order 
lowpass filter 

R 

C b(t)a(t) 

i 



16.5 Solved Problems 339

b(t) = 
1 

C 

t 

−∞ 

a(τ ) 
R 

dτ = 
1 

RC 

t 

−∞ 

a(τ )dτ 

We can conclude that if R >> 1/ωC, i.e., if RC >> 1/ω, = T /2π (where T is the 
signal period), then the lowpass filter is indeed integrating the input signal and the 
lock-in amplifier output is 

1 

RC 

t 

−∞ 

x(τ )y(τ )dτ = 
1 

RC 
Rxy(0) 

Problem 16.2 Find the auto-correlation function of a square signal (duty cycle 50%). 

Solution Figure 16.43 illustrates a square wave x(τ ) and a shifted copy x(t + τ ) (t > 
0). 

We only need to find one period of the ACF; we derive the ACF for −1 <  t < 1.  
Figure 16.43 represents the two signals when 0 < t < 1. In this interval, the ACF is 

Rxx  (t) = 
1 

2 

1−t 

0 

1 · 1dτ = 
1 

2 
(1 − τ ) 

Figure 16.44 represents the signals when −1 <  t < 0.
The ACF is 

Rxx  (t) = 
1 

2 

1 

−t 

1 · 1dτ = 
1 

2 
(1 + t) 

The ACF is plotted in Fig. 16.45.

Problem 16.3 In Example 16.3, we concluded that the frequency information is 
preserved in the auto-correlation and that the phase information is lost. What about 
the amplitude information. Lost or preserved?

Fig. 16.43 The two signals x(τ ) and  x(t + τ ) 



340 16 Correlation

Fig. 16.44 The two signals x(τ ) and  x(t + τ ) for  −1 <  t < 0

Fig. 16.45 The ACF

Solution It is lost (or at least ‘scrambled’). We have seen two examples of this. In 
Example 16.3, the ACF of a sine (amplitude = 1) became a cosine with amplitude 
= 0.5. Also, in Problem 16.2 above, the ACF of a square wave became a sawtooth 
signal. We know from Fourier transform theory that the square and the sawtooth have 
the same frequencies, but their amplitude spectrums are different. 

Problem 16.4 What is the auto-correlation function of the square pulse signal in 
Fig. 16.46? 

Solution This is the same problem as in Example 16.2; the auto-correlation function 
is independent of time delays. Hence, the auto-correlation function of the signal in 
Fig. 16.46 is illustrated in Fig. 16.23. 

Problem 16.5 In Sect. 16.3, we asserted that for the auto-correlation of white noise, 
Rxx(0) = σ 2. Prove that this is true.

Fig. 16.46 Squared pulse 



16.5 Solved Problems 341

Solution To prove that we need some statistical theory. First, the noise signal is 
random, and we need to treat it as a stochastic process, X(t). The auto-correlation 
function of a stochastic process is the expectation value of X(τ )· X(t + τ ). If t = 0, 
then 

Rxx  (0) = E{X(t) · X(t)} = E
(
X2

) = σ 2 

from the definition of variance and from the fact that the expectation value of white 
noise is = 0. (Also, assuming that we have a stationary process.) 

Problem 16.6 Prove that if the signal x(t) has the auto-correlation function Rxx(t), 
and if y(t) has the auto-correlation function Ryy(t), then signal x(t) + y(t) has the 
auto-correlation function Rxx(t) + Ryy(t). 

Solution We can prove it if we treat the two signals as two stochastic processes. The 
auto-correlation function is in general the expectation value of X(τ ) and X(t + τ ). 
In our case, we have a sum of functions: 

E((X (τ ) + Y (τ )) · (X (t + τ)  + Y (t + τ))) 
= E{X (τ )X (t + τ)  + X (τ )Y (t + τ)  
+Y (τ )X (t + τ)  + Y (τ )Y (t + τ)} 

= E{X (τ )X (t + τ)}    
=Rxx  (t) 

+ E{X (τ )Y (t + τ)}    
=0 (Independent) 

+ E{Y (τ )X (t + τ)}    
=0 (Independent) 

+ E{Y (τ )Y (t + τ)}    
=Ryy (t) 

= Rxx  (t) + Ryy(t) 

(Because the correlation between independent processes is 0.) 

Problem 16.7 The ACF Rxx(t) and the power spectrum |X(ω)|2 is a ‘Fourier 
transform pair’, i.e., 

∞ 

−∞ 

Rxx  (t) · e−jωt dt  = |X(ω)|2 

‘Prove’ that this is true by calculating first the Fourier transform of the pulse in 
Fig. 16.21 and then calculating the Fourier transform of its auto-correlation function. 

Solution We already found in example 7.2 that the Fourier transform of a square 
pulse is 

|H (ω)| = 
2 

ω 
sin 

ω 
2 

⇒ |H (ω)|2 = 
4 

ω2 
sin2 ω
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We also derived the ACF of the square pulse in Problem 16.2. The Fourier 
transform is: 

∞ 

−∞ 

Rxx  (t)e
−jωt dt  = 

0 

−2 

(2 + t) · e−jωt dt  + 
2 

0 

(2 − t) · e−jωt dt  

= 2 
2 

−2 

e−jωt dt  + 
0 

−2 

t · e−jωt dt  − 
2 

0 

t · e−jωt dt  

= −  
2 

jω

[
e−jωt

]2 
−2 

+
[
− 

t 

jω 
e−jωt

]0 
−2 

+ 
1 

jω 

0 

−2 

e−jωt dt  −
[
− 

t 

jω 
e−jωt

]2 
0 

− 
1 

jω 

2 

0 

e−jωt dt  = 

= −  
2 

jω 
e−j2ωt + 

2 

jω 
ej2ωt − 

2 

jω 
ej2ωt + 

1 

ω2

[
e−jωt]0 

−2 + 
2 

jω 
e−j2ωt − 

1 

ω2

[
e−jωt]2 

0 

= 
1 

ω2

(
1 − ej2ωt − e−j2ωt + 1

) = 
2 

ω2 
(1 − cos2ω) = 

4 

ω2 
sin2 ω 

And hence, 
∞ 

−∞ 
Rxx  (t)e−jωt dt  = |H (ω)|2 . 

Problem 16.8 Find the ACF of x(t) = e−t (t > 0),  x(t) = 0 if  t < 0.  

Solution Figure 16.47 illustrates x(τ ) and x(t + τ ). The ACF is 

Rxx  (t) = 
∞ 

0 

e−τ e−(t+τ ) dτ = e−t 

∞ 

0 

e−2τ dτ = −1 

2 
e−t

[
e−2τ ]∞ 

0 = 
1 

2 
e−t 

Fig. 16.47 Auto-correlating 
an exponential function
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Table 16.2 Sampling the exponential 

n 0 1 2 3 4 5 6 7 8 9 10 

xn 1.000 0.819 0.670 0.549 0.449 0.368 0.301 0.247 0.202 0.165 0.135 

Problem 16.9 Suggest a digital FIR filter that you could use to ‘detect’ the 
exponential function in problem 16.8 in a noise signal. 

Solution First we need to decide a sampling rate; f S = 5 S/s. That means that the 
samples are taken at times n/5 = n·0.2 s. To ‘detect’ the exponential signal in noise, 
we need to cross-correlate it with an identical exponential function and we implement 
that by designing a filter with an impulse response that is just the time-reversed copy 
of the signal. In a FIR filter, the filter coefficients are also the impulse response 
coefficients. 

First, we sample the exponential: xn = e−n·0.2 (Table 16.2). 
Then we just time-reverse the sample order (and shift to make it causal) to get an 

11-tap FIR filter that cross-correlates: 

yn = 0.135xn + 0.165xn−1 + 0.202xn−2 + 0.247xn−3 +  · · ·  +  0.819xn−9 + xn−10 

Problem 16.10 Figure 16.48 illustrates a seismograph that determines the direction 
to the epicentrum of earthquakes. It cross-correlates the signals from three vibration 
sensors placed as indicated in Fig. 16.48. Chock waves propagate through the earth’s 
crust at a speed of 4000 m/s, and they are assumed to be ‘far away’, i.e., the shock 
waves impact as plane waves on the seismograph.

At an earthquake, the vibration signals from sensors y1 and y2 were cross-
correlated with the x signal, and the cross-correlation functions are illustrated in 
Figs. 16.49 and 16.50. Determine the direction to the epicentrum.

Solution In Rxy1(t), y1 is shifted left and we get a ‘hit’ for t > 0. That means that 
the shock wave hit sensor x before it hit sensor y1; from Rxy1(t) we conclude that 
the shock wave came either from the South-West or from the North-West. When x 
was correlated with y2, we got a hit for t < 0; the shock wave hit sensor y2 before it 
hit sensor x, and that happens if the chock wave comes from either South-West or 
South-East. The conclusion is that the shock wave came from the South-West. Once 
we know the approximate direction, we can calculate the exact direction. 

Figure 16.51 illustrates how plane waves hit the sensors (from South-West). We 
need to find the angle θ.

According to Rxy1(t), the time difference in the impact between sensor x and sensor 
y1 is 100 ms; hence the distance L = 4000 × 0.1 = 400 m. We can then find the 
angle θ: 

sinθ = 
400 

500 
⇒ θ = sin−1 0.8 = 53◦
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Fig. 16.48 Epicentrum detector

Fig. 16.49 Rxy1(t)
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Fig. 16.50 Rxy2(t)

Fig. 16.51 Finding the impact angle
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Chapter 17 
Curve Fitting 

Abstract One of the most common ‘post-measurement’ data processing operations 
is curve fitting, i.e., fitting samples to a predicted expression. This is usually derived 
by least-square calculations, but this chapter will use the orthogonality principle to 
derive the curve fitting expressions. The advantage of this is that it offers a graphical 
argument for its legitimacy. The pseudo inverse of a non-square matrix is defined 
and some common pitfalls due to error propagation in matrix operations are high-
lighted. Once curve fitting is understood, it can be used to understand how sampling 
instruments, such as digital oscilloscopes, retrieve the original signal from only a few 
samples; in Sect. 17.6 the sampling theorem is revisited, and this section explains 
the difference between linear interpolation and sinx/x interpolation. 

17.1 Introduction 

In a typical measurement, we observe (measure) some quantity y as some other 
quantity x varies; the objective is to figure out how y depends on x (y = f (x)). In 
a typical case, we know the ‘general’ dependence of y on x, i.e., we know they are 
related by a first-order polynomial or an exponential function, but we don’t know the 
function coefficients. So, we take data, but since data are noise-infected, they will 
not follow the expected function graph exactly. 

In Fig. 17.1, we denote the measured data ym, and the ‘theoretical’ value just y. 
In the general case, if we take r data points, the result of the measurement would be 
an r × 2 table (an r × 2 matrix), see Table 17.1. The deviation of the measured data 
from the theoretical value is called the error, ε: 

εn = yn − ym n (17.1)

Our objective is to find the theoretical function y = f (x) from the data. For this 
introduction, we will assume a straight line: 

f (x) = c0 + c1x (17.2)
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Fig. 17.1 Data won’t fit exactly to the expected line 

Table 17.1 The data table 
x ym 

x1 ym 1 

x2 ym 2 

: : 

xr ym r

If there was no noise in the data, we could choose any two data pairs in Table 17.1, 
insert them into Eq. (17.2), and we would have a system of two equations with two 
unknowns, and we could solve for the unknown coefficients c0 and c1. And we would 
be done. But that won’t work because of the noise; we would get a different result 
every time depending on which two pairs we select. 

If we insert all of them into Eq. (17.1), we get the following system of equations: 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

c0 + c1x1 = ym 1 

c0 + c1x2 = ym 2 
... 

c0 + c1xr = ym r 

⇒ 

⎛ 

⎜ 
⎜ 
⎜ 
⎝ 

1 x1 
1 x2 
... 
... 

1 xr 

⎞ 

⎟ 
⎟ 
⎟ 
⎠ 

·
(
c0 
c1

)

= 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

ym 1 

ym 2 

ym 3 

ym 4 

ym 5 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

⇒ A · C = M (17.3) 

First, this is an overdetermined system of equations (because we have more equa-
tions than we need to solve it). Second, it doesn’t have an exact solution (because 
of the noise). The only thing we can do is to try to find the best solution. We’ll get 
back to what we mean by ‘best’ in a minute. In Eq. (17.3) we also wrote the equation 
system in matrix form and A is the observation matrix, C is the coefficient matrix 
and M is the measurement data matrix. Our objective is to find the C matrix. 

By the ‘best’ solution, we mean the straight line in Fig. 17.1 that will minimize 
the sum of all the squared errors. That makes sense; we must square them before we
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add them since the errors have different signs. So, we square and add, and then it 
becomes a classical ‘minimum’ problem (take the derivative and set it equal to zero). 
That is how it is derived in undergraduate classes, and it is called ‘linear regression’. 
However, here we will try to go a little ‘deeper’ (to promote profound understanding). 

