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Preface

This book is about electrical measurement techniques with a focus on measurement
systems in a physics lab. It is also on an ‘advanced’ level, meaning that it assumes the
reader has math and physics skills corresponding to a bachelor’s degree in science
or engineering.

When I started as a Ph.D. student in experimental atomic physics many years
ago, I was very well prepared ‘physics-wise’, but when I started working in the
atomic laser lab, I soon realized that there were so many things I needed to know that
were not included in the physics program’s curriculum. I knew all about Newton
mechanics, thermodynamics, atomic physics, and wave equations (or at least I
thought I did), but I knew nothing about instruments’ bandwidth, transmission cables,
sensors, microchannel plates, vacuum gauges, piezo crystals, probes, filters, spectral
analyzers, signal processing, analog-to-digital converters, time-to-digital converters,
uncertainty budgets, lock-in amplifiers, and PID controllers. Every day there was
something new to learn, and it was quite overwhelming and sometimes a little frus-
trating. I went to graduate school to learn more about physics but spent most of my
time learning about electrical engineering stuff.

I'had to figure out all these things by myself and it took precious time away from
the things I really wanted to study, and I remember wishing that there was a book
that summarized it all, like ‘Electrical engineering for physicists’. Well, now there is.
This book summarizes what a Ph.D. student in experimental physics needs to know
from the electrical engineering curriculum to work in a physics lab.

The book contains many examples and problems. The problems are solved; from
experience, I know that this is appreciated by the readers. It contains both ‘practical’
aspects of the equipment in a physics lab (like bandwidth, probes, transmission
cables, controllers, etc.) as well as signal processing theory (like transform theory,
filtering, convolution, correlation, and curve fitting), but the intended focus is always
on the understanding. According to Bloom’s taxonomy triangle, a student’s first
encounter with a subject is characterized by remembering, i.e., root learning and
mechanical solving of standard problems. This is what characterizes bachelor classes.
Most of the mathematics in this book is not new to you; if you have a bachelor’s
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degree in physics, you have seen the math before, but for most students, that implies
a cognitive understanding on Bloom’s remember level.

Bloom’s taxonomy (revised)

In this book, you will see the same math again, but since you have already
processed this math on the remember level, you are now ready to take it to the
next level(s), the understanding and application levels. That is the intention of the
theoretical parts of this book; to take the math you already know to a higher cognitive
level. That means that exercises are not focused on ‘mechanical procedures’ but are
designed to promote a deeper understanding.

Goteborg, Sweden Lars Bengtsson
October 2023
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Chapter 1 ®)
Introduction Check for

Abstract This chapter describes some basic concepts like common and normal
mode voltages, common mode rejection ratio, and signal-to-noise ratio. The dB
unit is defined, differential- and single-ended signals and rise and fall times versus
bandwidth are discussed. Finally, the propagation of a signal through a measurement
system is considered and each component’s influence on the signal is highlighted.

1.1 Electrical Measurement Systems

A successful ‘measurement’ depends on a long chain of components and their inter-
actions. It typically starts with a ‘sensor’ that converts some physical quantity (like
temperature, acceleration, sound, etc.) to an electrical quantity (like voltage, current,
resistance, etc.). After the sensor comes the ‘signal conditioning’. The signal condi-
tioning processes the ‘raw’ sensor signal in hardware (mostly analog). The signal
conditioning electronics’ job is to convert the sensor signal to a ‘standard format’, like
0 -+ 5V or 4-20 mA. This usually includes both passive (resistors and capacitors)
and active (operational amplifiers) components.

Next, for several reasons, the signal-conditioned signal is ‘filtered’. The main
reasons are to a) suppress unwanted interferences (see Chap. 2) and b) to prevent
‘aliasing’ in sampling systems (see Chaps. 7 and 9). After the filter, the signal
is ‘sampled’ by an ‘analog-to-digital converter’ (see Chap. 11); this is where the
signal is ‘digitized’, i.e., transferred to the system computer. From here on, all
signal processing is ‘digital’ (as in ‘computer algorithms’). Digital signal processing
includes digital filters (Chap. 10), spectral analysis (Chap. 8), and correlation
(Chap. 16). You also need to know some ‘post-processing’ techniques (non-real
time), such as uncertainty analysis and confidence interval estimations (Chap. 14),
and curve fitting (Chap. 17).

Throughout the entire ‘chain’, from the sensor to the computer sampling, the
signal is exposed to ‘noise’, and it is important that you know a) where it comes
from, i.e., the most common noise sources (see Chap. 2) and how to protect your
measurement signal from the most common noise sources (see Chaps 2, 5, and 6).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 1
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2 1 Introduction

Before we get into the details of the different measurement chain components,
we need to define some basic concepts to make sure we have the right vocabulary.

1.2 Common and Normal Mode

Voltages (and currents too) can be in either ‘common’ or ‘normal’ mode. To under-
stand the difference, we should probably use ‘potentials’ rather than ‘voltages’;
voltage is a difference in potential. If we measure the voltage across a pair of conduc-
tors, the ‘normal mode’ voltage is the potential difference between the conductors,
and the ‘common mode’ voltage is the potential that is ‘common’ on both conductors.
This is illustrated in Fig. 1.1.

A better name for the ‘normal mode’ voltage would be ‘differential mode’, which
is indeed used in some contexts, but ‘normal mode’ seems to be the most used name.
In a typical measurement, we measure the normal mode voltage, with a voltage
meter, and if the voltage meter (VM) is ‘perfect’ it will measure only the potential
difference, i.e., the normal mode voltage. The voltage meter subtracts the potential
on one wire from the other.

Uvm = (ug +u1) — ug = uy = pp (1.1)

However, subtractions in electronics are never perfect and in a non-perfect voltage
meter, there will be a ‘cm residual’ in Uvyy:

UvMm = tpm + Fem - Uem (1.2)
F¢m is the ‘common mode suppression number’ and is an important parameter for

any voltage meter; the lower the better is the voltage meter (and the more expensive
it is). Manufacturers don’t specify the F .y number though, they specify the CMRR,

Fig. 1.1 Signal model uo + U1
\
1 (9 >- Unm = U1
* uo _
\

Ho <~> >- Ucm = Uo
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the Common Mode Rejection Ratio of the voltage meter. CMRR is defined as

1
dB (1.3)

cm

CMRR = 20log

A ‘good’ desktop DMM (digital multimeter) has a CMRR of 140 dB (for example,
Keysight model 34461A), but this number typically drops rapidly with frequency; the
‘AC’ CMRR for the 34461 A model is 70 dB. A ‘good’ handheld DMM has a typical
CMRR of 120 dB (for example, Fluke 179). Finally, even if the CMRR decreases
with frequency, they are almost always designed to suppress the power line frequency
(50/60 Hz), because that is where the common mode noise comes from in most cases;
for 50/60 Hz, the CMRR is usually as good as the DC suppression.

1.3 Signal-To-Noise Ratio

In the general case, the measurement signal will always be a complex of ‘signal’
and ‘noise’, or the ‘good’ part and the ‘bad’ part. The noise is what will prevent us
from measuring our quantity with perfect (infinite) accuracy, the more noise, the less
accuracy. Actually, we can live with a lot of noise if we also have a lot of ‘signal’;
it is the magnitude of the noise compared to the signal level that is the interesting
number. We quantify the ‘signal situation’ with the ‘signal-to-noise’ ratio:

signal rms

SNR = 20log dB (1.4)

noise rms

In Eq. (1.4), it is usually understood that it is the ‘normal mode’ noise we mean;
if we refer to the common mode noise, we will specify that explicitly.

1.4 Decibel Units

Equation (1.4), the ‘dB’ unit is really ‘dimensionless’; it is a logarithmic measure
of a relation between two voltages. However, the dB unit is also sometimes used
to express absolute voltages. For example, 1 dBm corresponds to the voltage that
develops exactly 1 mW in a resistor R. R is usually, but not necessarily, a 50 Q
resistor. Since P = U-I = U?/R, we have that

U2
1mW=5—O:>U=vO.O =0.2236 V (1.5)

Hence, 5 V equals 20-10g(5/0.2236) = 27 dBm. Sometimes, you also see the
‘dbV’ unit. The dBV unit relates the voltage to 1.00 V.
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Differential- . ) Single-
ended : i ended

a A differential-ended signal b A single-ended signal

Fig. 1.2 a A differential-ended signal. b A single-ended signal

1.5 Differential-Ended Versus Single-Ended

In electrical measurement laboratories, the terms ‘differential-ended’ and ‘single-
ended’ signals are used regularly. A ‘differential-ended’ signal has two wires and
none of them are ground. The signal is delivered as a potential difference between
two wires, see Fig. 1.2a. A differential-ended signal is also sometimes called ‘non-
referenced’.

A ‘single-ended’ signal, on the other hand, is a single wire; it is understood that
the signal is the potential on this wire relative ground.

1.6 Signals

1.6.1 Risetime and Falltime

We have already used the term ‘signal’ repeatedly, but we have not yet properly
defined it. A ‘signal’ could be a lot of things, but in this context, it will be understood
to be a variation of voltage in time. An AC voltage if you like, but ‘AC signals’ are
generally interpreted as sinusoidal voltages and our scope of signals is much wider
here.

One of the most basic properties of a signal (and one of the most important ones
to us), is its risetime. A signal’s risetime is defined as the time it takes for the signal to
go from 10 to 90% of its maximum voltage. Correspondingly, the falltime is defined
as the time it takes to go from 90 to 10% of the maximum (Fig. 1.3).

_ tiise > tran

<

»
|
T

Y

90 %

voltage [V]

10 %

time [s]

Fig. 1.3 Risetime and falltime
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If only the risetime is specified, you may assume that the falltime equals the
risetime.

1.6.2 Bandwidth

So why is the risetime of a signal so important? It is important because, from the
signal’s risetime, we can calculate its bandwidth. We will talk a lot about frequen-
cies in this book (for both signals and systems) and knowing a signal’s bandwidth
is paramount for how you design your ‘measurement chain’. We will define ‘band-
width’ properly later (for both signals and systems), but for now, we settle with the
following definition: A ‘signal’ is in the general case ‘complex’, it consists of several
components, where a ‘component’ is understood to be a sinusoidal signal. A signal is
in general a sum of a lot of sines, and the signal’s bandwidth is simply the frequency
of the sinusoidal with the highest frequency.
There is a simple relationship between a signal’s bandwidth and risetime:

035

Trise

B (1.6)

We don’t derive that expression here (but it is just straightforward electricity
calculus).

1.7 Systems

You can’t talk about ‘signals’ without also talking about systems. A ‘system’ is
anything that the signal passes through in the measurement chain. ‘Systems’ are
not only amplifiers and filters but also include the transmission lines and the instru-
ments. All systems are typically specified by their bandwidth, and it is important
to understand what impact each system has on the signal. Filters and amplifiers are
designed to have a specific impact on the signal, but transmission lines and instru-
ments should ideally have no impact on the signal. However, ‘no impact’ implies
infinite bandwidth, and we never have that.