We concluded above that our overdetermined system of equations doesn’t have 
an exact solution because of the noise. Well, let’s assume that we don’t understand 
that (or don’t care) and try to solve it anyway. Maybe we are lucky… If A had been 
quadratic (r × r), then the solution would have been easy; just invert A and multiply 
both sides from (the left) with A−1 and we get C = A−1 M. But  A isn’t quadratic, it 
is an r × 2 matrix and A−1 does not exist. Well, we can fix that; multiply both sides 
(from the left) by AT (the ‘transpose’ of A, which is a 2 × r matrix): 

AT AC = AT M (17.4) 

ATA is  a quadratic, 2 × 2 matrix and does have an inverse matrix (if it only has 
‘full rank’, which all ‘normal’ measurements produce). So, if we multiply, from the 
left, with the inverse of ATA we get:

(
AT A

)−1 
AT AC = (

AT A
)−1 

AT M ⇒ C = (
AT A

)−1 
AT M = A# M (17.5) 

(A# = (ATA)−1AT is the ‘pseudo inverse’.) We solved it! We found a solution to 
the system of equations with no solution! Well, we said that it doesn’t have an exact 
solution. So, what does the solution in Eq. (17.5) represent? It is the same solution 
we would get if we solved the minimum square problem with the sum of errors. Here, 
will prove it to you in a different way. Equation (17.5) is the ‘best’ solution and we 
will prove it using geometry. 

17.2 The Orthogonality Principle 

The starting point is that we consider C to be a vector; in this case, it is a vector in 
R2, but in the general case it would be a vector in Rn (when we try to fit data to an n 
− 1 order polynomial). Hence, the C matrix is a column vector (c0,c1) (temporarily 
lying down here). Similarly, A also consists of two (column) vectors (1,1,…,1) and 
(x1,x2,…xr): 

AC = c0 

⎛ 

⎜ 
⎜ 
⎝ 

1 
1 
: 
1 

⎞ 

⎟ 
⎟ 
⎠ + c1 

⎛ 

⎜ 
⎜ 
⎝ 

x1 
x2 
: 
xr 

⎞ 

⎟ 
⎟ 
⎠ = 

⎛ 

⎜ 
⎜ 
⎝ 

c0 + c1x1 
c0 + c1x2 

: 
c0 + c1xr 

⎞ 

⎟ 
⎟ 
⎠ (17.6) 

In Eq. (17.6), we multiply the column vector (1,1,…1) by c0 and the vector 
(x1,x2,…xr) is multiplied by c1. This creates a new vector, see Fig. 17.2.
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Fig. 17.2 Vectors (1,1,…1) and (x1,x2,…xr) define a space 

From Fig. 17.2, we can see first that the two column vectors (1,1,…1) and 
(x1,x2,…xr) define a 2D space (they span a 2D space) and second that the matrix 
product AC is a vector (that we call 

−→
B in Fig. 17.2). So, if the matrix product AC 

defines a vector in the space defined by the vectors (1,1,…1) and (x1,x2,…xr), the 
matrix equation AC = M, can only have a solution if the vector M is in this space! 
But because of the noise in the measurement, the measurement data matrix M is not 
in this space, see Fig. 17.3. 

Since we are limited to the space spanned by vectors (1,1,…1) and (x1,x2,…xr), 
we cannot find an exact solution to the AC = M equation. It that case, we instead 
find the best solution. The ‘best’ solution is the vector in the space [(1,1,…1),

Fig. 17.3 Our measurement matrix M is not in the 2D space spanned by (1,1,…1) and (x1,x2,…xr) 
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Fig. 17.4 The projection of 
M is closest to M 

Fig. 17.5 M
∆

− M is 
perpendicular to the plane 

(x1,x2,…xr)], that is closest to M; the vector closest to M is the projection of M 
onto the [(1,1,…1),(x1,x2,…xr)] space, see Fig. 17.4. 

So how do we find the coefficients c0 and c1 that define the closest vector M
∆

(‘M hat’)? That is easy; that’s when the vector M
∆

− M is perpendicular to the plane 
spanned by [(1,1,..1), (x1,x2,…xr)],1 see Fig. 17.5. 

To be perpendicular to the plane spanned by [(1,1,…1), (x1,x2,…xr)], it must be 
perpendicular to both vectors [(1,1,…1) and (x1,x2,…xr)], i.e., the scalar products 
between M

∆

− M and both vectors [(1,1,…1) and (x1,x2,…xr)] must be zero: 

⎧ 
⎨ 

⎩ 
(1 1  . . .  1)T

(
M
∆

− M
)

= 0 

(x1 x2 . . .  xr )T
(
M
∆

− M
)

= 0 
⇒

(
1 1  . . .  1 

x1 x2 . . .  xr

)T(
M
∆

− M
)

= 0 (17.7) 

AT (
 

M − M) = 0 (17.8) 

But,

1 This is the’orthogonality principle’. 
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M
∆

− M = 

⎛ 

⎜ 
⎜ 
⎝ 

y1 
y2 
: 
yr 

⎞ 

⎟ 
⎟ 
⎠ − 

⎛ 

⎜ 
⎜ 
⎝ 

ym 1 

ym 2 

: 
ym r 

⎞ 

⎟ 
⎟ 
⎠ = 

⎛ 

⎜ 
⎜ 
⎝ 

c0 + c1x1 
c0 + c1x2 

: 
c0 + c1xr 

⎞ 

⎟ 
⎟ 
⎠ − 

⎛ 

⎜ 
⎜ 
⎝ 

ym 1 

ym 2 

: 
ym r 

⎞ 

⎟ 
⎟ 
⎠ = 

= 

⎛ 

⎜ 
⎜ 
⎝ 

1 x1 
1 x2 

: 
1 xr 

⎞ 

⎟ 
⎟ 
⎠

(
c0 
c1

)

− 

⎛ 

⎜ 
⎜ 
⎝ 

ym 1 

ym 2 

: 
ym r 

⎞ 

⎟ 
⎟ 
⎠ = AC − M 

Substituting AC–M for M
∆

− M in Eq. (17.8) gives us 

AT (
 

M − M) = AT (AC − M) = 0 
⇒ AT AC = AT M ⇒ C = (AT A)−1 AT M = A# M (17.9) 

which proves that the solution we derived in Eq. (17.5) is indeed the best solution. 
We summarize this in the following theorem. 

Theorem (The orthogonality principle.) We find the best solution to the overdeter-
mined system of equations AC = M, by setting the error vector M

∆

− M perpendicular 
to the columns in A. 

The orthogonality principle holds true for any polynomial order; if we want to fit 
data to an  nth order polynomial, the C matrix is an (n + 1) × 1 matrix and A is r × 
(n + 1). 

It is also common to state the total error, i.e., the sum or all r errors in Eq. (17.1). 
However, since this number increases with the data size, we divide it by the number 
of samples: 

e2 = 
1 

r

∑

i 

ε2 i = 
1 

r 

r−1∑

i=0

(
f (x) − ym i

)2 
(17.10) 

Equation (17.10) is not just a number that quantifies the quality of the fitting; it 
is the power of the noise that interfered with our samples. (Assuming that we are 
fitting to the right polynomial, see discussion in Problem 17.1.) 

Example 17.1 Table 17.2 represents data samples from a calibration of a temperature 
sensor. Use this data to find a first-order calibration expression for the sensor. What 
was the noise level in the measurement?

Solution We will fit data to a first-order polynomial: U = c0 + c1T :
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Table 17.2 Temperature calibration data 

T [°C] −10 0 10 20 40 

Um [V] −2.50 −0.09 2.21 4.82 9.31

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

c0 − c110 = −2.50 
c0 + c10 = −0.09 
c0 + c110 = 2.21 
c0 + c120 = 4.82 
c0 + c140 = 9.31 

⇒ 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

1 −10 
1 0  
1 10  
1 20  
1 40  

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠

(
c0 
c1

)

= 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

−2.50 
−0.09 
2.21 
4.82 
9.31 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

⇒ AC = M 

AT A =
(

1 1  1  
−10 0 10 

1 1  
20 40

)

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

1 −10 
1 0  
1 10  
1 20  
1 40  

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

=
(

5 60  
60 2200

)

⇒ (
AT A

)−1 =
(
0.2973 −0.081 
−0.081 0.0007

)

(
AT A

)−1 
AT =

(
0.2973 −0.081 
−0.081 0.0007

)(
1 1  1  

−10 0 10 
1 1  
20 40

)

= 

=
(

0.0374 0.2973 0.2162 
−0.0149 0.0081 −0.0014 

0.1351 −0.0270 
0.0054 0.0189

)

C = (
AT A

)−1 
AT M =

(−0.0951 
0.2371

)

⇒ U = −0.0951 + 0.2371 × T 

This line is plotted in Fig. 17.6 together with the samples. In Table 17.3, we have  
included the fitted data and the errors. 

Fig. 17.6 The fit and the samples
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Table 17.3 Temperature calibration data 

T [°C] −10 0 10 20 40 

Um [V] −2.50 −0.09 2.21 4.82 9.31 

U [V] −2.466 −0.095 2.276 4.647 9.389 

ε [V] 0.0339 −0.005 0.0658 −0.173 0.079 

The average squared error is 

e2 = 
1 

r 

4∑

i=0 

ε2 i = 0.0083 V2 ⇒ unoise rms = √
0.0083 = 0.0913 = 91 mV 

Example 17.2 A projectile’s position was registered at some regular time intervals, 
see Table 17.4. Use this data to determine the projectile’s initial velocity and its 
acceleration. 

Solution A projectile’s position as a function of initial position s0, initial speed, 
v0 and its acceleration a is given by 

s = s0 + v0t + 
1 

2 
at2 = c0 + c1t + c2t2 (17.11) 

Inserting our measurement data gives us: 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

c0 + c10 + c202 = 0.02 
c0 + c15 + c252 = 18.21 

c0 + c110 + c2102 = 48.95 
c0 + c115 + c2152 = 99.31 
c0 + c120 + c2202 = 158.46 

⇒ 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

1 0 0  
1 5  25  
1 10 100 
1 15 225 
1 20 400 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠

    
A 

⎛ 

⎝ 
c0 
c1 
c2 

⎞ 

⎠

    
C 

= 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

0.02 
18.21 
48.95 
99.31 
158.46 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎠

    
M

(
AT A

)−1 
AT M = {Using MATLAB} = 

⎛ 

⎝ 
−0.1003 
2.1573 
0.2901 

⎞ 

⎠ = 

⎛ 

⎝ 
c0 
c1 
c2 

⎞ 

⎠ = 

⎛ 

⎝ 
s0 
v0 
1 
2 a 

⎞ 

⎠ 

(17.12) 

From Eq. (17.12), we can see that the initial velocity was 2.16 m/s, and the 
acceleration was 2·0.2901 = 0.58 m/s2. In Fig.  17.7, we have plotted the data points 
with the fitted line (as a ‘sanity test’).

Table 17.4 Position at different times 

t [s] 0.00 5.00 10.00 15.00 20.00 

sm [m] 0.02 18.21 48.95 99.31 158.46 
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Fig. 17.7 The fit and the data 

17.3 Curve Fitting to Exponential Functions 

Our ‘pseudo inverse’ formula above only works when data are fitted to a polynomial, 
i.e., when data can be fitted to a linear combination of the coefficients. That is not 
always the case. For example, there are lots of examples of exponential relationships 
in science (nuclear decay, cooling, population growth, etc.). Suppose we have an 
expected relationship as in Eq. (17.13): 

y(x) = c0 · ec1x (17.13) 

Equation (17.9) cannot be applied here, because we don’t have a linear dependence 
on all the coefficients. However, we can turn it into a linear combination of coefficients 
by taking the logarithm of both sides: 

lny = lnc0 + c1x = ć0 + c1x (17.14) 

Hence, we just proceed exactly as above, but when we are done, we transform ć0 
back to c0. We illustrate this with an example. 

Example 17.3 In a nuclear experiment, the radioactivity of a sample was measured 
at some times, see Table 17.5. What was the decay constant and the half-life time of 
the sample? 

Solution The radioactivity decays exponentially, so we need to take the logarithm 
of both sides:

Table 17.5 Radioactivity from a sample 

t [s] 10 20 50 100 150 300 

Am [Bq] 90,345 71,491 44,609 25,873 10,077 1329 

lnAm 11.41 11.18 10.71 10.16 9.218 7.192 
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Fig. 17.8 The fit and the data points 

A = A0e
−λt ⇒ lnA = lnA0 − λt = c0 − c1t (17.15) 

In Table 17.5, we have already calculated the logarithms: 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

c0 − c1 · 10 = 11.41 
c0 − c1 · 20 = 11.18 
c0 − c1 · 50 = 10.71 
c0 − c1 · 100 = 10.16 
c0 − c1 · 150 = 9.218 
c0 − c1 · 300 = 7.192 

⇒ 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

1 10  
1 20  
1 50  
1 100 
1 150 
1 300 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠

    
A

(
c0 

−c1

)

    
C 

= 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

11.41 
11.18 
10.71 
10.16 
9.218 
7.192 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠

    
M 

(17.16) 

C = (
AT A

)−1 
AT M =

(
11.4941 
−0.0144

)

=
(
lnA0 

−λ
)

⇒ A0 = 98135 Bq 
λ = 0.0144 s−1 

⇒ A = 98135 · e−0.0144t 

In Fig. 17.8 we have plotted the data points and the fit. 
The half-life time is: 0.5 = e−0.0144t ⇒ t1/2 = −ln2/ − 0.0144 = 48 seconds. 