If the system’s bandwidth is < oo (which it always is), it will slow down the
signal. ‘Slow down’ as in ‘the signal’s rise time will increase’ for each system it
passes. When a signal propagates through a measurement chain, it is slowed down
by the chain components, and risetimes are added in squares. Figure 1.4 illustrates
a signal chain.

First, we get each system’s risetime from their bandwidth (use Eq. (1.6)) and then
we add the squares:

2 2 2 2 2 2
trise,out = trise,in + tl + t2 + t3 + l4 (17)
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trise.in bandwidth B> bandwidth Ba

trise,out
—> l«— ¢ ¢ ; .
— filter — amplifier | transmission line | instrument
A
A
bandwidth B+ bandwidth B3

Fig. 1.4 Measurement chain: Risetime propagation

where t, = 0.35/B,,. In the general case,

0.35°
Trise,out = trzise,in + Z (?) (18)

i

1.8 Solved Problems

Problem 1.1 The voltage meter in Fig. 1.5 is a 6%2 digit DMM with a CMRR of
130 dB. (a) What voltage will the voltage meter display? (b) How much of this
voltage is due to the NM and CM parts, respectively?

Solution (a) In Fig. 1.5, we have a common mode voltage of 30.43916 V and a
normal mode voltage of 30.47325-30.43916 = 0.03409 V. A CMRR of 130 dB is
translated to a CM suppression of 10713920 =3 162 . 1077,

The voltage meter will measure

U = 0.0340900 + 3.162 - 1077 - 30.43916 = 0.0340900 + 0.000009625 =

= 0.034099625 volts

But the question was: “What voltage will the voltage meter display?’. We have a
6Y2 digit DMM; the range will be 100 mV, so the display will show 034.0996 mV.
(A ‘%2 digit’ means that the first digit (the most significant digit) can only be ‘0’ or
‘1’. In our example, it must be ‘0’, since we use the 100-mV range).

(b) Of the 34.0996 mV on the display, 0.009625/34.09966 = 0.03% is due to the
CM residual.

Fig. 1.5 DC voltage 30.47325V

measurement
30.43916 V
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1 1 1

Fig. 1.6 Our standard problem; a sine with noise

Problem 1.2 Figure 1.6 illustrates a problem that we will treat repeatedly in this
book: A sinusoidal signal with ‘white’ noise. In Fig. 1.6, the amplitude of the sine
is 1 V and the white noise is ‘gaussian’ with a zero mean and a variance of 0.01 V2.
What is the signal-to-noise ratio in this signal?

Solution A sine with amplitude A volts has an rms voltage of A/+/2, and the rms of
Gaussian (‘normal’) noise is the square root of the variance:

1/4/2
SNR = ZOIOg% =17 dB

Problem 1.3 Convert the voltages 30 dBm and 15 dBV to voltages [V].

Solution In the dBm case, we assume that a 50 2 resistor is used as reference:

U=0.2236-100 =707V

15 dBV corresponds to
u 15/20
15:2010gT =U=10 =562V

Problem 1.4 Figure 1.7 illustrates a ‘perfect’ square signal (risetime = 0). What
would it look like on a 100 MHz oscilloscope?

Solution The scope will ‘slow down’ the signal with 0.35/0.1 ns = 3.5 ns (Fig. 1.8).
If the input signal has risetime 0 s, we will only see the scope’s ‘reaction time’ on
the screen.

20 ns

Fig. 1.7 A ‘perfect’ 25 MHz square wave



8 1 Introduction

Fig. 1.8 The oscilloscope 3.5ns 3.5ns
slows down the signal =

20 ns

Problem 1.5 In an experiment, the signal risetime is expected to be approximately
5 ns. What bandwidth does the oscilloscope need not to have any significant impact
on the result?

Solution First, we need to define exactly what we mean by ‘significant impact’.
The exact definition depends on the circumstances; here we require that the scope’s
contribution to the total risetime must be less than 10%; ¢,y < 5.5 ns:

0.35
5.5 =5+ 130pe = lscope = 2.3 118 = - = B = 152 MHz

The oscilloscope needs a bandwidth of at least 150 MHz.



Chapter 2 ®)
Noise: Sources and Remedies Check for

Abstract This chapter illustrates how noise can couple to a measurement system
in different ways and how noise can be prevented from entering the measurement
system by de-coupling techniques. Noise sources are described, different kinds of
crosstalk are discussed, and the importance of grounding and shielding is highlighted.
This chapter also explains why Faraday cages are used and the advantages of coax
cables and twisted-pair cables.

2.1 Introduction

Noise is omnipresent in all measurements. It may or may not be a problem; it may be
too small compared to other sources of uncertainty to have any significant impact on
the result, or it may have a frequency that is outside the measurement signal’s band-
width. However, in the general case, noise is significant in the signal’s bandwidth,
and we must ‘deal with it’. The first action should not be to apply signal processing
(in hardware or software), the first action is to try to prevent the noise from entering
the system. To prevent noise from entering the system, we must understand how
it got there in the first place. Three conditions must be fulfilled for noise to be a
problem in a measurement system: (a) There must be a noise source, (b) there must
be a coupling between the noise source and the system, and (c) the noise frequency
must be within the signal’s bandwidth.

Obviously, the first action should be to try to identify the noise source; if we can
identify it, maybe we can eliminate it. For example, the signal wire might just be too
close to some unshielded, high-frequency power cable (like the spark plug cable in
a car); rearranging the setup may be all we need to do. In other situations, we can
identify the source, but we can’t do anything about it (like the 50/60 Hz interference
from the local power line).

In such cases, where we can’t do anything about the source (or may not even be
able to identify it), we are left with the only option of trying to break the coupling
between the source and the system. To do that, we need to understand how noise
couples to our system and that can only be done in a handful of ways.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 9
L. Bengtsson, Electrical Measurement Techniques,
https://doi.org/10.1007/978-981-99-8187-8_2
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However, some noise cannot be ‘de-coupled’ since it is ‘internal’, it is generated
by the system itself and that noise we will have to learn to live with. There are some
things we can do to reduce it, but we will always have some internal noise. We will
look at the internal noise first.

2.2 Internal Noise

2.2.1 Johnson Noise

Johnson noise is an omnipresent source of noise. It is a natural phenomenon that was
first described by John B. Johnson at Bell Labs in 1926. Johnson noise is ‘bandlimited
white noise’ that originates in ‘anything with an ohm-resistance’. The rms of the white
noise is

Urms = VATKRTB 2.1)

where k is Boltzmann’s constant (1.38-10723 J/V), R is the resistance, T is the
temperature (in Kelvin), and B is the bandwidth of the instrument (Fig. 2.1).

From Eq. (2.1), we can see that we can reduce the Johnson noise in three different
ways; (a) it depends on temperature so cooling the system will reduce the noise, (b) it
depends on the resistance which implies that we shouldn’t use excessive impedances
unless necessary. We learned in basic electricity that ‘good’ voltage meters should
have a high input impedance. Well, Eq. (2.1) contradicts that; high input impedances
increase the white Johnson noise.

And (c), we can limit the instrument’s bandwidth. For that reason, high-bandwidth
instruments, like oscilloscopes, almost always have a ‘bandwidth-limiting’ option,
see Fig. 2.2. Intuitively, a ‘high-bandwidth instrument’ sounds good, but keep in
mind that the Johnson noise increases with the bandwidth.

We can re-write Eq. (2.1) as

rms V
ems = NATKRT VB = av/B > o = " [ ] 22)

Fig. 2.1 Johnson noise is

omnipresent wherever we
have a resistance
i WWM @
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Fig. 2.2 The Johnson noise in an oscilloscope (open input) for 20 MHz bandwidth (top) and
200 MHz bandwidth (bottom). (The offset for the 20 MHz waveform was added in MATLAB)

where « is the noise factor. Manufacturers of sensors and amplifiers always specify
the noise factor. They can’t know the bandwidth of your application, so the noise
factor is all they provide. The end user must multiply the noise factor with the square
root of the measurement system’s bandwidth to estimate the noise in the sensor/
amplifier. So, whenever you see a number with the unit V Hz~"2, you must multiply
with the square root of your bandwidth.

2.2.2 Shot Noise

Another kind of noise is the shot noise that appears in low-current measurements,
nA or less. Shot noise is caused by the fact that current involves the transportation
of electrons which have a quantized charge (1.6-107'° As) and shot noise is simply
random variations of the charge density. Just like the Johnson noise, the shot noise
increases with the bandwidth of the instrument.

2.2.3 1/f-Noise

1/f-noise (or ‘flicker noise’) is a strange phenomenon that we really don’t know
where it comes from. It decreases with frequency (as 1/f) and has been observed
in applications far from electronic systems, such as music, biology, and economics
[1]. One of its most characteristic properties is that the noise power per decade is
constant: There is as much noise power in the interval 10-100 Hz as in the interval
10-100 MHz. Obviously, this noise will only be a problem when you measure low
voltages (sub-pwV) at low frequencies. Because it is dominated by low frequencies,
it is sometimes called ‘pink noise’ (as in ‘red-shifted’).
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2.2.4 Quantization Noise

Since our measurement data is (usually) sampled by a computer, the samples must
be ‘quantized’ and there is always some information loss in the quantization process.
This noise is called ‘quantization noise’ and depends on the quantizer’s resolution.
We will treat quantization noise in detail in Chap. 11.

2.3 Coupling By Radiation
2.3.1 Electric Dipole Antennas

Anelectromagnetic field propagating in the z direction, emits an electric and magnetic
field in the x and y directions, respectively, both perpendicular to the direction of
propagation. For now, we focus on the electric field only, see Fig. 2.3.

In Fig. 2.4, we have placed an electric dipole antenna in the electric field, oriented
so that it points in the direction of the E-field variation.

In Fig. 2.4, the E-field direction points upwards, and hence the electrons in the
antenna conductor are driven downwards; there will be an accumulation of negative
charges at the bottom end of the antenna and a lack of negative charges at the top
end. Also, the charge transportation will be registered as a short current transient by
the amp meter.

Figure 2.5 illustrates the same dipole antenna a moment later, when the E-field
over the antenna points in the other direction. The electrons will be driven to the other
end of the antenna and the amp meter will again register a short current transient,
now with the opposite sign.

Fig. 2.3 A propagating electromagnetic wave emits an electric field
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Fig. 2.4 An electric dipole
antenna along the E-field
direction

Fig. 2.5 The E-field moves
the electrons back and forth
in the antenna

We can see that this will repeat as long as the wave exists; the propagating elec-
tromagnetic wave will induce an AC current in the dipole antenna with a frequency
that depends on the wavelength A of the wave: f = co/A. We get a maximum current
in the antenna if the length of the antenna is A/2.