The decay constant is λ = −0.0144 s−1. 

17.4 MATLAB Tips 

If you have access to MATLAB, you don’t need to use Eq. (17.9); the ‘\’ operator in 
MATLAB solves the AC = M equation immediately: C = A\M. 

Example 17.4 Solve the problem in Example 7.1 using the backslash operator in 
MATLAB.
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Table 17.6 Temperature calibration data 

T [°C] −10 0 10 20 40 

Um [V] −2.50 −0.09 2.21 4.82 9.31 

2 × u 0.25 0.27 0.23 0.24 0.22 

Fig. 17.9 The plot with error bars (95% confidence) 

Solution 

>> A = [1−10;1 0;1 10;1 20;1 40]; 

>> M = [−2.50; −0.09;2.21;4.82;9.31]; 

>> C = A\M. 

C = −0.0951 

0.2371 

In Chap. 14, we learned to calculate the 95% confidence interval for a measurement 
(the ‘uncertainty’) and when we fit data to a polynomial, we should indicate each 
measured value’s (ym) uncertainty as an error bar. MATLAB can handle that for you 
if you just plot the graphs with the errorbar(x,y,e) command. 

Example 17.5 In Table 17.6, we have added the uncertainties for each sample (see 
Sect. 14.2). Plot the fitted line and samples with error bars in the same diagram. 

Solution Using errorbar(T,U,e) in MATLAB, we get the plot in Fig. 17.9. 

17.5 Matrix Uncertainties and Pitfalls 

17.5.1 Error Propagation in Matrices 

In the matrix equation AC = M, M represents measured data, and in Chap. 14, we  
learned that all measured data has an uncertainty. The question to ask now is of 
course how the uncertainty in the measured data propagates to an uncertainty in
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the coefficients in the C matrix? Our data are supposed to follow some polynomial: 
y = c0+c1x+c2x2+· · ·+cpx p but because of noise there is a stochastic contribution 
to ym, and hence, 

ym (n) = c0 + c1x(n) + c2x2 (n) + . . .  cpx p (n) + b(n) (17.17) 

where b(n) is white gaussian noise: b(n) ∈ N(0, σ  ). This noise propagates to the 
coefficients in the C matrix according to the following theorem: 

Theorem The variance of the ci coefficients in the C matrix is found in the diagonal 
elements of the σ 2(ATA)−1 matrix, i.e., 

var(ci ) =
{
σ 2

(
AT A

)−1
}

i i  
(17.18) 

We don’t prove that theorem here, but we will illustrate it with an example. 

Example 17.6 What is the uncertainty of the coefficients in Example 17.1? 

Solution The variance of the noise level was 0.0083 V2, so  

σ 2
(
AT A

)−1 = 0.0083 ·
(
0.2973 −0.081 
−0.081 0.0007

)

=
(

2.47 −0.672 
−0.672 0.00581

)

× 10−3 

⇒
 

u(c0) =
√
2.47 · 10−3 = 0.050 

u(c1) =
√
5.81 · 10−6 = 0.0024 

With a coverage factor of 2, we get the following coefficients:

 
c0 = −0.095 ± 0.100 
c1 = 0.2371 ± 0.0048 

(95% confidence) 

Notice in the example above that the uncertainty was much smaller for c1 than for 
c0; this is true in general. Higher order coefficients are more sensitive to variations 
in data and can therefore be determined with higher precision. 

17.5.2 Ill-Conditioned Matrices 

In some situations, the A matrix can be ‘ill-conditioned’ and that can have severe 
consequences for the precision. We will illustrate that with an example. 

Example 17.6 Table 17.7 illustrates data from some measurement. Fit this data to a 
first-order polynomial, y = c0 + c1x.
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Table 17.7 Some 
measurement x 1000 1001 1003 

y 4 6 9 

Solution A and M are; A = 

⎛ 

⎝ 
1 1000 
1 1001 
1 1003 

⎞ 

⎠ and M = 

⎛ 

⎝ 
4 
6 
9 

⎞ 

⎠. Hence,

(
AT A

)−1 =
(

3 3004 
3004 3008010

)−1 

= 
1 

14

(
3008010 −3004 
−3004 3

)

(17.19) 

AT M =
(

1 1 1  
1000 1001 1003

)

· 
⎛ 

⎝ 
4 
6 
9 

⎞ 

⎠ =
(

19 
19033

)

(17.20) 

⇒ C = 
1 

14

(
3008010 −3004 
−3004 3

)(
19 

19033

)

=
(−1638.7 

1.6429

)

=
(
c0 
c1

)

(17.21) 

Inserting these coefficients into our fit gives us y(1000) = 4.20, y(1001) = 5.84 
and y(1003) = 9.13. 

The result in Example 17.6 seems reasonable. However, these calculations are 
usually carried out by computers and all computers have limited accuracy. To illus-
trate the problem, we will ‘amplify’ it here, by assuming that our computer has a 
precision of only four digits. (A real computer has much higher precision, but the 
problem is the same, it is just on a smaller scale.). That means that 3,008,010 will be 
rounded to 3,008,000 and 19,033 is rounded to 19,030. In the first case, it is an error 
of 3.3 ppm, and in the second case, it is an error of 158 ppm. You wouldn’t expect 
such small rounding errors to have any significant impact on the result, would you? 
Let’s see: 

1 

14

(
3008000 −3004 
−3004 3

)(
19 

19030

)

=
(−1009 

1.000

)

=
(
c0 
c1

)

(17.22) 

Comparing Eq. (17.22) with Eq. (17.21), we can see that the ppm level rounding 
has catastrophic consequences on the calculations! The problem is that the ATA 
matrix is ‘ill-conditioned’. (This is implied by the size of the highest eigenvalue of 
the ATA matrix; in this case, it is 1734 and rounding troubles are expected.) There is an 
easier way to predict the problems in this case. If we take a closer look at the column 
vectors in A, we can see that they are almost parallel; the vector (1,1,1) is almost 
parallel to (1000, 1001, 1003). The angle between these two vectors is only 0.07° 
and that makes it hard for the two vectors to span the space properly (the ATA matrix 
is very close to being singular). Ideally, we want the angle between the ‘spanning’ 
vectors to be 90°. We can fix this problem by fitting to a savvier polynomial.
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Example 17.7 In Example 17.6, fit data to the polynomial y = c0 + c1(x − 1000) 
instead. 

Solution That gives us the following system of equations: 

⎧ 
⎨ 

⎩ 

c0 + c10 = 4 
c0 + c11 = 6 
c0 + c13 = 9 

⇒ 

⎛ 

⎝ 
1 0  
1 1  
1 3  

⎞ 

⎠

(
c0 
c1

)

= 

⎛ 

⎝ 
4 
6 
9 

⎞ 

⎠ ⇒ AT A 

=
(
1 1 1  
0 1  3

)
⎛ 

⎝ 
1 0  
1 1  
1 3  

⎞ 

⎠ =
(
3 4  
4 10

)

(The four-digit restriction doesn’t have any influence on the numbers anymore.) 

AT M =
(
1 1 1  
0 1  3

)
⎛ 

⎝ 
4 
6 
9 

⎞ 

⎠ =
(
19 
33

)

⇒ (
AT A

)−1 
AT M 

= 
1 

14

(
10 −4 
−4 3

)(
19 
33

)

=
(
4.143 
1.643

)

⇒ y = 4.143 + 1.643 · (x − 1000) = −1639 − 1.643x 

In Example 17.7, we have the column vectors (1,1,1) and (0,1,3). The angle 
between them is: 

X · Y = |X | · |Y |cosα ⇒ α = cos−1 X · Y 
|X | · |Y | = cos−1 4 √

3 · √
10 

= 43◦ 

which indicates a more stable ‘spanning’ of the space. 

(To what polynomial should you fit the data to get perpendicular column vectors?). 
Advanced calculation programs, like MATLAB, avoid this problem by first factor-

izing the matrices. For example, the backslash (‘\’) operator in MATLAB uses QR 
factorization to avoid rounding errors in matrices with ‘almost parallel’ column 
vectors. 

17.6 The Sampling Theorem Revisited 

In this section, we will investigate a problem that is not exactly curve fitting, but 
closely related and we will answer a question that is often asked by students. 

According to the sampling theorem, the sampling rate f S must exceed 2f max, i.e., 
f S > 2·f max. Hence, f S = 3·f max should be enough. That sampling rate indicates that
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Fig. 17.10 Sampling a sine; f S = 3f 

we would only take three samples of each period of a sine. This is illustrated in 
Fig. 17.10. 

The question often asked by students is: ‘How can you recover the original sine 
from only three samples of a period’? 

First, it is possible to recover the original signal shape from only a few samples 
(as long as you don’t violate the sampling theorem). Second, linear interpolation is 
obviously not going to do it, see Fig. 17.10. We need a more cunning plan than that. 

To understand how to recover the original sine from only a few samples, we first 
need to look at the Fourier transforms of the original sine, let’s call it xa(t) (‘a’ for 
‘analog’), and the sampled sine, xd(t) (‘d’ for ‘discrete-time’). Figure 17.11 illustrates 
the Fourier spectrum of the analog sine; there is just one pair of peaks at the positive 
and negative sine frequency. 

We know from chapter 7 that when we sample x(t), the Fourier transform becomes 
periodic, with a period equal to the sampling frequency. The Fourier spectrum of the 
sampled signal is illustrated in Fig. 17.12.

After the sampling, we only have the samples and the question is, how we can 
retrieve the original xa(t) signal? Linear interpolation of xd(t) doesn’t work and if we 
take the inverse Fourier transform of Xd(ω), we will only get our samples back, not 
the analog signal xa(t). 

But the  key to the  retrieval of  xa(t) is still in the Fourier transforms. To retrieve xa(t), 
we first need to recreate Xa(ω). We can do that by multiplying Xd(ω) with a ‘square’ 
frequency function covering only frequencies between ± ωS/2, see Fig. 17.13.

Fig. 17.11 Fourier spectrum of analog sine 
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Fig. 17.12 Fourier spectrum of discrete-time sine

Fig. 17.13 Multiplying by a ‘square’ filter 

The resulting product will be Xa(ω): 

Xa(ω) = Xd(ω) · H (ω) (17.23) 

So, to retrieve the original signal in frequency space, we multiply Xd(ω) by  H(ω). 
We know from Sect. 9.8 that multiplication in frequency space corresponds to convo-
lution in time space. Hence, to retrieve the original signal xa(t), we must convolve 
xd(t) with h(t) (= H−1(ω)): 

xa(t) = xd(t) ⊗ h(t) = 
t 

−∞ 

xd(τ )h(t−τ)dτ (17.24) 

Before we can evaluate Eq. (17.24) we need to find h(t): 

h(t) = 
1 

ωs 

ωs /2 

−ωs /2 
1 · ejωt dω = 

1 

ωs 
· 1 
jt

[
ejωt

]ωs /2 
−ωs /2 

= 
1 

ωs t 
· 2 
2j

(
ejωS t/2 − e−jωS t/2

) = 1 

ωs t/2 
sin 
ωS 

2 
t = sinc 

ωS 

2 
t 

= sinc 
2π 
2TS 

t
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(In the inverse Fourier transform, we divide by ωS to ‘normalize’, to make the 
area under |H(ω)| = 1.) 

h(t) is a sinc function with period 2TS . Next, we insert that into Eq. (17.24), and 
remember that xd(t) is a discrete-time function, /= 0 only if t = nTS: 

xa(t) = 
t 

−∞ 

xd(τ ) sinc 
2π 
2TS 
(t − τ)dτ 

=
∑

i 

xd(i) sinc 

over all samples 

2π 
2TS 
(t − i · TS) 

= xd(0) · sinc 2π 
2TS 

t + xd(1) · sinc 2π 
2TS 
(t − TS) 

+ xd(2) · sinc 2π 
2TS 
(t − 2TS) + . . .  

Hence, to recover the original analog signal xa(t), we multiply each sample by a 
sinc function that has period 2TS and is centered around the sample position. 

This is illustrated in Fig. 17.14 and in Fig. 17.15, we have plotted the sum of them 
and the original xa(t) signal. 

This is called ‘sinx/x interpolation’ and this is what digital oscilloscopes use to 
recreate the signal on the screen when there are not enough samples to do regular 
linear interpolation.