However, our objective here is not to design antennas, but to understand how noise
can couple to our measurement system. From Figs. 2.4 and 2.5, we can see how the
presence of an electric field could induce a current in one of our signal wires in the
system. Figure 2.6a—g illustrate how an AC current in one wire (‘transmitter’) emits
an electric field and how it is picked up by an adjacent wire (‘receiver’). This is an
example of crosstalk by E-radiation.

The remedy could be quite simple; from Figs. 2.4, 2.5, and 2.6, we can see that
for a current to be induced, the receiver ‘antenna’ (our signal wire) must be aligned
with the E field direction. Hence, rearranging the signal transmission wires might
help (unless there are multiple and multidirectional sources).
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Fig. 2.6 a Att = 0, the AC current ‘peaks’. b At t = T/8, E-field has not reached the receiver.
¢ E-field is sinusoidal. d At r = 3 T/8, the field reaches the receiver. e E-field decreases at receiver.
f E-field is zero at receiver. g E-field is reversed. h The negative E-field peak
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Secondly, we should also realize that this may not be a significant problem at
all. The wave frequency must also match the wire length (A/2) for any significant
currents to be induced. For ‘centimeter cables’ that indicates GHz frequencies which
is outside the bandwidth of most measurement systems (see Problem 2.1). If you
have transmission cables ‘tens of meters’ long, the matching frequency could very
well be within your system’s bandwidth (the longer the cable, the more likely it is
that it will pick up a frequency that interferes with your system).

When the frequency/wire length relation is ‘right’ and rearranging the transmis-
sion lines doesn’t help (or is not possible), you need to prevent the electric field from
interacting with your transmission line in the first place. How do you do that? The
answer is a Faraday cage.

The Faraday cage was invented by Michael Faraday in 1836 to prove his hypothesis
that there is no electric field inside a closed metal surface. The reason is that the
electric field will redistribute the surface charge to produce an electric field in the
opposite direction, canceling the field inside the surface. This is illustrated in Fig. 2.7.

Hence, we can protect our signal wire by an enclosing, conducting shield. The
shield doesn’t have to be perfect; it can be a grid. The general rule is that the grid
holes’ diameter should be < one-tenth of the wavelength of the radiation it is intended
to block. For example, to block radiation from a 5G cell phone, operating at 39 GHz,
a grid size of less than 1 mm is required. (On the other hand, 39 GHz is most likely
outside your measurement system’s bandwidth.)
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Fig. 2.7 a Anexternal E-field will redistribute the charge on the surface. b An E-field in the opposite
direction is created that cancels the field inside
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Fig. 2.8 A coax cable is a PVC jacket Copper braid Center conductor
Faraday cage /

Polyethylene insulator

Fig. 2.9 Coax cables have BNC connector
BNC connectors \

m—

Coax cable

(HETTTITIR]

This is also one of the reasons why we use coax cables in the lab. Coax cables
have a surrounding copper braid that forms a Faraday cage for the center conductor.
A lot of instruments also have a metal casing to block E-field interferences.

Notice a few details about the Faraday cage. First, it is easily breached; all it
takes is that you penetrate it with a conducting wire, which of course could be a
problem in an electrical measurement system. The general rule is that the entire
system should be in a cage, all the way from the sensor to the sampling computer
interface (see Fig. 2.35). That is why coax cables have a BNC connector (Bayonet
Neill-Concelman) to make sure that nothing leaks in (or out!) (Fig. 2.8 and 2.9).

Second, it doesn’t need to be grounded for the shielding to work. (However, due
to other noise sources, we will later find a reason to ground it anyway).

2.3.2 Magnetic Dipole Antennas

Figure 2.10 illustrates a magnetic dipole antenna; a magnetic dipole is a circuit loop.

According to Faraday’s law, an electromotive force, emf, will be induced across
the loop ends if there is a change in the magnetic flux @ = B-A, through the loop
area:

do dB
_A_

T il 2.3
dt dt 2.3)

le| =

The polarity of the emf is given by Lenz’s law: The polarity is such that it creates
a magnetic field that opposes the change of flux. What is important for us, and
our electrical measurement system, is that a change in the magnetic field induces a
voltage across the ends of an open circuit (and a current in a closed loop) which will
add to our measurement signal. Just like an electromagnetic wave carries an electric
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Fig. 2.10 Magnetic dipole
antenna y A

field, it also carries a magnetic field. Figure 2.11 illustrates the magnetic field of the
electromagnetic wave in Fig. 2.3.

Figure 2.12a and b illustrate how this field can induce an interference in a circuit.
Magnetic fields cannot be blocked by a Faraday cage unless it is made of ‘mu-
metal’ which is a nickel-iron ferromagnetic alloy. Mu-metal shields are expensive
and usually not your first option.

Apart from electromagnetic waves in space, there are other sources of magnetic
fields. Figure 2.13 illustrates the magnetic field around a current conducting wire.

Fig. 2.11 A propagating electromagnetic wave also emits a magnetic field
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Fig. 2.12 a An opposing
current is induced. b An AY
opposing current is induced v

+_

a An opposing current is induced

b An opposing current is induced

The B-field varies with the current and the distance x from the wire as

1

B(t) =

Figure 2.14 illustrates how this could generate crosstalk by B-field radiation.

Also, in this case, we can see that the interference depends on the geometric
setup; the circuit must be perpendicular to the B field to induce a current in the loop
and therefore, rearranging the loop might help. If that doesn’t help, and assuming we
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i(t)

A
ol

Fig. 2.13 Magnetic field around a current conductor

i(t)
B

Fig. 2.14 Magnetic field crosstalk

can’t afford a mu-metal shield, we need another solution. The solution is in Eq. (2.3):
If we can’t make dB/dr = 0, we can try to make A = 0. That is what we do when we
use a twisted pair cable (TP cable), see Fig. 2.15.

In a TP cable, not only do we make the loop area =0, if there are any remaining
areas they will cancel each other, since the induced current in two adjacent loops will
have opposite direction. A TP cable is a very efficient way to protect your signal wire
from B-field interferences. NB. If you also place the TP cable close to the ground
plane, you also cancel potential common mode interferences induced by the magnetic
field.
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cancelling cancelling

Fig. 2.15 A twisted-pair cable cancels the B-field interferences

2.4 Capacitive Crosstalk

Capacitive crosstalk occurs because of the capacitance between conducting surfaces.
First, between two conducting wires with diameter d and a distance D apart, there is
a capacitance C, (per unit length) (Fig. 2.16):

TE _
Cip = @[Fm 1 (2.5)

d
There is also a capacitance between the center wire and its metallic shield (see
Fig. 2.17):
27E0E, 1
Coi = —|F 2.6
e IGLa. 0

In Eq. (2.6), r is the radius of the center wire, R is the radius of the cylinder shield
and ¢, is the dielectricity constant for the material between the shield and the center
wire (usually polyethylene in the coax case, see Fig. 2.8).

To see how this enables crosstalk, we first place two unshielded wires next to
each other, see Fig. 2.18. According to Eq. (2.5), there is a capacitance between the
wires and hence an AC current in Wire 1 has a way into Wire 2. This will cause an
interfering voltage across the load impedance in Wire 2. Figure 2.19 illustrates the
equivalent circuit.

To remedy the capacitive crosstalk, we first apply a Faraday shield, see Fig. 2.20.
However, according to Eq. (2.6), there is also a capacitance between the wire and the

Fig. 2.16 Two conductors
are a capacitance

D
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Fig. 2.17 Capacitance
between shield and center
wire

Fig. 2.18 Capacitive
crosstalk

Fig. 2.19 Signal model of C12
capacitive crosstalk | |

D d

shield, so the only thing we accomplish is an extra capacitor in series, see Fig. 2.21;
the current in Wire 1 can still find a way into Wire 2.

So, a Faraday cage does not protect your system from capacitive crosstalk (only
against E-field crosstalk). The trick that enables the shield to protect your system
also against capacitive crosstalk is to ground the shield, see Fig. 2.22.
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Fig. 2.20 A Faraday cage
doesn’t help

Fig. 2.21 Crosstalk path is Ci2 Ceyi
still open | | | |

Fig. 2.22 Ground the
shield!

The shield surface is the mid-point between the capacitors in Fig. 2.21 and by
grounding the shield, currents from Wire 1 trying to ‘sneak in’ to Wire 2 are effectively
short-circuited to ground, see Fig. 2.23.

Finally, please note that capacitive crosstalk is a high-frequency problem; the
impedance of a capacitor is 1/jwC, it decreases with frequency and hence high-
frequency signals have an easier way into the neighbor wire than low-frequency
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Fig. 2.23 Grounding the C12 Ceyl
shield will short-circuit the |
crosstalk path

signals. As a matter of fact, this is true for most crosstalks; the problem increases
with frequency.

2.5 Inductive Crosstalk

Capacitive crosstalk is based on the existence of a capacitance between two
conducting surfaces. Inductive crosstalk is based on the fact that every conducting
wire has a certain, non-zero, inductance per length unit, see Fig. 2.24. For example,
a common RG-58 coax cable has a series inductance of approximately 250 nH/m.

From basic electricity, we also know that two coils close to each other form a
transformer, see Fig. 2.25, and the mutual inductance M between them is a measure
of how much of the voltage over the primary coil that is transferred to the secondary
coil:

M=k I, L, 2.7

where k is a constant depending on ‘geometric and environmental’ parameters.
The voltage induced in the secondary coil is

Fig. 2.24 A conductor has
some inductance / H/m per
unit length
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Fig. 2.25 A transformer M

7 A

us

i1 153

.
wy = ML 2.8)
dt

If we assume that the current i; in Wire 1 is sinusoidal, i;(t) = i(sin wt, the
derivative is wi( cos wt and

U, = Mwiycos wt (2.9)

Notice in Fig. 2.25 that there is also a current i, induced in the secondary coil and
its direction is determined by Lenz’s law; its direction is such that it counteracts its
origin.

Now we have all we need to explain inductive crosstalk. If we place two conductors
close to each other, they will form a transformer because of their inherent inductance
per unit length, see Fig. 2.26, and Eq. (2.8) tells us that a current (i.e., a current
change) in Wire 1 will induce a voltage in Wire 2, (which according to Eq. (2.9)
increases with frequency; inductive crosstalk is also a high-frequency problem).

The remedy in this case is a little more sophisticated than earlier. First, we place a
new conductor between Wire 1 and Wire 2. We will call it the ‘shield conductor’, or
just the ‘shield’, see Fig. 2.27. Just like there is a mutual inductance between Wires 1
and 2, there will be a mutual inductance between Wire 1 and the shield, and between
Wire 2 and the shield.

Fig. 2.26 Two parallel conductors are a transformer
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Fig. 2.27 There are mutual M

inductances between each

pair of wires Mis Mas 4
AT A

Just like the current in Wire 1 induces a current i1, in Wire 2, it will also induce a
current i;g in the shield conductor. But because there is a mutual inductance between
the shield and Wire 2, the current {15 will induce a current is, in Wire 2, and because
i1s is in the opposite direction of i;, the induced current from the shield will be in
the opposite direction of ij,, see Fig. 2.27.

So, the shield induces a current in Wire 2 that has the same frequency as the
current induced by wire 1, but it has a phase shift of 180°, which means that it will
interfere ‘destructively’ with iy,. isp will cancel i1, completely if M,-i; = Msy-i;s.
i1 > i1, but Msp > M5, so there is a good chance that they will cancel. If we do it
right.

How do we do it ‘right’? As a matter of fact, how do we do it at all? First, it
doesn’t seem very practical to just place an extra ‘dummy’ wire next to our signal
wire. Second, it probably wouldn’t work anyway. An absolute condition for this trick
to work is that the shield wire can conduct a current; it needs to be a closed loop.

We can achieve that without adding an extra ‘dummy’ cable. From Fig. 2.22, we
learned that we need a grounded shield anyway to protect our system from E-field
radiation and capacitive crosstalk. Well, there is our ‘dummy’ shield already! All we
must do is to ground it in both ends (make it a closed loop) to also protect us against
inductive crosstalk, see Fig. 2.28.

However, grounding the shield at both ends might introduce new noise and we
will investigate that in the next section.

2.6 Common Impedances

A current must always have a return path; what goes out must come back. Current will
always find a way back and it will choose path(s) according to Kirchhoff’s current
law. A current carrying wire must always have a return path to ‘close the loop’. When
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Fig. 2.28 If we ground the shield at both ends, we are protected against E-field, capacitive, and
inductive crosstalk

you use a coax cable, the shield (the copper braid surrounding the center wire) is the
return path for the current, see Fig. 2.29.

In the general case, we use a ‘common ground’ as the return path for the current,
see Fig. 2.30.

Using common ground as the return path in a measurement system is in general
not a good idea. Two circumstances, which are quite common, can make the ground
itself a source of crosstalk and noise. First, suppose that the ground path conductor is
not ‘perfect’, i.e., it has a resistance > 0 ohms (which it almost always has). Second,
since it is a common ground, other signals also use it for current return (i), see
Fig. 2.31 (where Ry is the resistance in the wire).

If we apply Kirchhoff’s voltage law in Fig. 2.31, we get

A

Fig. 2.29 What goes out must come back; the shield is also the return path

I
>
-

Y-

T,

Fig. 2.30 ‘Ground’ is a common return path
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Uo ) Umeas

Rground io + ix lo

s

Fig. 2.31 Common ground as return path

\ =

Fig. 2.32 Multi-signal system with common return path

1o — L0 Rwire — Umeas — (ip + ix)Rground =0

Umeas = UQ — iO(Rwire + Rground) - ix Rground (210)
S~—~— ——
“True’ cable loss crosstalk
signal
value

In Eq. (2.10), ip (Rwire + Rgmund) is the ‘cable loss’ in the circuit. We always have
some of that. This is not ‘noise’. After all, it is caused by the signal itself, and it is
predictable (we can compensate for it). The problem in Eq. (2.10) is the term ixRgroung
which is caused by an external current that has nothing to do with g or our system.
ixRground TEPresents ‘crosstalk by common impedance’.1

This explains why the shield against inductive crosstalk in Fig. 2.28 is a potential
problem; both ends of the return path are grounded which is an invitation to other

currents using the common ground to enter our system.

Example 2.1 In a multi-signal system, a signal wire carrying a small sinusoidal
signal shares return wire with a fast TTL clock signal, see Fig. 2.32. The TTL signal
wire is ‘50-2 terminated’ to reduce pulse reflections (see Chapter 5), which means
that the current in the clock wire (during the 5-V pulses) is 5/50 = 100 mA. Make a
prediction of the clock signal’s impact on the measurement of the sine if the resistance
of the return wire is 1 .

! Sometimes called ‘common ground crosstalk’.
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Fig. 2.33 A ‘real case’ example
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Fig. 2.34 A shielded TP cable

Solution The i,Rgroung Voltage in Eq. (2.10) is 100 mA x 1 € = 100 mV. Hence,
according to Eq. (2.10), we will measure a signal that is 100 mV lower than expected
during the positive duty cycles of the clock signal. Figure 2.33 illustrates a real
example recorded with an oscilloscope, using three 4.5 m wires with a cross-sectional
area of 0.08 mm?.

When it comes to the use of shields, like the ones we have been using in Figs. 2.22
and 2.28, to protect our system against capacitive and inductive crosstalk, there are
two cases that need to be treated differently; whether the shield is ‘just a shield” or if
it also carries the return current. This difference is paramount because it determines
how you can use it.

If the shield is also the return path, as in a coax cable, the shield should only be
grounded at one end. Never ground a coax cable at both ends. If you have problems
with inductive crosstalk and need to ground the shield at both ends, you can’t use a
coax cable: you must use a ‘shielded pair-cable’, where the shield is not the return
path. That also has another advantage; you can twist the signal pair wires to also get
B-field protection.?

A shielded TP cable, grounded at both ends, protects your system against ‘every-
thing’, but coax cables have higher bandwidth and support longer cable lengths
(Fig. 2.34).

2 You don’t ‘twist’ the cables yourself; you buy a ‘shielded twisted-pair’ cable.
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Fig. 2.35 Keep the signal in a Faraday cage all the way

2.7 Summary and Recommendations

When you plan the setup of an electrical measurement system, you need to keep
external crosstalk interference in mind. Some of them you need to consider from the
outset, because they are omnipresent in almost all environments, while with others,
you just wait and see if they show up.

Of all the potential crosstalk sources we have presented in this chapter, capac-
itive crosstalk and common impedance crosstalk are the most common problems.
(Protecting your system against capacitive crosstalk takes care of E-field crosstalk at
the same time.) You should take deliberate actions to prevent capacitive and common
impedance crosstalk when you plan a measurement setup.

What remains is B-field and inductive crosstalk. In my experience, they are not
a major problem in most physics labs; don’t make any special plans to protect your
system against B-field and inductive crosstalk, just keep them in mind if you still
have interference problems after taking precautions against capacitive and common
impedance crosstalk.

That means that we don’t start with a shielded twisted-pair cable, you start with a
coax cable and one signal ground point only (if necessary). If you have two different
ground points, you open up for common impedance crosstalk.

Figure 2.35 illustrates what should be your first option (‘plan A’).

The signal should preferably be transported as a ‘non-referenced’ differential
signal to the receiving DAQ (Data AcQuisition) system’s differential amplifier input.

If the source is inherently ‘referenced’ (ground related), you might have to ‘de-
reference’ it, either using an opto coupler (if the signal is digital) or an isolation
transformer (if the signal is analog), see Fig. 2.36.

Only when the coax system in Fig. 2.35 fails, you consider a shielded TP cable. If
the shielded TP cable system also fails (or if its bandwidth is too small or if it can’t
offer long enough cables), an alternative solution could be a fiber optics solution.
Fiber optic transmission cables are immune to all the above crosstalk interferences.
They also have extreme bandwidth and allow long cable lengths but are expensive
and somewhat more complicated to handle. Fiber optics are not perfect though, they
have their own issues (like dispersion, for example).
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Fig. 2.36 a De-referencing with opto-coupler. b De-referencing with isolation trafo

However, whatever you do, there will almost always be some unwanted signal
component(s) in your measurement signal that you want to get rid of and when you
have set up your system according to the recommendations above and still have some
noise (you always have the ‘internal’ noise), then, but only then, you will have to
start the ‘signal processing’, which is what most of this book is about.

2.8 Solved Problems

Problem 2.1 Assuming a common trace length on a pcb (printed circuit board) is
5 cm (two inches). For what EM frequencies would such a board be particularly
vulnerable to electric field interferences?

Solution It is particularly vulnerable if the pcb trace length equals A/2, i.e., for EM
waves with a wavelength of 10 cm. That corresponds to a frequency of

_3.108
01

3 GHz

f

Problem 2.2 A desktop DMM with an input impedance of 10 M2 has an open input
(no input signal). When set to DCV range and ‘statistics mode’ it displays a standard
deviation of 16 V. Estimate the instrument’s bandwidth in the DCV range.

Solution Assuming room temperature (300 K), we solve for B in Eq. (2.1):

o (16-1076)°

rms

T AnkRT ~ 4m-1.38-10-23.10- 10° - 300

= 500 Hz

Problem 2.3 A typical kitchen microwave oven operates at 2.45 GHz. What grid
size would you recommend for a protective metal mesh in a microwave oven?
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Solution An electromagnetic wave with a frequency of 2.45 GHz has a wavelength
of 3-10%/2.45-10° = 12 cm. One-tenth of 12 cm is 1.2 mm. (Compare that to the size
of the grid in the front door of your microwave oven.)

Reference

1. Kiely, R. 2017. Understanding and eliminating 1/f noise. In Analog Dialog, p. 4.
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Abstract This chapter first describes thermocouples starting from the famous exper-
iments by Seebeck and Thomson. The basic concepts of thermocouples are described
such as hot and cold junctions, the Seebeck coefficient, and thermocouple ‘types’ are
explained. This chapter also explains what the ‘cold junction compensation’ is and
the law of intermediate temperatures is illustrated. Resistance temperature detectors
(such as Pt-100) are described, and the necessity of accurate resistance measure-
ments is explained (the ‘4-wire method’). The measurement of extremely high and
extremely low temperatures is covered at the end of Sect. 3.2. Section 3.3 introduces
the versatile strain gauge principle and its many applications. It is also explained
why strain gauges are (almost) always connected to a Wheatstone bridge and how
it can be used to measure a wide range of physical quantities (like force, pressure,
liquid level, torque, etc.). Piezoelectric crystals and Hall sensors are explained and
light sensors (photodiodes, position-sensitive detectors, and photomultipliers). In the
particle detector section, channeltrons and microchannel plates are explained and in
the final Sect. 3.9, the most common vacuum gauges are presented.

3.1 Introduction

In this context, a ‘measurement’ refers to the measurement of a physical quantity,
like temperature, pressure, acceleration, sound intensity, or light intensity. Most of
these physical quantities can be measured using mechanical gauges (for example,
we can measure temperature using a mercury thermometer) but in a physics lab, the
destination for data is almost always a computer (of some kind) and that requires
that we have access to the measurand in electrical form. The device that transforms
a variation in a physical quantity into a variation in an electrical quantity is called
the sensor. The words ‘gauge’ and ‘transducer’ are also common in this context, but
we will mostly use the word ‘sensor’ here.

The preferable electrical quantity is (almost) always volts [V], because, first, we
know how to measure voltage very accurately and, second, the ‘analog-to-digital’
elements that ‘sample’ the signal need voltage as the input quantity (see Chap. 11).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 33
L. Bengtsson, Electrical Measurement Techniques,
https://doi.org/10.1007/978-981-99-8187-8_3
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However, a lot of sensors do not produce voltage as the primary output (they may
produce a current or a change in resistance or capacitance), and in those cases we
need some ‘supporting’ electronics to generate a voltage output. This supporting
electronics is referred to as the ‘signal conditioning’ electronics.