Fig. 17.14 A sinx/x interpolation
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Fig. 17.15 The recreated analog signal

17.7 Solved Problems 

Problem 17.1 Fit the data in Table 17.8 to (a) a constant, (b) a first-order polynomial, 
(c) a second-order polynomial, and (d) an exponential function. Plot them all in the 
same graph and find the total error in each fit. Also, discuss the differences in the 
total errors and what conclusions to draw from it. 

Solution y = c0: 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

c0 = 7 
c0 = 5 
c0 = 2 
c0 = 1 

⇒ 

⎛ 

⎜ 
⎜ 
⎝ 

1 
1 
1 
1 

⎞ 

⎟ 
⎟ 
⎠c0 = 

⎛ 

⎜ 
⎜ 
⎝ 

7 
5 
2 
1 

⎞ 

⎟ 
⎟ 
⎠ ⇒ AT A = (1 1 1 1) 

⎛ 

⎜ 
⎜ 
⎝ 

1 
1 
1 
1 

⎞ 

⎟ 
⎟ 
⎠ 

= 4 ⇒ (
AT A

)−1 = 0.25

(
AT A

)−1 
AT M = 0.25 · (1 1 1 1) · 

⎛ 

⎜ 
⎜ 
⎝ 

7 
5 
2 
1 

⎞ 

⎟ 
⎟ 
⎠ = 3.75 = c0 

First-order fit: y = c0 + c1x

Table 17.8 Data 

x −2 0 1 3 

ym 7 5 2 1 
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⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

c0 − c2 1 = 7 
c0 − c0 1 = 5 
c0 − c1 1 = 2 
c0 − c3 1 = 1 

⇒ 

⎛ 

⎜ 
⎜ 
⎝ 

1 −2 
1 
1 
1 

0 
1 
3 

⎞ 

⎟ 
⎟ 
⎠

    
A

(
c0 
c1

)

    
C 

= 

⎛ 

⎜ 
⎜ 
⎝ 

7 
5 
2 
1 

⎞ 

⎟ 
⎟ 
⎠

    
M 

C = A\M =
(

4.3846 
−1.2692

)

=
(
c0 
c1

)

Second-order fit: y = c0 + c1x + c2x2 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

c0 − c12 + c222 = 7 
c0 + c10 + c202 = 5 
c0 + c11 + c212 = 2 
c0 + c13 + c232 = 1 

⇒ 

⎛ 

⎜ 
⎜ 
⎝ 

1 −2 4  
1 0 0  
1 
1 

1 
3 

1 
9 

⎞ 

⎟ 
⎟ 
⎠

    
A 

⎛ 

⎝ 
c0 
c1 
c2 

⎞ 

⎠

    
C 

= 

⎛ 

⎜ 
⎜ 
⎝ 

7 
5 
2 
1 

⎞ 

⎟ 
⎟ 
⎠

    
M 

C = A\M = 

⎛ 

⎝ 
4.1346 

−1.3526 
0.0833 

⎞ 

⎠ = 

⎛ 

⎝ 
c0 
c1 
c2 

⎞ 

⎠ 

Exponential fit: y = c0ec1x ⇒ lny = lnc0 + c1x 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

ln c0 − c12 = ln 7 
ln c0 + c10 = ln 5 
ln c0 + c11 = ln 2 
ln c0 + c13 = ln 1 

⇒ 

⎛ 

⎜ 
⎜ 
⎝ 

1 −2 
1 
1 
1 

0 
1 
3 

⎞ 

⎟ 
⎟ 
⎠

    
A

(
ln c0 
c1

)

= 

⎛ 

⎜ 
⎜ 
⎝ 

ln 7 
ln 7 
ln 7 
ln 7 

⎞ 

⎟ 
⎟ 
⎠

    
M 

⇒
(
ln c0 
c1

)

= A\M =
(

1.2669 
−0.4095

)

⇒
(
c0 
c1

)

=
(

3.5498 
−0.4095

)

All four fits are plotted in Fig. 17.16.
The total error of each fit is plotted in Table 17.9. From the table, we can see 

that the fit to a second-order polynomial has the least error. However, it is deceiving 
to only focus on the total error to find a relationship. Table 17.9 cannot be used to 
deduce that the relationship between y and x is a second-order polynomial; the total 
error will decrease with the polynomial order. For higher order polynomials, we end 
up fitting data to the noise. We need a priori knowledge of the relationship before 
we do the fitting.

Problem 17.2 The resistance of an unknown temperature sensor was measured for 
some temperatures, see Table 17.10. What kind of temperature sensor was used?

Solution Assuming a first-order fit: R = R0 + αT:
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Fig. 17.16 Four different fits

Table 17.9 Error table 

x ym y0–ym y1–ym y2–ym yexp–ym 

−2 7 −3.25 −0.0770 0.1735 1.0518 

0 5 −1.25 −0.6154 −0.8654 −1.4502 

1 2 1.75 1.1154 −0.8653 0.3570 

3 1 2.75 −0.4230 −0.1735 0.0391
∑
ε2/4 1.192 0.336 0.312 0.457

Table 17.10 Temperature sensor data 

T [°C] 20 60 80 120 150 

R [Ω] 1080 1209 1312 1526 1641

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

R0 + α20 = 1080 
R0 + α60 = 1209 
R0 + α80 = 1312 
R0 + α120 = 1526 
R0 + α150 = 1641 

⇒ 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

1 20  
1 60  
1 80  
1 120 
1 150 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠

(
R0 

α

)

= 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

1080 
1209 
1312 
1526 
1641 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

⇒
(
R0 

α

)

= A\M =
(
967.6 
4.489

)

We can write our linear expression as: 

R = 976.6 + 4.489T = 977
(
1 + 4.49 · 10−3 T

)

Most likely the temperature sensor was a Cu-1000 sensor (where R = 
1000

(
1 + 4.33 · 10−3 T

)
).
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Problem 17.3 Eight samples of the signal y = a0 + a1sin2π250t (+ noise) are taken, 
see Table 17.11. Find the DC offset a0 and the amplitude a1. 

Solution We get the following system of equations: 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

a0 + a1 sin 2π250 ∗ 0 = 1.196 
a0 + a1 sin 2π250 ∗ 0.5 ∗ 10−3 = 4.242 
a0 + a1 sin 2π250 ∗ 1.0 ∗ 10−3 = 5.291 
a0 + a1 sin 2π250 ∗ 1.5 ∗ 10−3 = 3.707 
a0 + a1 sin 2π250 ∗ 2.0 ∗ 10−3 = 1.117 
a0 + a1 sin 2π250 ∗ 2.5 ∗ 10−3 = −2.143 
a0 + a1 sin 2π250 ∗ 3.0 ∗ 10−3 = −2.645 
a0 + a1 sin 2π250 ∗ 3.5 ∗ 10−3 = −2.287 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

a0 + a00 = 1.196 
a0 + a10.707 = 4.242 
a0 + a11 = 5.291 
a0 + a10.707 = 3.707 
a0 + a10 = 1.117 
a0 − a10.707 = −2.143 
a0 − a11 = −2.645 
a0 − a10.707 = −2.287 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

1 0  
1 0.707 
1 1  
1 0.707 
1 0  
1 −0.707 
1 −1 
1 −0.707 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠

    
A

(
a0 
a1

)

= 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

1.196 
4.242 
5.291 
3.707 
1.117 

−2.143 
−2.645 
−2.287 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠

    
M 

⇒
(
a0 
a1

)

= A\M =
(
1.0597 
4.1726

)

Hence, the DC offset is 1.0597 V, and the amplitude is 4.1726. In Fig. 17.17, we  
have plotted y = 1.0597 + 4.1726 × sin2π250t and the sampled data.

Table 17.11 Samples of a sine signal (with noise) 

t [ms] 0.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 

y [V] 1.196 4.242 5.291 3.707 1.117 −2.143 −2.645 −2.287 
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Fig. 17.17 Data and the best fit



Chapter 18 
Introduction to Control Theory 

Abstract Control theory may or may not be part of the electrical measurement 
curriculum, but it is such a common instrument in a physics laboratory that a funda-
mental understanding of its operation is necessary. This chapter focuses on the PID 
controller, feedback models and stability criteria, the need for integration and differ-
entiation of the error signal and how to identify an unknown system. It is explained 
how control parameters are derived using rules of thumb (Ziegler–Nichol’s) or 
phase/gain margins. Finally, this chapter illustrates how a control algorithm can 
be implemented in a computer system using either Euler transformation or bilinear 
transformation. 

18.1 Control Systems 

Figure 18.1 illustrates a control system (Fig. 18.1).
G(s) represents the ‘plant’ that we want to control, for example, a furnace whose 

temperature we want to control, y(t) is the ‘process value’ (the actual temperature) 
and x(t) is the ‘set value’ (the temperature we would like the oven to have). The 
process value is fed back via a (temperature) sensor and subtracted from the set 
value to produce the ‘error signal’ e(t). C(s) is the ‘controller’ whose job it is to 
produce a voltage u(t) depending on e(t) such that the process value is always equal 
to x(t). 

There are several different kinds of controllers, but here we will only describe the 
PID controller (since it is the most common type of controller in a physics lab). Our 
objective here is to find the C(s) control function so that y(t) = x(t), and we need to 
do that so that the system is first of all stable; all feedback systems have a potential 
risk of instability. After a change in the set value (or some other disturbance), there 
will be some transient events on all signals, but after some time (‘settling time’), we 
should again have y(t) = x(t), i.e., e(t) = 0; our system should not have a steady state 
error. 

Other properties of interest are the system’s reaction to step changes in the set 
value (the ‘step response’), see Fig. 18.2.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 
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Fig. 18.1 A control system

Fig. 18.2 Step response 

Fig. 18.3 Signal model 

The risetime is the time it takes to go from 10 to 90% of the final value and 
the settling time is the time it takes for the output to stabilize within 5% of the 
final value. The overshoot is the maximum voltage above the final voltage level. All 
these parameters are affected when we change the parameters of the controller, and 
different applications have different priorities (overshoot, rise time or settling time). 
In this context, we will not worry too much about them; our main priority here is to 
find the conditions where the system is stable and has no steady state error. 

In most systems, it is also assumed that the sensor feedback system has a transfer 
function F(s) = 1 and that is what we will assume here. To make sure that we don’t 
get too complicated equations, initially, we will limit our plant systems to first-order 
systems; G(s) =1/(s+ a). That will allow us to focus more on the understanding of the
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control function’s influence on the system’s behavior. We will look at second-order 
systems later. 

18.2 Feedback Systems 

In our first analysis of the control system, we will cancel the controller and just look 
at the plant with feedback and analyze its behavior, see Fig. 18.3. 

The signal e(t) = x(t) –  y(t) is the difference between the input signal and the 
output signal. Let’s find the transfer function of this system: 

Y (s) = G(s) · E(s) = G(s)(X (s) − Y (s)) = G(s)X(s) − G(s)Y (s) 

Y (s)(1 + G(s)) = X(s)G(s) ⇒ H (s) = 
Y (s) 
X (s) 

= G(s) 
1 + G(s) 

(18.1) 

From Eq. (18.1) we can see that this system will be unstable if 1 + G(s) = 0, i.e., 
if 

G(s) = −1 = 1 · e−j180◦ = |G(s)| ·  eϕ(ω) (18.2) 

Hence, if the system has a gain of +1 (or greater) for the frequency where the 
phase shift is −180°, the system will be unstable. So, we can see immediately from 
the Bode plot if the system is stable or not; just check the phase shift at amplification 
= 1 (0 dB) and the amplification at ϕ = −180°, see Fig. 18.4. The distance from 
the phase diagram to −180° at 0 dB is the phase margin, which tells you how far 
the phase diagram is from instability. The distance from the gain diagram to 0 dB at 
phase angle −180° is the gain margin, which tells you how far the gain diagram is 
from instability. (We want some margin because there are some uncertainties in the 
system that could push it over the ‘edge’ and become unstable if we are too close to 
the margins.)

From Fig. 18.4, we can see that there are two things that could make our system 
unstable; either if we ‘lift’ (amplify) the gain diagram or if we ‘lower’ the phase 
diagram. Any action we take that either lifts the gain or lowers the phase may render 
the system unstable. 

Something else we can see in Eq. (18.1) is that if G(s) >> 1, then H(s) ≈ 1, which 
would mean that y(t) ≈ x(t), (which is what we are looking for in a control system), 
and for that reason it is tempting to amplify G(s) with some factor KP, see Fig. 18.5.

However, by doing that we push the gain diagram in the Bode plot upwards, see 
Fig. 18.6, which means that the gain margin decreases. In Fig. 18.6, we can see 
that we amplified the signal too much; at the phase shift angle −180°, we have an 
amplification >0 dB, and the system is unstable (it will oscillate).
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Fig. 18.4 The Bode plot

Fig. 18.5 Amplifying

Do you see the problem? On the one hand, we want a large amplification for y(t) 
to follow x(t), but a large amplification might render the system unstable. That means 
that we need to be a little shrewder than ‘just amplifying’. 