There are a lot of physical quantities and, for most sensors, there are more than one
sensor technique available, so learning about sensors appears to be quite a challenge.
However, if you count all sensors in all physics labs, you will find that there is one
kind of sensors that dominates completely: Temperature sensors. No matter what
the ‘physics’ is about, temperature must almost always be measured somewhere.
So, if you only have time to learn about one sensor technique, you should start with
temperature sensors. (Then you understand maybe as much as 30% of all sensors in
a lab.) Hence, temperature sensors are what we will start with.

If you have time to learn one more sensor technology, I recommend you learn
about the ‘strain gauge principle’ since this versatile sensor technique is the basis for
a lot of sensors for different physical quantities.

3.2 Temperature Sensors

3.2.1 Thermocouples

Thermocouples are one of the most common sensors in a physics lab and this is
probably the first sensor you should learn about as a physicist. In 1821, the German
physicist Thomas Johann Seebeck discovered that if you make a closed circuit of
two different conductors and keep the two junctions at different temperatures, there
will be a current in the circuit (Fig. 3.1).

In most textbooks, the Seebeck effect is used to explain thermocouples. In this
book, I will instead use the Thomson effect (since I think it makes the understanding
a little less mysterious). The Thomson effect was discovered in 1854 by the British
physicist William Thomson (Lord Kelvin). He did similar experiments on a single
wire and found that when current was flowing in a conductor, one end got warm,
and one end got cold. He also found that this process was reversible; if the two
ends of a conductor are held at different temperatures, a current will be induced in
the conductor. If we don’t have a closed loop, the regrouping of charge will induce

Iron I

Hot junction, Tn Cold junction, Tc

Copper

Fig. 3.1 The Seebeck effect
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Fig. 3.2 The Thomson Ea(TH — Tc)
effect

+ —
Hot, TH Cold, Tc
Material A

a voltage across the ends, an emf. We will denote this emf Ex(Ty — T¢) (‘from
temperature Ty to temperature 7 ¢ along material A) (Fig. 3.2).

Next, we need to figure out how to use the Thomson effect to measure temperature.
Figure 3.3 illustrates a (naive) experiment. A voltage meter is used to measure the
emf across a single wire. We connect the voltage meter to the end points using a wire
of (unknown?) material C. The Thomson effect is as valid for the wires of material
C as it is for the wire of material A. The voltage meter will measure the voltage

Un = Ec(Ty — Ty) + ExA(Ty — Tc) + Ec(Tc — To) 3.1

(T is the temperature of the voltage meter.) From expression (3.1), we can see that
we would have to consider the contribution from the voltage meter wires, and that
would make this solution impractical (to say the least); we would always have to
make sure we have the right wires to the voltage meter. For that reason, we use a
pair of wires of dissimilar materials (a thermocouple) as illustrated in Fig. 3.4. This
straightforward design eliminates the voltage measurement’s dependence on the C
wires.
We can see that by writing out the expression for the voltage Up,:

Un=Ec(To = Tc) + Ea(Tc — Tu) + Eg(Tu — Tc) + Ec(Te — To) (3.2)

And since Ec(Ty — T¢) of course = —Ec(Tc — Tp) the Ec terms will cancel
and we can write Eq. (3.2) as

Un = EA(Tc — Ty) + Eg(Ty — Tc) = Eg(Ty — Tc) — Ea(Ty — Tc) (3.3)

Fig. 3.3 A simple EA(TH — T¢)
Thompson effect experiment
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Cold Junction

Tc
Hot Junction EalTe > T) ® EolTo > To) +
TH < A c To@ Um
B _ C o
Es(Th — Tc) || Ec(Tc > To)

Fig. 3.4 A thermocouple
Table 3.1 Thermocouple data
Type Metal pair Seeb. coef. [LWV/°C] Range [°C] Accuracy [°C]
E Chromel/Const 59 —270 ... +870 +1.7
J Fe/Const 50 —200 ... +760 +2.2
K Chromel/Alumel 39 =270 ... +1260 +2.2
S Pt—Rh/Pt 5 —50 ... +1600 +1.5
T Cu/Const 39 —270 ... +370 +1.0

With the design in Fig. 3.4, the voltage we measure is independent of the C wires
and the temperature of the voltage meter, and that is what we need for the Thomson
effect to be a useful sensor technique.

There are some things we need to know before we use thermocouples. First, we
notice from Eq. (3.3) that the voltage Uy, (the thermo emf) represents a temperature
difference; we must know the temperature 7'¢ at the cold junction. The cold junction
temperature is measured separately by another sensor (see next section). Second, the
thermo emf is exceedingly small, typically a few or tens of WV/°C (see Table 3.1).
Third, the thermo emf is not a linear function of the temperature. In fact, NIST!
recommends that they are best described by a ninth-order polynomial. Figure 3.5
illustrates the emf of a ‘type K’ thermocouple in the range —10 to +40 °C (‘ (‘0’)’)
and a linear approximation; notice the deviation at higher temperatures. (We will
explain the ‘type’ letter later.)

Even though thermocouples are not linear, they are often characterized by a sensor
coefficient called the Seebeck coefficient, which has the unit wV/°C. This number
stands for the derivative of the emf graph at AT = 0 °C. NB. This number is only
for comparison between thermocouples. Don’t try to use it to derive a temperature
from an emf; you must use a thermocouple table for that!

Materials A and B are not paired arbitrarily in a thermocouple. The metal pairs
have been standardized and each metal pair has a ‘type’ letter. It is also common
to use an alloy as one (or both) metal. Three alloys are particularly common. First,
we have Constantan® which consists of 45% nickel and 55% copper. Then there is

! National Institute of Science and Technology, nist.gov.

2 This is not the last time we will hear about Constantan in this book; it is also the most common
material in strain gauges, see Sect. 3.3.
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Fig. 3.5 Temperature dependence of a type K thermocouple

Alumel which is 95% nickel and 5% aluminum and Chromel which has 90% nickel
and 10% chromium.

Figure 3.6 compares the five most common thermocouples’ emf graphs in the
range —10 °C to +50 °C and Table 3.1 summarizes their parameters.

A common question in the physics lab is: “What thermocouple type should I
use?’. Well, first, it must of course cover your temperature range. The type S ther-
mocouple can measure the highest temperatures and type K, or T, are usually used
for exceptionally low temperatures. The type E and type J thermocouples can be
used in oxidizing atmospheres (type E also in inert atmospheres). Type K is the
most common of all thermocouples; it is inexpensive and accurate, and it can also be
used in nuclear applications because of its radiation ‘hardness’. Type T thermocou-
ples have the smallest range but are the most accurate and have excellent reliability/
repeatability. If you don’t know or don’t care, you start with a type K thermocouple.
In fact, a lot of DMMs have thermocouple inputs and that is almost always for a type
K thermocouple.

Thermo emf [mV]

degrees [C]

Fig. 3.6 Comparing the most common thermocouples between —10 °C and +50 °C (type K and
type T overlap in this range)
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Figure 3.7 illustrates an interesting (and common) thermocouple arrangement. It
consists of two AB junctions, where one of the junctions is the ‘hot’ junction and
the other junction is submerged into ice water (= 0 °C). To understand why this is a
clever trick, we need the following thermocouple law.

The thermocouple law of intermediate temperatures:

In Fig. 3.8a, a temperature difference Ty — Ty generates an emf Ex(Ty — Tiv)
across conductor A, and similarly, a temperature difference Ty — T'¢c generates an
emf EA(Ty — T¢). In this case, Ty is an ‘intermediate’ temperature and can be
eliminated:

Ex(Tq — Tim) + Ea(Tim — Tc) = Ea(Ty — 1) 3.4

This is illustrated in Fig. 3.8b.
Back to Fig. 3.7. The voltage meter will measure the thermo emf

Um = EA(TC d TH) + EB(TH e OOC) + EA(OOC e Tc) (35)

L +
I G
.

Ice water
0°C
Fig. 3.7 The ice water trick
a
EA(TH — Tiv) Ea(Tim = Tc)

/\‘ /\‘

+ _ + _
TH Tim Tim Tc

Material A Material A

EA(TH — Tc) = EA(TH — Tiv) + EA(Tim = Tc)

/\;

+ Tm —

Material A

TH Tc

Fig. 3.8 a ‘Intermediate’ temperature. b The law of intermediate temperatures



3.2 Temperature Sensors 39

If we use the law of intermediate temperatures on the emfs across the A conductors,
T¢ will be the ‘intermediate temperature’, and we get

EA(0°C = To) + Ep(Tc = Ta) = EA(0°C — Ty) = —EA(Ty — 0°0)
And hence, we can write Eq. (3.5) as
Um = EB(TH —> OOC) — EA(TH —> OOC) (36)

In expression (3.6), U, is independent of the cold junction temperature; we have
turned the temperature measurement into an absolute measurement. In general, ther-
mocouples only measure a temperature difference, but that doesn’t mean that you can
just add the cold junction temperature to the temperature you get from the thermo
emf. The proper way to do it is to convert the cold junction temperature to voltage, add
that voltage to the thermo emf, and then convert the summed voltage to a temperature
(using a table). This is called ‘cold junction compensation’ (see Problem 3.5).

3.2.2 Metal Temperature Sensors

Temperature sensors based on pure metals are called resistance temperature detectors
or just ‘RTDs’. The resistance of all metals has a positive temperature dependence’;
the resistance increases when the temperature increases. So, we could use any metal
as a temperature sensor, but only three are really used, platinum, copper, and nickel.
In fact, in industrial applications, only (almost) platinum sensors are used, so that is
what we will be focusing on here. It is highly unlikely that you will ever see anything
else in your physics lab.

A platinum temperature sensor is denoted ‘Pt-100" or ‘Pt-1000’. ‘Pt’ is of course
for ‘Platinum’ and the number, 100 and 1000, respectively, is the sensor’s resistance
at 0 °C. Unlike thermocouples, the temperature dependence of metals is very linear.
The resistance’s dependence on the temperature is given by Eq. (3.7):

R =Ry(1+yT) 3.7)
where T is the temperature in °C, Ry is the resistance at 0 °C, and y is the sensor
coefficient, and for platinum, y = 3.85 - 10~ °C~!. Hence, for a Pt-100 RTD, we

can write Eq. (3.7) as

R =100(1 +3.85-107°T) = 100 + 0.385T (3.8)

3 Germanium and silicon have negative temperature coefficients, but they are not ‘metals’, they are
‘metalloids’, and there are also non-metals with negative temperature coefficients (like carbon).
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Fig. 3.9 RTDs come in different shapes

From Eq. (3.8), we can see that the sensitivity is 0.385 €2/°C (and hence ten times
higher for a Pt-1000 RTD). Platinum RTDs are mainly used in the temperature range
—50 °C to 4500 °C. They can operate outside this range, but outside this range,
thermocouples typically perform better.