The simple KP amplifier above only affected the gain diagram. In this chapter, we 
will learn to use other ‘amplifiers’ that also affect the phase diagram in such a way 
that we avoid instability when we amplify the signal. 

In Fig. 18.5, the controller just amplifies the error signal; the controller produces 
an output signal proportional to the error and is therefore called a proportional 
controller, or just  P controller. Let’s look at a general system.
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Fig. 18.6 The Bode plot after amplification

18.3 Control Systems 

Figure 18.7 illustrates our control system. 
In Fig. 18.5, C(s) = KP and apart from pushing the system closer towards insta-

bility, it also has another problem; it has a ‘steady state’ error. That means that when 
things have ‘settled down’, typically after a change in the set value, there would still 
be an error between the set and process values, i.e., e(t) would not be zero and x(t)
/= y(t) (which after all is the whole point of the system) unless KP = ∞. To see  why  
that is, and to figure out exactly what the remaining steady state error is, we need a 
system to work with. Let’s assume the plant is a simple first-order system, i.e., G(s) 
= 1/(s + a) and C(s) = KP, see Fig. 18.8.

Let’s assume first that the error e(t) is  = 0 in Fig.  18.8. Since the control system 
just multiplies it by a constant, the output from the control system will also be = 0 
and multiplying G(s) with 0 is of course also = 0; y(t) = 0! But in that case, the error

Fig. 18.7 Our control system 
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Fig. 18.8 The plant is a first-order system

e(t) = x(t) –  y(t) = x(t), which can only be zero if x(t) = 0. Hence, if x(t) /= 0, we 
cannot have e(t) = 0, and there must be a difference between y(t) and x(t). 

So, what is the steady state error e(t)? Let’s see: 

(X (s) − Y (s)) · K P · 1 

s + a 
= Y (s) ⇒ (X (s) − Y (s)) · K P = sY (s) + aY (s) 

Going back to time–space (using the results from Problem 7.6), we have that 

x(t) − y(t) = 
1 

K P 
(y'(t) + ay(t)) 

‘Steady state’ implies, by definition, that y’(t) = 0, so 

x(t) = y(t)
(

a 

K P 
+ 1

)
⇒ y(t) = 1 

a/K P + 1 
x(t) = K P 

a + K P 
x(t) (18.3) 

which confirms that KP needs to be infinite for y(t) = x(t) (but that would make the 
system unstable). For example, if a = KP = 1, and we set x(t) = 1, y(t) would be 
0.5. So, the P regulator has some problems and in the next section we will fix that, 
but first, we will present a theorem that will simplify our analysis a little bit. 

In the above analysis, we considered the entire system’s transfer function Y (s)/ 
X(s), the closed loop system. That is not necessary; we only need to consider the 
open loop system GOL(s) = C(s)·G(s) (if  F(s) = 1). Nyquist’s (simplified) stability 
criterion states that a feedback system is stable if |GOL(ω)| < 1 at the frequency 
where ϕOL(ω) = −180◦. (Makes sense; the subtraction in the feedback adds the 
other 180°.) 

18.4 The PI Controller 

The trick that eliminates the steady state error is to integrate the error signal: 

u(t) = K P · e(t) + KI

 
e(t)dt  = K P

(
e(t) + 

1 

TI

 
e(t)dt

)
(18.4)
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where T I is the integration time constant, and this is a PI control function 
(Proportional and Integrating). Taking the Laplace transform of both sides gives 
us: 

U (s) = K P
(
E(s) + 

1 

TI s 
E(s)

)
= K p

(
1 + 

1 

TI s

)
E(s) ⇒ 

C(s) = 
U (s) 
E(s) 

= K P
(
1 + 

1 

TI s

)
(18.5) 

(See Problem 7.7 for the Laplace transform of an integral.) Inserting Eq. (18.5) 
into Fig. 18.8 gives us: 

(X (s) − Y (s)) · C(s) · G(s) = Y (s) ⇒ (X (s) − Y (s))K P
(
1 + 

1 

TI s

)
1 

s + a 
= Y (s) 

(X (s) − Y (s))K P
(
1 + 

1 

TI s

)
= sY (s) + aY (s) 

(X (s) − Y (s))K P
(
s + 

1 

TI

)
= s2 Y (s) + asY (s) 

K P (sX  (s) − sY (s)) + 
K P 
TI 

(X (s) − Y (s)) = s2 Y (s) + asY (s) 

Going back to time–space: 

K P (x '(t) − y'(t)) + 
K P 
TI 

(x(t) − y(t)) = y''(t) + ay'(t) 

Again, in steady state, all derivatives are zero: 

K P 
TI 

(x(t) − y(t)) = 0 ⇒ y(t) = x(t) (18.6) 

Hence, in steady state y(t) = x(t), there is no steady state error. Unfortunately, 
while fixing the steady state error, we introduced another problem. In Fig. 18.8, the  
open-loop transfer function is C(s)G(s), i.e., 

GOL(s) = |C(s)|ejϕC · |G(s)|ejϕG = |. . .  | · ej(ϕC+ϕG ) (18.7) 

Hence, the open loop phase diagram is the sum of the phases from C(s) and G(s). 
Let’s take a closer look at the phase function of C(s): 

C(s) = K p
(
1 + 

1 

TI S

)
= K p 

TI s + 1 
TI s
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⇒ C(ω) = K P 
jωTI + 1 
jωTI 

= K P | . . .  | ·  ej(tan−1 ωTI −90◦) 

⇒ tan−1 ωTI − 90◦    
≤0! 

(18.8) 

From Eq. (18.8), we can see that the PI regulator adds a negative contribution to the 
phase diagram, and it will push the phase diagram in Fig. 18.4 downwards, decreasing 
the phase margin, and hence increasing the risk of instability. The integration fixed 
the steady state error, but the resulting system is more likely to be unstable. We will 
fix that in a moment, but let’s first see what happens if we instead of integrating the 
error, differentiate the error signal. 

18.5 The PD Controller 

If we, instead of integrating the error signal, differentiate it, we get the control function 

u(t) = K Pe(t) + KDe'(t) = K P (e(t) + TDe'(t)) (18.9) 

where TD is the differentiation time constant. We find the transfer function by taking 
the Laplace transform of both sides: 

U (s) = K P (1 + TDs)E(s) ⇒ C(s) = 
U (s) 
E(s) 

= K P (1 + TDs) (18.10) 

and the frequency response function is: 

C(ω) = K P (1 + jωTD) = |  . . .  | ·  ej·tan−1 ωTD 

⇒ ϕ(ω) = tan−1 ωTD    
≥0 

(18.11) 

When we multiply the plant function G(s) with C(s), the phase diagrams will add, 
and from 18.11, we can see that the control function will now add a phase angle >0, 
which means that the phase diagram in Fig. 18.4 is pushed upwards, and hence the 
phase margin is increased; the system is less likely to become unstable. 

Next step is of course to combine integration and differentiation.
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18.6 The PID Controller 

In a PID controller, we both integrate and differentiate the error signal: 

u(t) = K P
(
e(t) + 

1 

TI

 
e(t)dt  + TDe'(t)

)
⇒ 

C(s) = 
U (s) 
E(s) 

= K P
(
1 + 

1 

TI s 
+ TDs

)
= K P 

1 + TI s + TI TDs2 

TI s 
(18.12) 

It is not obvious what happens to the phase diagram in this transfer function, and 
before we derive the phase diagram expression, we are going to make a small approxi-
mation; the transfer function of most plants is such that the required control function 
needs to have T I >> TD. In that case, we can make the following approximation: 
TI s ≈ (TI + TD)s, and in that case 

1 + TI s + TI TDs
2 ≈ 1 + TI s + TDs + TI TDs

2 = (1 + TI s)(1 + TDs) 

Inserting this approximation into Eq. (18.12) gives us the following control 
function: 

C(s) ≈ K P 
(1 + TI s)(1 + TDs) 

TI s
= K P

(
1 + 

1 

TI s

)
(1 + TDs) (18.13) 

From Eq. (18.13), we can see that with the assumption that T I >> TD, the PID 
controller is approximately the same as cascading a PI and a PD, controller, which 
means that the total phase diagram is the sum of the PI and PD controller’s phase 
diagrams; the damage the integration does to our phase diagram (in Eq. 18.8) is  
undone by the differentiation (in Eq. 18.11), and our system is less likely to be 
unstable. 

Let’s summarize our conclusions: The P controller only amplifies the error signal 
by some factor KP. Increasing KP makes the system react faster to changes in the 
set value (rise time and settling time improve) but increasing KP comes with a prize; 
the system is pushed closer to instability and the overshoot increases. Most of all 
though, a P regulator suffers from an inherent incapability of eliminating steady state 
errors. That’s why we almost always need an integrating part; by also integrating the 
error, we can eliminate the steady state error. However, the integration has a negative 
influence on the phase margin, it makes the system response slower (risetime and 
settling time increase) and it also increases the overshoot. (The only good thing about 
the integration is that it takes care of the steady state error.) The differentiation part 
is everything the integration is not; it has a positive influence on the phase margin, it 
improves the response times, and it suppresses the overshoot. 

Figure 18.9 summarizes our PID model and Fig. 18.10 is our approximation model 
when TI >> TD. Next, we need to figure out how to find the PID parameters (KP, 
TI , and TD) for a given plant system.
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Fig. 18.9 PID controller model 

Fig. 18.10 Approximate model when TI >> TD 

18.7 Identifying the System 

18.7.1 First-Order Systems 

Before we start designing the controller, we must know what kind of system we have, 
i.e., the plant transfer function G(s). The process of finding the transfer function of 
an unknown system is called system identification. This is a research field of its own, 
and there is no lack of literature treating this subject in detail. Here, we will keep it 
short and only illustrate the basic ideas (that are likely to solve the most common 
problems in a physics lab). Our strategy here will be to use our a priori knowledge of 
the system (by experience or reasonable assumptions) when we identify our system: 
‘Because …., it is reasonable to assume that this is a first order system’. We will start 
gently, by assuming that we have a ‘plant’ where we have good reasons to assume 
that it is a first-order system. Hence, the plant function is 

G(s) = b 

s + a 
= b/a 

s/a + 1 
= K 

T s  + 1 
(18.14) 

where K is the amplification and T is the system’s time constant. To find K and T, 
we look at the step response; the output when the input is a step signal. The step 
signal has Laplace transform 1/s (see Problem 7.8) and we get the step response by 
multiplying G(s) with 1/s: 

Ystep(s) = 
1 

s 
· K 

T s  + 1 
= 

A 

s 
+ B 

T s  + 1 
= 

AT s + A + Bs 
s(T s  + 1) 

(18.15)
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By comparing the numerators in Eq. (18.15), we can see that A = K and AT + B 
= 0 ⇒ B = −AT = −KT. Inserted into Eq. (18.15) gives us 

Ystep(s) = 
K 

s 
− KT  

T s  + 1 
= K

(
1 

s 
− 1 

s + 1/T

)
(18.16) 

Inverse Laplace transform of Eq. (18.16) gives us the time function: 

ystep(t) = K
(
1 − e−t/T

)
(18.17) 

This step response is plotted in Fig. 18.11, and in Fig. 18.12 we have plotted the 
Bode diagram for the case where K and T are both = 1. 

Fig. 18.11 Step response of first-order system 

Fig. 18.12 Bode plot of first-order system
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Fig. 18.13 Step response of first-order system with ‘dead time’ 

From the Bode diagram, we can see that the phase shift is never less than −90° 
and since it takes −180° for the system to be unstable, it appears that first-order 
systems are inherently stable. However, in a real plant, that is only an illusion; most 
plants have an inherent delay t0, before they respond to a step input (‘dead time’). 
This is illustrated in Fig. 18.13. 

The transfer function of the delayed system is e−st0 times the non-delayed transfer 
function (see Problem 7.11): 

G(s) = 
K · e−st0 

T s  + 1 
(18.18) 

This inherent delay can have a dramatic impact on stability. To see that we find 
the Bode plot functions: 

G(ω) = 
K · e−jωt0 

jωT + 1 

⇒ |G(ω)| = |K | √
ω2T 2 + 1 

ϕ(ω) =−ωt0    
From delay 

− tan−1 ωT 

From the phase function, we can see that the delay adds a negative contribution 
to the phase diagram and stability is no longer guaranteed. The system in Fig. 18.12 
also has an amplification of just 1. In Fig. 18.14, we have plotted the Bode diagram 
of a first-order system with a dead time of two seconds and an inherent amplification 
of 5 and it is already instable. (We also need to add the negative phase contribution 
from the integration part of the controller.)

Example 18.1 Figure 18.15 below illustrates a setup to identify the transfer func-
tion of a furnace heating system. The step and the step response are illustrated in 
Fig. 18.16. Find the transfer function of the system and plot the Bode diagram.

Solution We have an amplification of (5–0.5)/(3–1) = 2.25, t0 = 3.5 s and T = 18 s:
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Fig. 18.14 Bode plot of first-order system with ‘dead time’

Fig. 18.15 Identifying the system 

t 

[V] 

63 % 

3.5 s 

1 V 

18 s 

0.5 V 

5 V 

3 V 

Fig. 18.16 The step and the step response
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Fig. 18.17 The bode plot 

G(s) = 
2.25 · e−3.5s 

18s + 1 
⇒ G(ω) = 2.25 √

182 ω2 + 1 
· e−j(3.5ω+tan−118ω) (18.19) 

The Bode diagram is illustrated in Fig. 18.17. We have a phase margin of approx-
imately 90° and a gain margin of approximately 4. The closed-loop system would 
be stable. 

18.7.2 Second-Order Systems 

Second-order systems are described by the general transfer function 

H (s) = ω2 
0 

s2 + 2ζω0 + ω2 
0 

(18.20) 

where ω0 is the resonance frequency of the undamped system and ζ is the damping 
constant. In Fig. 18.18, we have plotted the step response of a second-order system 
for different damping constants (ζ = d) with ω0 = 1.

If the damping is 0, there is no damping at all, and the systems oscillate indefinitely. 
If the damping is <1 (but >0), there will be a gradual decrease in the oscillation 
amplitude (the system is ‘underdamped’), if the damping = 1, there is no oscillations 
at all (‘critical damping’) and if the damping is >1 the system is ‘overdamped’. We 
can  see in Fig.  18.18 that the system response time decreases when the damping 
increases. The damping also has some impact on the oscillation frequency. For a 
certain damping, the oscillation frequency is (ζ < 1)  

ωd = ω0 

√
1 − ζ 2 (18.21) 

Figure 18.19 illustrates the step response parameters you need to identify a second-
order system. First you determine the ‘overshoot ratio’, see Fig. 18.19. From the
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Fig. 18.18 The step response for different damping constants

overshoot ratio (OS), you find the damping constant: 

ζ =
/

(ln OS)2 

π2 + (ln OS)2 
(18.22) 

(don’t ask), and from the period T you find ωd which gives you ω0 (Eq. 18.21).

Fig. 18.19 Step response parameters for a second-order system 
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18.8 Finding the Control Parameters 

In this section, we will find control parameters for our system in Example 18.1. 
First, we will do it using a ‘rule of thumb’ strategy that seems to be ‘plan A’ in most 
practical implementations. We will also discuss the details of a more ‘scientific’ 
approach where we consider phase and gain margin requirements. 

18.8.1 Ziegler–Nichol’s Rule of Thumb 

First, we study the Bode plot of the plant, see Fig. 18.20. From the Bode plot, we 
determine the self-oscillation frequency of the plant, ω0 and the gain at that frequency 
|G P (ω0)|. From these two numbers, we find T 0 and K0: 

T0 = 
2π 
ω0 

(18.23) 

K0 = 1 

|G P (ω0)| (18.24) 

Fig. 18.20 The bode plot of the plant
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Table 18.1 Ziegler and 
Nichol’s PID parameter table Parameters 

K TI TD 

P 0.5K0 – – 

PI 0.45K0 0.85T0 – 

PID 0.6K0 0.5T0 0.125T0 

From T 0 and K0, we use Ziegler and Nichol’s table to find control parameters for 
different controllers: 

Example 18.2 Suggest a PI and a PID controller for the system in Example 18.1 
using Ziegler and Nichol’s method. 

Solution From the Bode plot in Fig. 18.17, we get ω0 = 5 · 10−1 = 0.5 rad/s and 
|G P (ω0)| = 0.25. Hence: 

T0 = 
2π 
0.5 

= 13 seconds and K0 = 
1 

0.25 
= 4 

Using Table 18.1 gives us the following control functions: 

PI : C(s) = 0.45 · 4
(
1 + 1 

0.85 · 13s
)

= 1.8
(
1 + 

1 

11s

)
(18.25) 

⇒ uPI(t) = 1.8
(
e(t) + 

1 

11

 
e(t)dt

)
(18.26) 

PID : C(s) = 2.4
(
1 + 

1 

6.5s 
+ 1.6s

)
(18.27) 

⇒ uPID(t) = 2.4
(
e(t) + 

1 

6.5

 
e(t)dt  + 1.6e'(t)

)
(18.28) 

In Figs. 18.21 and 18.22, we have plotted the resulting Bode plot for the plant 
and the PI and PID controller functions, respectively. First, compare Fig. 18.21 with 
Fig. 18.17; we can see the effect of the integration part. In Fig. 18.17, we have a phase 
margin of approximately 90°. In Fig. 18.21, this phase margin has been reduced to 
30°. In Fig. 18.22, some of that phase margin has been restored to about 40°.

18.8.2 Using Phase and Gain Margin Criteria 

The Ziegler and Nichol’s rules of thumb generate stable systems as is illustrated in 
Figs. 18.21 and 18.22. Another approach is to start with the Bode plot of the system
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Fig. 18.21 The bode plot of the plant + the PI controller 

Fig. 18.22 The bode plot of the plant + the PID controller

(Fig. 18.17) and aim for some specific gain and/or phase margins. The general rule 
in this case is that the integrator part lowers the phase diagram by approximately 11 
degrees at the cross-over frequency (where the amplification is 0 dB, see Fig. 18.20). 
If the system (the plant) itself has a phase margin of 40°, adding an integrator would 
decrease the phase margin to under 30°. If the system specifications dictate a phase 
margin of 50°, then you must use the derivative part to increase the phase margin 
(Eq. (18.11)). 

Example 18.3 Given conditions mentioned above, what derivation time TD would 
you need for the differentiation part? The cross-over frequency was 0.3 rad/second. 

Solution 40–11 = 29°. To meet the phase margin demand, we need to raise the phase 
diagram by 50–29 = 21°. Equation (18.11) gives us 

ϕ = tan−1 ωTD ⇒ TD = 
tanϕ 
ω

= 
tan21◦ 

0.3 
= 1.3 sec
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18.9 Discretizing 

To implement a controller into a computer system (a microcontroller, like an Arduino 
or a Raspberry Pi), we must ‘translate’ the control functions to discrete time. There 
are several ways to do that, and we will present two ways here. We will only consider 
the PI and PID controller, Eqs. (18.4) and (18.12): 

u(t) = K P
(
e(t) + 

1 

TI

 
e(t)dt

)
(18.29) 

u(t) = K P
(
e(t) + 

1 

TI

 
e(t)dt  + TDe

'(t)
)

(18.30) 

18.9.1 Euler Transformation 

A computer system must sample the error signal; in Fig. 18.23, we have sampled the 
error signal with the sampling rate f S = 1/TS. From Fig.  18.23, we can see that the 
integral of e(t) is approximately equal to the sum of the rectangles. 

Hence,

 
e(t)dt  ≈

∑n 

i=0 
e(i ) · TS = TS

∑n 

i=0 
e(i) (18.31) 

Similarly, we can see in Fig. 18.24 that the derivative can be approximated with 
a straight line, and hence 

e'(t) ≈ 
e(n) − e(n − 1) 

TS 
(18.32)

Fig. 18.23 The integral ≈ the sum or rectangles 
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Fig. 18.24 The derivative ≈ the straight line between two samples 

That gives us the following ‘computer friendly’ PI and PID control algorithms (= 
the ‘Euler transformation’): 

u(n) = K P
(
e(n) + 

TS 
TI

∑n 

i=0 
e(i )

)
(18.33) 

u(n) = K P
(
e(n) + 

TS 
TI

∑n 

i=0 
e(i ) + 

TD 

TS 
(e(n) − e(n − 1))

)
(18.34) 

Example 18.4 Use the Euler transformation to find computer-friendly algorithms 
for the PI and PID controllers in Example 18.2. 

Solution We obviously must find the sampling rate first. Considering that ω0 = 
0.5 rad/s, a sampling rate of 2 S/s is enough, i.e., TS = 0.5 s. First, we discretize 
Eq. (18.26): 

un = 1.8

(
en + 

0.5 

11

∑
i 

ei

)
= 1.8

(
en + 0.045

∑
i 
ei
)

Next, we discretize Eq. (18.28): 

un = 2.4

(
en + 

0.5 

6.5

∑
i 

ei + 
1.6 

0.5 
(en − en−1)

)

= 2.4

(
en + 0.077

∑
i 

ei + 3.2(en − en−1)

)
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18.9.2 Bilinear Transformation 

In the bilinear transformation, we start from the Laplace transfer functions (Eqs. 18.5 
and 18.12) and first transfer them to the corresponding z transforms using the bilinear 
transformation (see Chap. 10): 

s = 
2 

TS 

z − 1 
z + 1 

(18.35) 

For the PI controller (Eq. 18.5), we get 

C(z) = K P

(
1 + 1 

TI 
2 
TS 

z−1 
z+1

)
= K P

(
1 + 

TS 
2TI 

z + 1 
z − 1

)

= K P
(
2TI (z − 1) 
2TI (z − 1) 

+ 
TS(z + 1) 
2TI (z − 1)

)

= 
K P 
2TI 

· (2TI + TS) + (TS − 2TI )·z−1 

1 − z−1
= 

U (z) 
E(z) 

(18.36) 

An inverse z transformation on expression (18.36) gives us the following 
difference equation: 

un = un−1 + 
K P 
2TI 

((2TI + TS) · en + (TS − 2TI ) · en−1) (18.37) 

The corresponding expression for the PID controller (Eq. (18.12)) is 

un = un−2 + K P
{(
2TI TS + T 2 S + 4TI TD

)
en +

(
2T 2 S − 8TI TD

)
en−1 

+(
4TI TD + T 2 S − 2TI TS

)
en−2

}
(18.38) 

Example 18.5 Use the bilinear transform to find computer-friendly algorithms for 
the PI and PID controllers in Example 18.2. 

Solution Using the same sample rate as in Example 18.4, a bilinear transformation 
of Eqs. (18.25) and (18.27) give us:  

PI: un = un−1 + 
1.8 

2 · 11 · ((2 · 11 + 0.5)en + (0.5 − 2 · 11)en−1) 

= un−1 + 1.84en − 1.76en−1 

PID: un = un−2 + 2.4(. . . .) = un−2 + 116en − 83en−1 + 35en−2
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Comments: In computer algorithms, there is always a breakpoint when you need 
to use floating-point calculations. Floating-point calculations are time and memory 
consuming and should be avoided if possible. In the above examples, where we have 
simulated the heating control of some oven, the use of floating-point calculations 
would not be a problem since the sampling rate is only 2 S/s. 

Also notice the main difference between the Euler and the bilinear transformations 
above: The bilinear also uses old output samples (and could thereby potentially 
become instable.)



Appendix 
Operational Amplifiers 

Abstract A lot of the analog electronics used in electrical measurement systems 
are based on operational amplifiers (op amps) and a basic understanding of this 
fundamental device is necessary; op amps will occur repeatedly throughout this 
book. Because of the extremely high inherent amplification of the differential-ended 
input signal, an op amp is almost always used with negative feedback. This chapter 
will demonstrate that two simple rules are all you need to understand and solve any 
op amp circuit. These simple rules are then used to exemplify the versatility of the 
op amp. 

1. Introduction 

The operational amplifier (‘op amp’) is one of the most versatile analog electronic 
components and omnipresent in electrical measurement systems. If you are going 
to work with electrical measurement systems, it is inevitable that you will sooner or 
later come across op amps and a basic understanding of this multifaceted component 
is imperative. Figure A.1 illustrates the op amp symbol. 

Fig. A.1 Signal model

+U+ 

— —U 

Uout 

VS+ 

VS— 
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Fig. A.2 Op amp with 
negative feedback 

+ 

— 

I+ 
Uout 

Zfb 

U 

U+ 

— 
—I 

It is a differential amplifier; it amplifies the potential difference (U+ − U−), but 
the differential amplification is so large (>106), so for any real-world signal, the 
output will be driven ‘high’ (= VS+) or ‘low’  (= VS−). So, operated as a differential 
amplifier, it will act as a ‘comparator’. If it is a differential amplifier, you are looking 
for (with a ‘reasonable’ amplification) then you are not looking for an op amp, you 
are looking for an instrumentation amplifier, see Chap. 4. 

You see, op amps are (almost) always used with feedback. That means that (part 
of) the output signal is fed back to the input. In principle, you can feed the output back 
in two different ways; either to the ‘+’ input (= ‘positive feedback’) or to the ‘−’ 
input (‘negative’ feedback). With positive feedback, the amplification is increased 
which might seem redundant considering the enormous open-loop gain, but it has 
some applications (for example in oscillator designs). However, most op amp designs 
have negative feedback and that’s what we will describe here, since that is what you 
will almost always use in a physics lab. Before we go into that, we will just mention 
a few characteristic properties of the ideal op amp. 