A Pt-100 RTD is usually made of thin platinum wires that are wrapped around
some heat-resisting material and then encapsulated in a protective housing, see
Fig. 3.9. They have become very popular in industrial applications in ranges below
600 °C because of their excellent accuracy and long-term stability.

RTDs are also often used to measure the cold junction temperature in thermo-
couple applications.

RTDs are more accurate and reliable than thermocouples, but they have one
inherent disadvantage compared to thermocouples; the output quantity is resistance,
not voltage, and we simply have better instruments to measure voltage compared
to resistance. Measuring resistance can be a little precarious and needs to be done
carefully. Since this is an especially important aspect of RTDs, we investigate the
details in the next section.

3.2.3 Measuring Resistance

Figure 3.10 illustrates the simplest way to measure resistance using a common,
portable DMM. Handheld DMMs usually only have two connectors and, when
you set the unit selector knob to ‘Resistance’, it will generate a probing current
and measure the voltage drop across the external resistance using the same two
connectors, see Fig. 3.10.

From Fig. 3.10, it is obvious that the resistance measured will also include the
resistance of the wires. That may or may not be a problem, it depends on the size of
the resistance of the wires and the sensor and on the required accuracy. The following
example will illustrate this.

Example 3.1 In a temperature measurement, a Pt-100 RTD is placed five meters
from the DMM, and a TP cable is used where the copper wires’ cross-sectional
area is 0.25 mm?. What will the error in the temperature measurement be due to the
contribution from the wires?

Solution The resistivity of copper is 1.77 - 1078 Qm. The resistance of one wire is

Ruyjire = L—177 1078 > =0.354Q
wie = 070 = 5 025-10°
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Fig. 3.10 The 2-wire method

And since we have two wires, the total contribution from the wires is 0.708 2.
Since the sensitivity coefficient of a Pt-100 RTD is 0.385 €2/°C, 0.708 €2 corresponds
to a temperature error of 0.708/0.385 = 1.8 °C. (It would be 18 °C for a Pt-1000!)

The error of 1.8 °C in the previous example, may or may not be a problem, but
consider that the distance between the sensor and the DMM was ‘only’ five meters.
In a physics lab, it can be considerably longer. In some labs, the sensor is inside
a vacuum chamber in another room. Second, it depends on the application. If you
just heat an oven, it might not matter much, but if you try to control a boiler, a few
degrees are critical.

To avoid the problem, you must use the 4-wire method. This is illustrated in
Fig. 3.11.

In Fig. 3.11, the current source and the voltage meter have separate wires all
the way to the sensor. At a first glance, this may not seem to improve things; we
just introduced two more wire resistances. However, if you analyze the two current
circuits in Fig. 3.11, you see that there will be no current in the inner circuit, iy =
0 A. The reason is that the inner circuit has a voltage meter in series and voltage
meters have very high impedance. Hence, there is no voltage drop across the Ryire
resistances in the inner circuit and the voltage meter will only measure the voltage
drop across the RTD. The Ry contributions are effectively eliminated.

'Expensive’ DMM

=Y

Rept

= A

|
i H i
Y

Fig. 3.11 The 4-wire method
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Fig. 3.12 Keysight’s/
Agilent’s DMM interface for
2-/4-wire measurements

If we compare Figs. 3.10 and 3.11, we can also see the disadvantage of the 4-wire
method; apart from two extra wires, it also requires an ‘expensive’ DMM. To do a
4-wire resistance measurement you almost certainly need a desktop DMM, like the
popular Agilent/Keysight 344xx model. The front panel resistance interface of this
DMM is illustrated in Fig. 3.12. The probe current comes out of the right-hand side
pair of connectors and the left-hand side ‘Sense’ pair measures the voltage. Notice
the ‘4W’ label. Most students think this means ‘4 Watts’. Now you know better.

3.2.4 Bandgap Sensors

Thermocouples and RTDs are extremely popular in physics labs, but they are not
the most common temperature sensors when it comes to commercial applications
outside the laboratory or in industrial applications. An inherent disadvantage is that
they are not semiconductors and cannot be integrated into a silicon wafer, which is a
typical demand in commercial products. Also, commercial products seldom require
the extreme ranges offered by thermocouples and RTDs.

In commercial applications, the ‘bandgap’ sensor is very popular. The basic prin-
ciple behind a bandgap temperature sensor is that the forward voltage of a pn junction
(asilicon diode) is very temperature-dependent (approximately —2 mV/°C, compare
that with thermocouples in Table 3.1). In principle, you could just bias a silicon diode
but that is not recommended. The expression for the forward voltage’s dependence
on the temperature is overly complicated [1] and it has a disadvantage; just like
the thermocouple, it depends on a reference temperature. For that reason, another
approach is used.

The forward voltage also depends on the current used. Therefore, two pn junctions
are used with different currents, and then the difference in forward voltages will be
independent of any reference temperature. These devices are sometimes referred to
as PTATs, Proportional To Absolute Temperature.
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Bandgap sensors can be integrated in silicon and are used in applications up to
200 °C. Other advantages are that they are inexpensive and very sensitive.

3.2.5 Cryogenic Temperatures

At cryogenic temperatures (<—153 °C), you need to take extra care to use the right
sensor. Some of the sensor technologies described above can be used also at cryogenic
temperatures but remember that also the housings must be able to endure the stress
implied by the extremely low temperatures. Having said that, silicon diodes can be
designed for temperatures down to 1.5 K and some thermocouples can also be used at
cryogenic temperatures (type N and T). A special cryogenic RTD has been designed
using a platinum/cobalt alloy which can be used down to 1.4 K. In environments that
include magnetic fields, ruthenium oxide RTDs are recommended.

3.2.6 Extremely High Temperatures

At the other end of the scale, we have extremely high temperatures (> 800 °C), that
need to be measured in for example metal processing and plasma physics. There are
some thermocouples that can be used up to 1800 °C (type B and type S), but above
1800 °C, pyrometers are used.

The word ‘pyro’ is Greek for ‘fire’. Pyrometers are based on two classic laws
of physics. All objects warmer than 0 K emit a broad spectrum of infrared radia-
tion. Wien discovered that the wavelength peak of this radiation decreases when the
temperature increases, and Stefan—Boltzmann discovered that the total energy that
is emitted from the object (per surface area and unit time) increases rapidly with
increasing temperature (~7*%). Both these laws can be observed in Fig. 3.13.

Since it is easier to measure the increase in emitted energy rather than finding the
wavelength peak, it is Stefan—Boltzmann’s law that is usually used in pyrometers.
Pyrometers are non-contact devices that measure the energy emitted from a black
body by focusing the infrared light onto a thermopile. A thermopile consists of several
thermocouples connected in series, see Fig. 3.14.

The infrared light is absorbed by the material in the hot junction layer, and this will
heat the material; the temperature of the hot layer junction will be proportional to the
radiation intensity which, according to Stefan—Boltzmann’s law, is proportional to
the temperature. The thermopile consisting of N thermocouples in series produces a
thermo emf that is N times the emf of a single thermocouple. Commercial pyrometers
with a resolution of 0.1 °C are available.

One problem that needs to be addressed when you use a pyrometer is the emissivity
of the object whose temperature you want to measure. The emissivity is a number
between 0 and 1 and reflects the object’s effectiveness in emitting energy as thermal
radiation. Pyrometers are typically calibrated for emissivity = 1 (i.e., a ‘black body’),
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but the emissivity of a shiny metal surface can be as low as 0.1. On the more advanced
pyrometers, you can set the emissivity number.

One more thing: Pyrometers do not work through glass, so even if there is a
window in your vacuum chamber, you cannot use it to read the temperature of an
object inside with a pyrometer. If that is what you need to do, the window must be
made of an infrared transparent material such as silicon or sapphire, depending on
the temperature range. Potassium bromide has a very wide transparency range in the
infrared but is more expensive.

Some labs use ‘disappearing-filament’ pyrometers where you simply heat a fila-
ment until its color matches that of the object (they take advantage of Wien’s law
rather than Stefan—Boltzmann’s law). This could be a good alternative if you need
to measure for example the temperature of a filament inside a vacuum chamber that
only has plain glass windows.
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3.3 The Strain Gauge Principle

3.3.1 Strain Gauges
The resistance of a conductor with cross-sectional area A and length L is

R L 39
=r3 (3.9)
where p is the resistivity of the conductor material. If the conductor is subjected to
some tension, for example, if we pull both ends, see Fig. 3.15, then the resistance
will change.

The resistance will change because the parameters in Eq. (3.9) are affected by the
tension; the conductor will be a little longer (L = L( + dL), the area will decrease (A
= Ay — dA) and for some materials even p will change (‘piezoresistive’ materials).
The most common material used in sensors (‘strain gauges’) is Constantan (yes, the
same alloy that we use in some thermocouples). Constantan is used because it has a
low-temperature coefficient and high ‘strain sensitivity’, i.e., the resistance changes
a lot when it is subjected to strain or tension.

For Constantan, it is mostly a change in the length that is causing the change in
resistance. The ‘gauge factor’ is defined as the quotient between the relative change
in resistance and the relative change in length:

= dR/R (3.10)
dL/L

(dL/L is, by definition, the ‘strain’, hence the name ‘strain gauge’.) For Constantan, k
is approximately 2. Instead of a circular conductor, as indicated in Fig. 3.15, a strain
gauge is made from a thin foil that is folded back and forth and then placed between
two substrates, see Fig. 3.16.

To use it in an application, it must be glued to the object. The gluing is impor-
tant; you must use a special glue to make sure the strain gauge is subjected to the
same strain as the object. And herein lies the problem. Assuming the object whose
strain we are trying to measure, is not made of Constantan (it never is, think ‘car
chassis’) then the object will not be of the same material as the strain gauge and that
implies that the object and the strain gauge do not have the same temperature coef-
ficient. If the temperature changes, the object, and the strain gauge will not expand/

Fig. 3.15 Conductor
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contract equally, and since they are glued hard together, that difference in expan-
sion/contraction will cause a strain in the gauge. This is called a ‘false’ strain or an
‘ostensible’ strain.

That means that if we only measure the resistance of the strain gauge, there is no
way to tell if a change in resistance is caused by a ‘real’ strain or a ‘false’ strain. We
must be smarter than that.

The trick is to apply the strain gauges pairwise so that they ‘counteract’; when
there is a ‘real’ strain, one is stretched and the other one is compressed. By subtracting
the resistance of one from the other, not only do we eliminate ‘false’ strain we also
amplify the signal by a factor of 2. Figure 3.17 illustrates an example.