First, the op amp needs dual power supply, ±12 V or ±15 V. For most op amps, 
the maximum output level is approximately 1–2 V lower than VS+ (and the minimum 
is 1–2 V higher than VS−). If you need the output levels to reach the supply voltage 
level, look for an op amp that is ‘rail-to-rail.’ 

An ideal op amp has infinite differential gain, infinite bandwidth, infinite input 
impedance and zero output impedance. A real op amp comes very close to infinite 
gain and infinite input impedance but does not have zero output impedance (≈ 100
Ω) and is nowhere near infinite bandwidth. However, for our presentation of ‘op 
amps with negative feedback’, we only need the ‘infinite input impedance’ property, 
and CMOS op amps have that (or as close as you can hope for). 

Figure A.2 illustrates an op amp with negative feedback. 
To understand what happens in an op amp with negative feedback, it is important 

to understand that the op amp is not really an amplifier. It is a  controller; it is  
not designed to amplify anything; it is designed to make U+ = U−. With negative 
feedback, the output will generate whatever voltage/current necessary to make U+ = 
U−. That’s it! Well, there is one more thing; because of the infinite input impedance, 
we can always assume that the currents I+ and I− = 0. There is never any current 
in or out of the inputs. These two rules (U+ = U− and I+ = I− = 0) are sometimes 
referred to as the ‘golden rules’ of op amps. These two rules are all you need to design
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Fig. A.3 The inverting 
amplifier 

+ 

— 
Uout 

R2 

Uin 

R1 

Iin 

Ifb 

‘anything’. The op amp has no inherent ‘amplification’ (except for the infinite open-
loop amplification) but you can take advantage of the above-described properties to 
design an amplifier with arbitrary gain. But keep in mind; the op amp (with negative 
feedback) doesn’t care about gain, it only cares about making U+ = U−, and that’s 
it! 

2. Amplifiers 

Op amp textbooks always start with the circuit in Fig. A.3. 
In Fig. A.3, the ‘+’ input is grounded, so U+ = 0 V. That means that the output 

will make sure that also U− = 0 (the ‘−’ input is ‘virtually grounded’). In that case, 
the current I in = (U in – 0)/R1 = U in/R1. When this current reaches the ‘−’ input, it 
has nowhere else to go but to the R2 resistor (because the current in/out of the input 
is zero); I fb = I in. Now we can find the output voltage. If we start at the ‘−’ input, 
where the potential = 0 V, and move to the output, then: 

0 − Ifb R2 = −Uin 

R1 
R2 = Uout ⇒ Uout = −  

R2 

R1 
Uin (A.1) 

and we have an amplifier, an inverting amplifier because of the minus sign, and we 
can set the gain arbitrarily with the resistors. Notice how we only used the op amp’s 
‘control’ property to design an amplifier. 

If you want a non-inverting amplifier, you use the circuit in Fig. A.4.
In this case, U− = U+ = U in. That means that the current I in is U in/R1, and this 

current can only come from the output I fb (because the current from the inputs is still 
= 0 A). So, if we start on the ‘−’ input, where the potential is U in, we can find the 
output voltage: 

Uin + Ifb R2 = Uout ⇒ Uout = Uin + 
Uin 

R1 
R2 = Uin

(
1 + 

R2 

R1

)
(A.2) 

Again, we can set the gain arbitrarily with the resistors R1 and R2.
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+ 

— 
Uout 

R2 

Uin 

R1 

Iin 

Ifb 

Fig. A.4 A non-inverting amplifier

+ 

— 

R 

U1 

U2 

Usum 

U1 
I1 

I2 

Isum 

Isum 
R 

R 

Fig. A.5 Summing circuit 

3. Summing 

Summing voltages is a common application of op amps. The circuit in Fig. A.5 
produces the sum of two voltages. 

Since the ‘−’ input is virtually grounded, the currents I1 and I2 are U1/R and U2/ 
R, respectively. These currents will add at the ‘−’ input and this sum of currents has 
nowhere else to go but to the output (the output sinks the current): 

0 − Isum R = Usum = −
(
U1 

R 
+ 

U2 

R

)
R = −(U1 + U2) (A.3) 

4. Integrals and Derivatives 

Sometimes we want to find the derivative or the integral of a signal. The circuit in 
Fig. A.6 will differentiate the input signal. First, the output voltage is –I fbR, and 
second, the voltage over the capacitor equals the input voltage U in. The current I in 
is, by definition, the change of charge per time unit:
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Fig. A.6 Differentiating 
circuit 
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Uout 
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Uin 
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Ifb 

Fig. A.7 Integrating circuit 

— 

+ 
Uout 

R 

Uin 

C 

Iin 

Ifb 

Uout = −Ifb R = −Iin R = −R 
dQ  

dt  
= −R 

d 

dt  
(UcC) = −RC 

d 

dt  
Uin (A.4) 

And hence the input signal is differentiated. 
If we change places with the resistor and the capacitor, we get an integrating 

circuit, see Fig. A.7. In this circuit, the output signal Uout = −UC, and charge Q is, 
by definition, the integral of current: 

Uout = −UC = −  
Q 

C 
= −  

1 

C

 
Iindt  = −  

1 

C

 
Uin 

R 
dt  = −  

1 

RC

 
Uindt (A.5) 

5. Constant Current Generator 

Figure A.8 illustrates a constant current generator. 
The op amp will keep the current through the Rsense resistor constant: Isense = (US 

– U in)/Rsense, and since the collector current is ≈ Iemitter = Isense, the current through 
the load impedance will also be constant, independent of the size of the load.
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Fig. A.8 Constant current 
generator 
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US 

IC 

Uin 

Rsense 
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Fig. A.9 A voltage follower 

+ 

— 
Uout = Uin 

Uin 

6. Voltage Follower 

Figure A.9 illustrates a ‘voltage follower’; the output is always equal to the input 
voltage. The usefulness of that might at first glance be questionable, but this is 
extremely useful. 

The voltage follower is used as an ‘impedance converter’. Sometimes we have a 
signal source with a ‘high’ output impedance and/or a receiving component with a 
‘low’ input impedance. Using a voltage follower means the source is not loaded (no 
current is required from the source since the op amp input current is zero) and at the 
receiving end, a low impedance signal source is connected to the receiver (because 
the output impedance of the op amp is ‘low’). 

The voltage follower is sometime called a ‘buffer’.
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Uin > 0 
Iin 

R 

Fig. A.10 Positive resistance 

Uin> 0 
Iin 

+ 

— 
Uout 

R2 

R1 

RNR 

Fig. A.11 Negative resistance 

7. Negative Resistance 

Consider the circuit in Fig. A.10. 
We know that in a ‘normal’ circuit, the current I in = U in/R in Fig. A.10 is >0 if 

U in > 0;  U in sources current into the resistor. We would have a negative resistance 
if I in < 0, i.e., if U in would sink current. With an op amp, we can design a negative 
resistance. Consider the circuit in Fig. A.11. 

If we can prove that the current I in in Fig. A.11 is <0, then the circuit behaves as 
a negative resistance. Uout is obviously U in(1 + R2/R1). Then 

Iin = 
Uin − Uout 

RNR 
= −  

R2/R1 

RNR 
Uin < 0 ⇒ Rin = 

Uin 

Iin 
= −  

R1 

R2 
RNR (A.6) 

Hence, this circuit acts as a negative resistance, sinking current at the input.
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+ 
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Fig. A.12 Inductor replacement circuit 

8. Inductor Replacement 

Resistors and capacitors are easily integrated on silicon, but inductors are harder. 
For that reason, inductor replacement circuits have been developed. Figure A.12 
illustrates ‘Antoniou’s inductor replacement’ circuit. This is an inductor replacement 
circuit if it behaves like an inductor, i.e., if the impedance U in/I in = sL. To prove that 
we need to indicate some potentials and currents, see Fig. A.13. 

First, we can see that both op amps’ inputs must have the same potential U in 

(because of the negative feedback). That means that the current I4 is U in/R4, and this 
current must come from the capacitor branch. Then the potential UC must be: 

UC = Uin + I4 
1 

sC 
= Uin

(
1 + 

1 

sR4C

)
(A.7) 

Then the current I3 must be:
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I3 
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I4 
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I4 
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Fig. A.13 Inductor replacement circuit 

I3 = 
UC − Uin 

R3 
= Uin 

sR3 R4C 
(A.8) 

Then U12 is. 

U12 = Uin − R2 I3 = Uin − 
R2 

sR3 R4C 
Uin = Uin

(
1 − R2 

sR3 R4C

)
(A.9) 

Then I in must be: 

Iin = 
Uin − Uin

(
1 − R2 

sR3 R4C

)
R1 

= R2 

sR1 R3 R4C 
Uin (A.10)
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and hence 

Uin 

Iin 
= sL  where L = 

R1 R3 R4C 

R2 
(A.11) 

This proves that the circuit in Fig. A.12 acts as an inductor. 
These are just some examples of the versatile applications of op amps and this 

textbook contains a lot more. For example, Fig. 3.60 illustrates a difference circuit, in 
Fig. 4.5, we have differential amplifier, Figs. 4.6 and 4.8 illustrate two different imple-
mentations of instrument amplifiers, Fig. 6.8 is an active probe, Fig. 6.11 illustrates 
a current probe, Fig. 9.11 illustrates a state variable filter, Fig. 9.13 is a Sallen-Key 
filter and in Fig. 11.2 an op amp is used in a sample and hold circuit.
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A 
Accelerometer, 49, 50 
ADC, 229 
Aliasing, 136, 138 
Alumel, 37 
Amplifier 

differential, 80, 392 
differential-ended, 77 
instrumentation, 78, 80f, 392 
inverting, 393 
non-inverting, 176, 393 
operational, 77 

Analog-to-digital converter, see ’ADC’, 229 
dual slope, 240, 241 
flash, 236 
integrating, 240 
level-crossing (LC), 245 
parallel, 236 
pipeline, 236, 238 
SAR, 234 
sigma-delta, 253 
single slope, 244 
successive approximation, 234 

Analysis, 124 
Analyzer 

heterodyne, 171 
Antenna, 16 

electric dipole, 12 
magnetic dipole, 16 

Attenuation, 98 
Attenuation factor, 98 
Auto-correlation, see ’correlation’ 

B 
Bandwidth, 5, 10, 115, 140f, 156, 169, 171 

Bayonet Neill-Concelman (BNC), 16 
Bernoulli’s equation, 52 
Bilinear transformation, 222, 389 
Black body, 43 
Block diagram, 212, 214 
Bode diagram, 139, 145, 147 
Bode plot, 371, 372, 379, 384 
Boltzmann’s constant, 10 
Bureau International de Poids et Mesures 

(BIPM), 291 
Burst-like signal, 245, 246 

C 
Causal, 210, 219 
Central limit theorem, 286, 294f 
Channel Electron Multiplier (CEM), 67 
Channeltron, 67 
Characteristic impedance, 85, 86f 
Chromel, 37 
CM residual, 2 
Cold junction, 34, 36 

compensation, 39 
Common, 2 
Common ground, 26 
Common mode, 2, 77, 279 
Common Mode Rejection Ratio (CMRR), 

3, 78, 83 
Comparator, 392 
Confidence interval, 285, 293, 357 
Confidence level, 285 
Constantan, 36, 45 
Constant current generator, 395 
Control function, 369, 385 

PI, 375 
Controller, 369, 392
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P, 372, 377 
PD, 377 
PI, 377 
PID, 377, 378 
proportional, 372 

Control system, see ’system’ 
Convolution, 195f, 202, 319, 362 

discrete-time, 333 
Correlation, 319 

auto-, 319 
auto-, discrete-time, 335 
circular, 337 
cross-, 319, 325 
cross-, distrete-time, 333 
temporal, 319 
time-, 319 

Coupling, 9 
Covariance, 282 
Coverage factor, 286, 293 
Critical damping, 382 
Critically damped, 179, 187 
Cross-correlation, see ’correlation’ 
Crosstalk, 26, 29 

B-field, 18 
capacitive, 20 
common impedance, 27 
E-radiation, 13 
inductive, 23, 24 

Cryogenic, 43 
Crystal 

piezoelectric, 56, 57 
cxcorr, 338 

D 
Damping, 382 
Damping constant, 382 
Dark current, 61, 67 
dB, 3 
dBm, 3 
dBV, 3 
Dead time, 380, 381 
Decimation, 250 
Degrees of freedom, 286 

effective, 294f 
Delayline, 272 

tapped, 273 
Delta-function, 330 
Delta network, 108 
Density function, 279, 286 
Difference equation, 214, 216, 224 
Differential-ended, 4, 314 
Differential mode, 2 

Differentiation time constant, 376 
Digital filter, 209 
Digital Multimeter (DMM), 244 
Digital-to-Analog Converter (DAC), 233 

1-bit, 256 
Digitizing, 230 
Dirac impulse, 148f, 210 
Discrete Fourier Transform (DFT), 133, 