First, if we assume that the resistance of the gauge ‘at rest’ is Ry, we can write
the resistance as

dR
R=R0+dR=R()(1+R—)=R()(1+A) (3.1
0

where A = dR/Ry is the relative change in resistance. In Fig. 3.17, we have glued one
strain gauge on the top side of the girder and one on the bottom side. If we subtract
them, we get

Ry = Ro(1+ A1) — Ry(1 + Az) = Ro(A — Ap) (3.12)
When the girder is subjected to a force, it will bend downwards and that will
stretch the gauge on the top side and compress the gauge on the bottom side. We will

assume here that the gauge on the bottom side is compressed as much as the gauge
on the top side is stretched. That means that the gauge on the top side has a positive

Fig. 3.17 Strain gauges are
applied pairwise jaﬁ +Ar)

Ro(1+Az)
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A and the one on the bottom side has a negative A; A, = —A ;. Hence, for a ‘real’
strain, Eq. (3.12) becomes

R, = Ro(A1 — (=A1)) = 2RpAq (3.13)

On the other hand, if we have a ‘false’ strain due to a temperature change,
both gauges will be stretched/compressed in the same direction, i.e., A, = Ay,
and Eq. (3.12) becomes

Ry = Ro(A  —A) =0 (3.14)

By applying the gauges pairwise in a counteracting way and then subtracting their
resistances, we get a reading that is independent of variations in temperature.

However, we are still measuring resistance and we would really like to measure
voltage. There are two reasons for that. First, we can measure voltage more accurately
than resistance, and second, we can amplify voltage.

So, if we would make a wishing list, we would like to have an electric circuit that
can produce a voltage that is proportional to A — A, i.e., a circuit that produces

Uy, = k(A1 — Ay) (3.15)
That would be a voltage that only reacts to ‘real’ strains and would produce 0 V

for ‘false’ strains. Does such a circuit exist? Yes, it does. It may be one of the most
common circuits in electrical measurements. It is called the Wheatstone bridge.

3.3.2 The Wheatstone Bridge

Figure 3.18 illustrates the Wheatstone bridge where the strain gauges from Fig. 3.17
have been connected in the upper branch of the bridge.

Fig. 3.18 The Wheatstone
bridge
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The ‘bridge voltage’ is the potential difference between points A and B:

Ro(1+ Ay) Ry
u,=Uy —Up = Uy — Uy =
Ro(1+ A1)+ Ro(1 4+ Ay) Ro + Ry
_( 1+A1 _l) _2+2A|—2—A]—A2U
24 A +4, 2)7° 22+ Al + Ay) 0

Uy A — A,
2 24A1+ A,

Now we will make an approximation. A is the relative change in the resistance
and it is very small. (Pull a copper wire and try to imagine how much it expands...)
A is of the order of permille (%o). That means that the denominator above, 2 + A
+ A, &~ 2, and we can write the bridge voltage above as

U,
up = f(Al —Ay) (3.16)

The bridge voltage is proportional to the difference in relative change in resistance,
and hence it does not react to ‘false’ strains due to changes in temperature.

The bridge in Fig. 3.18 is a ‘half-bridge’. In a ‘full bridge’, we apply four strain
gauges to the girder, two on each side, see Fig. 3.19.

Figure 3.20 illustrates how the gauges are connected in the Wheatstone bridge.
The bridge voltage in Fig. 3.20 is two times higher than in Eq. (3.16).

At first sight, the beam with strain gauges in Fig. 3.17 might appear to have a
limited number of applications; you can measure the strain in a cantilever, but how
often do you need to do that? Well, that is just wrong. This ‘strain gauge principle’ is
one of the most versatile and common sensor techniques in electrical measurement
systems. It is used to measure a wide range of physical quantities, like acceleration,
position, pressure, torque, viscosity, flow, humidity, etc. One of the reasons it has
become so popular is the emergence of MEMS technology (MicroElectro Mechanical
Systems); the beam with the four strain gauges can be miniaturized to sub-mm
scales. Implementing strain gauges in semiconductor material also makes it possible

Fig. 3.19 Four gauges
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Fig. 3.20 A full bridge

to integrate them on silicon. Below we will present several common applications of
the strain gauge principle to give you an idea of the versatility.

3.3.3 Accelerometers

Figure 3.21 illustrates an accelerometer based on the strain gauge principle. A minia-
ture cantilever with four strain gauges is placed in an isolated housing. To increase
the sensitivity, a ‘seismic mass’ is placed on the end of the cantilever and the entire
system is filled with some oil to ‘damp’ the system.

The strain gauges are internally connected in a Wheatstone bridge, see Fig. 3.22.
As a matter of fact, this is (typically) how you can identify sensors based on the
strain gauge principle; the electrical interface consists of four wires. Two should
be connected to ‘power’ and the other two are the Wheatstone bridge voltage (that
should be connected to an instrumentation amplifier, see Chap. 4).

The entire sensor is of the order of 10 mm and Fig. 3.23 illustrates a typical
sensor. They are used abundantly in car crash testing and vibration monitoring and

Sensor housing

Strain gauges in Seismic mass
Wheatstone bridge

% Cantilever beam \

Damping fluid

A

Acceleration
direction

\J

Fig. 3.21 Accelerometer
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Fig. 3.22 Most likely you have a strain gauge sensor when the electrical interface consists of four
wires; connect red/black to power and green/blue to the amplifier (mind the polarity)

‘ ) +10g

=

Fig. 3.23 Piezoresistive accelerometer: H x W x L =5 x 10 x 12 mm

are available in ranges from a few g up to thousands of g and are also available in
‘multi axis’ versions (2- or 3-axis).

3.3.4 Pressure Sensors

In Fig. 3.24, piezoresistive strain gauges have been integrated onto a silicon
membrane to form a pressure gauge. The strain gauges are connected in a Wheatstone
bridge (as in Fig. 3.22); the signal interface is four wires.

The four strain gauges are placed on the silicon membrane so that two are stretched
and two are compressed when the membrane is subjected to a force due to air pressure.
Figure 3.25 illustrates the membrane in the sensor housing.

Figure 3.25 illustrates an ‘absolute’ pressure sensor, but they are also available
as ‘differential’ sensors. Differential sensors would also have a pressure inlet on the
bottom side of the sensor housing in Fig. 3.25. Figure 3.26 illustrates a differential
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Fig. 3.24 Piezoresistive elements on silicon

y
SN L 7

Compressive Compressive
strain /Y strain
V\» 4/

Tensile strain

Fig. 3.25 The strain gauges are stretched/compressed due to the air pressure

pressure sensor from NXP Semiconductors. (Notice the four signal interface pins.)
These sensors are available in ranges up to about 200 kPa.

3.3.5 Flow Sensors

Once we can measure pressure, we can measure flow. In this context ‘flow’ means
volume flow, [m?/s], and ‘fluid’ refers to gas or liquid (but you may assume liquid if
it makes understanding easier). Flow measurements are often based on Bernoulli’s
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Fig. 3.26 Differential
pressure gauge based on the
strain gauge principle

equation (which is really a ‘conservation of energy law’). To measure flow in a fluid
pipe, an obstacle is introduced; the pipe diameter is narrowed down, see Fig. 3.27.
Bernoulli’s equation states that

v? v3
P 1ot :&+2_2+h2 (3.17)
rg . § . potential rE &
‘pressure’  kinetic
energy
energy energy

where p is the fluid density, g is the gravitational constant, %y is the height and py is
the static pressure that the fluid exerts on the pipe walls. If we assume that h; = h,

I

Fig. 3.27 Flow measurement (using a ‘Venturi pipe’)



3.3 The Strain Gauge Principle 53
we can write Eq. (3.17) as

2 2
P Vi _p2 v 1 1

In general, the relationship between the flow, g, the pipe area A and the fluid
velocity v is

g=A-v[m/s] (3.19)

Since the flow ¢ must be a constant everywhere in the pipe, we must have that

1 1 1
v = Fcf = v —vl= (— — —)q2 (3.20)

(3.21)

From Eq. (3.21), we can see that the flow is proportional to the square root of
the difference in static pressure in the pipe between the two points with different
cross-section areas. Two capillary tubes are inserted at both points and the pressure
difference is measured with a differential pressure gauge as illustrated in Fig. 3.27.
The tube in Fig. 3.27 with the ‘slender waist’ is called a ‘Venturi pipe’.

3.3.6 Fluid Level Sensors

Same thing with fluid level; once you can measure pressure, you can measure fluid
level. In Fig. 3.28, a tube is placed in the (empty) vessel, and when it fills with fluid,
the air trapped inside the tube is compressed and the pressure gauge will generate a
signal proportional to the fluid level.

3.3.7 Torque Sensors

Torque is another physical quantity that is readily measured with strain gauges.
Figure 3.29 illustrates a shaft, or a spindle, subjected to some torque M. The torque
will induce two opposing strains in the shaft. The tensile strain is in the direction of the
torque with an angle of 45° versus the shaft direction, see Fig. 3.29. The compressive
strain is in the orthogonal direction, at an angle of 90° versus the ‘tensile’ strain. (Roll
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Fig. 3.28 Fluid-level sensor
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a piece of paper, twist it, and observe the tensions.) Hence, we can get counter-acting
strain gauges by applying them pairwise at an angle of 90° as illustrated in Fig. 3.29.
For rotating shafts, the signals are transferred to the ‘outside’ by sliprings.

Fig. 3.29 Measuring torque

Tensile strain

Compressive strain
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3.3.8 Viscosity Sensors

If you have a degree in physics, you have probably measured viscosity in some
undergraduate lab exercise by measuring the time it takes for an object to sink in
some fluid. That s fine, but it doesn’t provide a ‘sensor’ for us. The strain gauge does;
if you can measure torque, you can measure viscosity. If you rotate a propeller (at a
constant speed) in the fluid, the torque exerted on the propeller shaft is proportional
to the viscosity.

3.3.9 Load Cell

Figure 3.30 illustrates the load cell principle. When the ‘cell is subjected to a load the
vertical strain gauges will be compressed, and the horizontal ones will be extracted,
and we can again place the strain gauges in a Wheatstone bridge to get a signal that
only reacts to ‘real’ strains and not to false strains due to a variation in temperature.

Load cells are mostly used for weighting (people, cars, and trucks) but can also
be used to measure volume/level in a tank (volume/level is proportional to weight).
It is also used to provide force feedback in robotic applications and rocket thrust
measurements.

We could give you more examples of applications for the strain gauge principle, but
we think we have made the point; the strain gauge principle is a very versatile sensor
technique and omnipresent. Instead, we will present some other sensor techniques
that are almost as versatile.

Fig. 3.30 The load cell
principle

Tensile strain

Compressive strain
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3.4 Piezoelectric Crystals

A ‘piezoelectric’ crystal has a symmetric crystal lattice of Silicon and Oxygen atoms,
see Fig. 3.31. When the crystal is ‘at rest’ the positive Silicon atoms and the negative
Oxygen atoms are arranged so that there is no net charge on any surface; the center
of charge for positive and negative atoms coincide.

However, if the crystal is deformed by an external force, see Fig. 3.32, the atoms
in the lattice are displaced and the centers for positive and negative charges no longer
coincide and a net charge can be detected on the surface.

The amount of charge is proportional to the external force deforming the crystal.
Just like the strain gauge case, we have a method to detect force, and we saw in the
previous sections how that can be used to measure many other quantities. The charge
depends very linearly on the force (just like the strain gauge arrangement), but the
piezoelectric crystal has one advantage over the strain gauges; it is unaffected by
temperature variations.