134, 152, 164 
spectrum, 167, 168 

Discrete-time space, 149 
Discretizing, 230 
Dispersion, 29 
Distribution 

normal, 286, 292 
student-t, 286 
t, 287 
uniform, 287 

Dithering, 250 
Double integral method, 180 
Dynamic Light Scattering (DLS), 332 
Dynode, 65 

continuous-, 67 

E 
E12 series, 102 
Electrical quantity, 1 
ElectroCardioGram (ECG), 245 
Emf, 35 

thermo, 36, 43 
Emissivity, 43 

secondary electron, 68 
Equivalent Number Of Bits (ENOB), 247 
Equivalent-time sampling, 260 
Error bar, 357 
Error signal, 369 
Euler’s formula, 126, 144 
Euler transformation, 388 
Expectation value, 281 

F 
Falltime, 4 
Faraday cage, 15, 22 
Far end, 87 
Fast Fourier Transform (FFT), 133, 134, 

162 
algorithm, 133 
spectrum, 164, 169 

Feedback, 392 
negative, 392 
positive, 392 

Fiber optics, 29
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Filter, 140, 220, 308 
active, 176 
all-pole, 187, 188 
analog, 175 
anti-aliasing, 249 
bandpass, 181, 185, 193, 194, 203, 223 
bandstop, 185, 194, 204 
Bessel, 186 
biquad, 177 
biquadratic, 177 
butterworth, 179, 187f 
Cauer, 186, 191f 
causal, 219 
Chebyshev, 186, 188f, 204 
coefficients, 223 
comb, 226 
elliptic, 191 
finite impulse response (FIR), 212, 218, 
223, 343 

first order, 175, 182, 220 
highpass, 180, 185, 193, 225, 257 
infinite impulse response (IIR), 214, 
222, 226 

lowpass, 181, 182, 185, 192, 257, 312 
matched, 319, 327f 
notch, 186 
n-tap, 212, 220 
order, 145 
passive, 175 
RC, 182, 202, 220 
resonance, 167, 170 
second order, 177, 180, 185 
selectiveness, 182 
state-variable, 182 
steepness, 182 
transformation, 191 
Twin-T, 186 
type, 177 

Filter coefficients, 212, 218 
Filters 

passive, 185 
Fleming’s right-hand rule, 58 
Flip-flop, 267, 272 
Flow meter, 59 
Fourier spectrum, 361 
Fourier transform, 125, 125, 129, 144, 147, 

150, 161, 171, 195, 361 
discrete, 133f, 152 
discrete-time, 152 
fast, 133 
inverse, 361 
pair, 341 

freqs, 146 

Frequency, 124, 162 
complex, 143, 144, 148 
cross-over, 386 
cutoff, 183, 204, 222, 225 
excitation, 307 
imaginary, 144 
resolution, 134 
resonance, 177 
sampling, 361 
self-oscillation, 384 

Frequency response, 218 
Frequency space, 123 
Fresnel’s law, 89 
Full rank, 349 

G 
Gain margin, 371 
Gauge, 33 

gas ionization, 69 
hot-cathode, 72, 72f 
Pirani, 69, 69 
thermal conductivity, 69 
vacuum, 69 

Gauge factor, 45 
Guesstimating, 299f 
GUM document, 291, 294f 

H 
Hall effect, 58 
Hall probe, 59 
Heaviside function, 158 
Heterodyne, see ’analyzer’ 
Heterodyne technique, 312 
Hot junction, 34, 36, 43 

I 
iid, 282 
Illumination, 61 
Impact angle, 345 
Impedance matching, 96 
Impulse response, 148f, 149, 195, 205, 210, 

213, 217, 327 
coefficients, 212 

Inductance 
mutual, 23 

Inductor replacement, 398 
Antoniou’s, 398 

In-phase, 315 
Instrumentation amplifier, see ’amplifier’ 
Integration time constant, 375 
Interpolation, 250, 269
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sinx/x, 363 
Interval estimation, 284 
Inverse Fourier transform method, 218 
Ion feedback, 67 

J 
Johnson noise, 10 

K 
Kirchhoff’s law 

current, 25, 57 
voltage, 26 

L 
Laplace transform, 144f, 145, 146, 148, 

149, 151, 157, 158, 181, 195 
Leakage, 163, 170 

quantify, 166 
Lenz’s law, 24 
l’Hospital’s rule, 126 
Linear and Time-Invariant (LTI), 140 
Linear interpolation, 361 
Linear regression, 349 
Load cell, see ’sensor’ 
Local oscillator, 171 
Lock-In Amplifier (LIA), 308, 313f, 314 
Lumen (lm), 61 
Luminous flow, 61 
Luminous intensity, 61 
Lux (lx), 61 

M 
Mass spectrometer, 277 
Matrix 

coefficient, 348 
ill-conditioned, 358 
measurement data, 348 
observation, 348 

Mean, 281 
Microchannel Plate (MCP), 68 

Chevron, 69 
Z, 69 

Modulator 
delta, 254 

Moment of coincidence, 270 

N 
Near end, 87 
Neyman-Pearson detection, 325 

Night-vision googles, 69 
Noise, 9 

1/f, 11 
flicker, 11 
gaussian, 279 
Johnson, 10 
pink, 11 
power, 329 
quantization, 12 
shot, 11 
white gaussian, 358 

Noise factor, 11 
Noise-shaping, 256 
Nonie scale, 269 
Non-referenced, 4, 29 
Normal, 2 
Normal mode, 2, 77, 279 

amplification, 81 
Nyquist interval, 138 
Nyquist limit, 249 
Nyquist sampling, see ’sampling theorem’ 
Nyquist’s stability criterion, 374 

O 
Operational amplifier (Op amp), 391f, 391 

golden rules, 392 
Opto coupler, 29 
Orthogonality principle, 352 
Oscilloscope 

sampling, 260 
Output estimate, 294f 
Overdamped, 188 
Oversampling, 222, 247, 249 
Oversampling rate (OSR), 247 
Overshoot, 179, 187, 370, 377 
Overshoot ratio, 382 

P 
Passband, 179 
Phase diagram, 190, 371 

linear, 143, 186 
Phase-locked loop, see ’PLL’ 
Phase-locked loop, 313 
Phase margin, 371, 377 
Phase Sensitive Detector (PSD), 308, 309, 

311, 313 
Photocathode, 65 
Photoconductive, 61 
Photodiode 

avalanche, 63 
Photodiodes, 61 
Photomultiplier, 61, 65
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Photomultiplier Tube (PMT), 65 
Photon Correlation Spectroscopy (PCS), 

331 
Photoresistors, 61 
Phototransistors, 61 
Photovoltaic, 61, 62 
Physical quantity, 1 
PI, 375 
PID parameters, 377 
Piezoelectric crystals, see ’crystal’ 
Piezoresistive, 45 
Plant, 378 
PLL, 313 
Point estimator, 284 
poles, see ’system’ 
Position sensitive detectors, see ’sensor’ 
Position Sensitive Detectors (PSD), 64 
Probability, 285 
Probability distribution 

uniform, 247 
Probe, 111, 113f 

active, 116 
current, 117, 118f 
passive, 113, 114f 

Process 
stationary, 341 
stochastic, 341 

Process value, 369 
Pseudo inverse, 349, 355 
Pyrometer, 43 

dissapering-filament, 44 
Pythagorean identity, 314 
pzplot, 147 

Q 
Q, 177, 308, 315 
QR factorization, 360 
Quality factor, 177, 182, 187 
Quantity 

electrical, 33 
physical, 33 

Quantization, 229 
noise, 233 

Quantization error, 269 
Quantization noise, 248f, 255 
Quantum efficiency, 66 
Quarter of a period, 315 

R 
Rail-to-rail, 392 
Rectifier, 312 
Referenced, 29 

Reference signal, 312, 314 
Residual, 233 
Resistance 

negative, 397 
Resistivity, 45 
Resolution, 169 

ADC, 230, 244 
bandwidth, 170 
time, 271 

Resolution Bandwidth (RBW), 169f 
Response time, 377 
Ripple, 187, 188, 190 

passband, 186 
Risetime, 4, 5, 370, 377 

S 
s, 148 
S&H, see ’sample & hold’ 
Sallen–Key link, 183, 203 

second order, 183 
Sample & hold, 230, 231 
Sampling 

asynchronous, 245, 246 
equivalent-time, 260 
level-crossing, 245 
real-time, 260 
synchronous, 244, 245 

Sampling rate, 131 
Sampling theorem, 132, 138, 247, 360 

Nyquist, 132 
Shannon, 132 

Scalar product, 144 
Seebeck coefficient, 36 
Seebeck effect, 34 
Seismic mass, 49 
Seismograph, 343 
Sensitivity coefficient, 293 
Sensor, 1, 33 

bandgap, 42 
flow, 51, 59 
fluid level, 53, 54 
Hall, 58, 118 
load cell, 55 
magnetic, 58 
photo, 61 
position, 59 
position sensitive detector, 64 
pressure, 50 
temperature, 34 
torque, 53, 54 
viscosity, 55 

Settling time, 369, 370, 377
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Set value, 369 
Shannon, see ’sampling theorem’ 
Shield, 21, 24 
Shot noise, 11 
Sigma-delta 

modulation, 253 
Signal conditioning, 1, 34 
Signal-to-noise, 3, 283 
Signal-to-noise ratio (SNR), 83, 247, 248, 

255, 283 
Sinc function, 167, 363 
Single-ended, 4 
Single photon detection, 66 
Smooth, 312 
Sparse signal, 245 
Spectral density, 248 
Spectrum analyzer, 161, 170 

analog, 161 
digital, 161 

s-plane, 149, 150, 187, 191 
Splicing, 97, 97 
Splitting, 97, 99f 
s space, 152 
Standard deviation, 281f 
Standard error, 283f 
State variables, 181 
Steady state, 374 
Steady state error, 369, 373, 377 
Stefan-Boltzmann’s law, 43 
Step function, 158 
Step response, 369, 378, 381 
Stochastic process, 341 
Stochastic variable, 280, 284, 292 
Strain, 45 

false, 46 
ostensible, 46 

Strain gauge, 46f 
piezoresistive, 50 
principle, 45f, 48 

Successive Approximation Register (SAR) 
interleaved, 258 

Switched capacitor, 184 
System, 5 

bandpass, 140, 141, 147 
bandstop, 141 
closed loop, 374 
control, 369, 373 
feedback, 371 
first order, 373, 378 
highpass, 140, 141 
identification, 378 
linear and time-invariant, 140 
lowpass, 139–141, 176 

notch, 140, 141 
open loop, 374 
overdamped, 382 
pole, 147, 177, 227 
resonance, 140, 141 
second order, 371, 382 
stopband, 140 
time constant, 378 
underdamped, 382 
zero, 147 

System of equations 
overdetermined, 348, 352 

T 
Tap, 212 
T-cross, 98 
Temperature coefficient, 45 
Termination, 95 
Thermal conductivity, 70 
Thermocouple, 34, 35 

type T, 261 
Thermopile, 43 
Thomson effect, 34 
Time Domain Reflectometry (TDR), 99 
Time measurements 

Vernier, 269 
Time space, 123 
Time stretching, 274 
Time-to-Digital Converter (TDC), 267 

analog, 267 
asynchronous, 269 
counter based, 268 
digital, 267 
flash, 273 
Vernier, 271 

Transducer, 33 
Transfer function, 138, 145, 203, 204, 211, 

256, 370, 378 
Transform domains, 154 
Transformer, 23 

isolation, 29 
Transform theory, 123 
Triangulation 

optical, 66 
Triode, 71 
Twisted-pair (TP), 19, 28 

shielded, 29 

U 
Unbiased estimator, 283 
Uncertainty 

expanded, 293, 294f
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propagation, 293 
standard, 293, 294f 
type A, 294f 
type B, 294f 

Uncertainty budget, 288, 293, 294, 301f 
Underdamped, 179, 188 
Universal Active Filter (UAF), 181 

V 
Variance, 281, 283, 329 

population, 283 
sample, 284, 286 
uniform distribution, 287 

Vector, 144, 349 
base, 144 
column, 349 

Venturi pipe, 52 
Voltage follower, 176, 230, 396 
Voltage meter 

vector, 315 

W 
Wave impedance, 87f 
Wave reflection, 89 
Welch–Satterthwaite formula, 294f 
Wheatstone bridge, 47f, 49, 70, 71, 79 

full bridge, 48 
half-bridge, 48 

Wien’s law, 43 
Window, 164 

Bartlett, 165 
Blackman, 164 
Hamming, 164, 170 
Hanning, 164 
rectangular, 170 
triangle, 164 

2-wire method, 41 
3-wire method, 74 
4-wire method, 41 

X 
xcorr, 338 

Y 
Y network,  108 

Z 
Zero-biased, 61 
zeros, see ’system’ 
Ziegler-Nichol’s rule of thumb, 385 
z plane, 153 
z space, 150, 152 
z transform, 150, 151f 

inverse, 212
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