However, it has some disadvantages too; we need to measure the charge that
is generated by the force, and that is not as straightforward as it might seem. To
understand the problem, we need a signal model of the crystal; we model it as a
current/charge source that produces a charge Q = kF' (F is the force on the crystal)
and we model the crystal surfaces as a capacitor Cx, see Fig. 3.33.

That means that the voltage across the crystal is Ux = Q/Cx = kF/Cx, so by just
measuring the voltage across the crystal would give us a number proportional to the
force. The problem is that the capacitance Cy is very small and even if it is a non-
conducting material, there is still some ‘isolation resistance’ between the surfaces

O Silicon atom

Electrodes
Oxygen atom

Centre of symmetry
for postive and
negative charge
coincide.

Fig. 3.31 A piezoelectric crystal

Centre of symmetry

Centre of symmetry for negative charge.

for positive charge.

Fig. 3.32 A load will displace the centers of charge
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Q = kxF

’

y
]

Fig. 3.33 The piezoelectric crystal signal model

(modeled by Ry in Fig. 3.33). Hence, the crystal will discharge through Ry and the
voltage will decrease exponentially:

kF
Uy(t) = ran e T (3.22)

where T = Ry C. The isolation resistance is very large (10" Q) but Cy is of the order
of pF, so t = 1 s; the voltage drops to 36% in just one second. As a matter of fact,
the situation is much worse than that. To measure the voltage across the surfaces,
we need to connect a voltage meter, see Fig. 3.33, and when we do that, the input
impedance of the voltage meter is connected in parallel with Ry, and a typical voltage
meter has an input impedance R, = 1 M. The consequence is that instead of 10'?
2, the charge will discharge through R, and t in Eq. (3.22) is of the order of 1 js!
The charge is gone long before we have a reasonable chance to record it.

Measuring the charge on a piezoelectric crystal is obviously not that straightfor-
ward. The trick is to ‘fool’ the charge to leave the crystal surface immediately. That
is what a ‘charge amplifier’ does, see Fig. 3.34.

First, the negative op amp input is at ‘virtual’ ground. That means that the charge
Q created on the crystal has three paths to ground: Through Cy, through Ry, or
straight forward through no impedance at all. According to Kirchhoff’s current law,
that means that all charge will go straight forward to the negative input of the op
amp.

Q = kxF
Piezo crystal _>X—| |7

Q = kxF

—— Uout

Cx — Rx

Fig. 3.34 A piezoelectric crystal with charge amplifier
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Once it reaches the op amp, it has nowhere else to go but ‘upwards’ to the external
capacitor C; the output voltage will be

Upt=——==——+ 3.23
‘ C C (3.23)

It might seem like we just transferred the discharging problem from one capacitor
to another, but that is wrong; C is an external capacitor that we can choose arbitrarily.
It will have an isolation resistance too, but with the arrangement in Fig. 3.34, we can
improve T by many orders of magnitude.

Still, T will not be infinite, and piezoelectric crystals are not suitable for measuring
static forces, but it is a popular sensor technique in dynamic applications because of
its robustness against temperature variations, linear nature, and reliability.

3.5 Hall Sensors

When a charged particle moves in a magnetic field a force will act on it and bend the
trajectory according to Fleming’s right-hand rule.

InFig. 3.35, acurrent is injected into a flat conductor (a metal strip) that at the same
time is subjected to a magnetic field. Due to the magnetic field, the negative electrons
will be forced to one side of the conductor and hence there will be a voltage across
the conductor’s sides (perpendicular to the current’s direction and to the magnetic
field lines). This is called the ‘Hall effect’ after Edvin Hall who discovered this
phenomenon in 1879 (while working on his doctoral thesis in physics).

The voltage across the conductor is proportional to both the current and the
magnetic field, which indicates that the Hall effect has two major applications:
Measuring currents (i.e., charge flow) and measuring magnetic fields. In the first

Fig. 3.35 The Hall effect
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Fig. 3.36 Non-invasive flow
meter

Fig. 3.37 Hall probe (

case, we use a constant magnetic field and, in the other case, we use a constant
current.

Figure 3.36 illustrates a non-invasive flow meter (for conducting fluids, like water).
When the fluid in the flow pipe passes through the (constant) magnetic field, the
charges will be forced to the sides of the tube where electrodes pick up the charge
and the voltage across the tube will be proportional to the flow g. Notice the advantage
compared to the flow meter in Fig. 3.27; the Hall effect flow meter is non-invasive
and does not interfere with the fluid (but it only works for conducting fluids with free
ions).

Figure 3.37 illustrates a Hall probe used to measure magnetic fields. A small metal
plate/film is integrated on a probe stick and a constant current is sent through the
plate and the voltage is measured across the plate.

3.6 Position Sensors

There is a plethora of position sensors on the market, and you really need to specify
your needs in terms of accuracy, range, sensitivity, and reliability before you start
searching for a position sensor. We will only cover one here; the Linear Variable
Differential Transformer (LVDT). LVDTs emerged already in the 1930s to meet the
need for displacement measurements in the process industry. The basic principle is
illustrated in Fig. 3.38. A primary coil is wound on the same bobbin as two secondary
coils and the ferromagnetic core is long enough to cover the primary coil and one
of the secondary coils at both extremes. The primary coil is excited by an AC signal
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Fig. 3.38 The LVDT principle

and as the core moves from one extreme to the other, the amplitudes of the signals
transferred to the secondary coils will vary linearly with the core’s distance from the
center position. The difference in amplitudes of the two secondary coils’ signals is
an absolute measure of the core’s displacement from the center position.

LVDTs are very linear (better than 1%), robust, and accurate. The resolution is in
the low micrometer range. The sensitivity is of the order of millivolts per millimeter
(‘millivolts’ referring to the difference in amplitudes between the secondary coils’
signals). LVDTs are not only used for displacement measurements but also as the
sensing element in pressure gauges, force measurements, detection of gravitational
waves, and calibration of atomic force microscopes. Hydraulic control systems and
haptic robot interfaces are other areas of application.

The signal conditioning required is an excitation source for the primary coil and
demodulation circuitry for the secondary coils. The amplitudes of the secondary
coils’ output depend on the core’s position x, but will also be influenced by the
core material, the excitation frequency, the temperature, and the secondary coils’
design parameters (windings, length, diameter, etc.). It has been reported though,
that the quotient between the difference and sum of the secondary coils’ signals is
independent of temperature, excitation current, and excitation frequency [2]:
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972 i« (3.24)
el +e

Equation (3.24) is the key to successful demodulation of the LVDT signal.

3.7 Photo Sensors

3.7.1 Light Units

Before, we get into photosensors, we need to define the units we use to describe
light intensity. The power of a light source is in general measured in Watts [W] (=
‘radial’ flow), but it is common to use ‘luminous’ flow for light sources in the visible
wavelength range. The unit is ‘lumen’ [Im] (which is an SI unit) and is weighted
according to the human eye’s response to different wavelengths. For example, a
standard 40 W bulb (omnidirectional) emits 400 Im.

Then there is ‘lux’ [Ix] which is the (perceived) light power per unit area, i.e.,
11x = 1 Im/m?. This is called ‘illumination’ or ‘luminous intensity’. Direct sunlight
corresponds to 50,000-100,000 Ix and typical office lighting is about 300-500 1x.

Example 3.2 What is the luminous intensity of a 40 W bulb at 1 m?

Solution We know from above that it emits 400 Im. Assuming that the bulb is ‘omni-
directional’, at 1 m, the 400 Im is distributed over a sphere with an area of 4 =
471? = 12.57 m?. Hence, the illumination at 1 m is 400/12.57 = 32 Ix.

There are many kinds of photosensors, like photoresistors, photodiodes, photo-
transistors, etc., but here we will limit our presentation to the most common photode-
tectors used in a physics lab; photodiodes (of different kinds) and photomultipliers.

3.7.2 Photodiodes

If a photon of sufficient energy hits the depletion area between the p- and n-doped
area in a diode, an electron—hole pair is created and because of the electric field in the
depletion region, the hole will move to the anode, and the electron will move to the
cathode. If the diode electrodes are part of a closed circuit, a photocurrent will occur
that is (a) in the ‘backward’ direction and (b) proportional to the light illuminance.
This is illustrated in Fig. 3.39.

A photodiode is operated in one of two different modes: The ‘photovoltaic’ mode
or the ‘photoconductive’ mode. In the photovoltaic mode, the anode and cathode are
kept at the same potential (sometimes called the ‘zero-biased’ mode). The advantage
of this mode is that it minimizes the ‘dark current’, i.e., the self-induced current
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Fig. 3.39 The photodiode principle

due spontaneous creation of electron—hole pairs. Figure 3.40 illustrates an example
where a photodiode is operated in the photovoltaic mode.

Figure 3.41 illustrates a photodiode operating in the photoconductive mode where
the photodiode is reversed-biased (cathode is at a higher potential than the anode).

Fig. 3.40 Photovoltaic mode. Notice that the anode and cathode have the same potential. The
output range is determined by the feedback resistor

i

Uout

-VB pu— 1

Fig. 3.41 Photoconductive mode
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Fig. 3.42 The photodiode
BPW21

The advantage of the photoconductive mode is that the reverse-biased voltage
widens the depletion area and makes the diode more sensitive (more hole-electron
pairs can be created) and it also improves the response time. The reason for the faster
response is that when the depleted area is widened, the pn junction capacitance is
decreased. The disadvantage of the photoconductive mode is that it increases the
dark current.

The sensitivity of a typical photodiode is of the order of 10 nA/Ix. Figure 3.42
illustrates the popular BPW21 photodiode that is optimized for green light and has
a sensitivity of 9 nA/Ix.

A development of the photodiode is the PIN photodiode which consists of three
layers, heavily doped p- and n-layers, and a lightly doped intrinsic area. This has
two advantages. First, the depletion area where electron—hole pairs can be created
is increased, and the wider depletion region decreases the capacitance even more
which gives a faster response.

3.7.3 Avalanche Photodiodes

Avalanche photodiodes have yet another layer (four layers) and they are operated at
much higher reverse-biased voltages (near the break-down voltage). The idea of an
avalanche photodiode is that when an electron—hole pair is created by incident light,
the electrons are accelerated to a very high speed (because of the high reverse-biased
voltage). When the electrons are accelerated through the fourth layer (a lightly doped
p-layer) they will collide with the atoms and because of their high velocity, they will
create new electrons (due to impact ionization). This will generate a multiplication
effect and the multiplication increases with the reverse-biased voltage. The reverse-
biased voltage is of the order of 100-500 V and gain factors of up to 200 can be
achieved, which makes them very sensitive.

The disadvantages of avalanche photodiodes are that they are noisy, non-linear
and you must handle a high DC voltage in your setup.
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3.7.4 Position-Sensitive Detectors

Position-sensitive detectors (PSDs) are photodiodes that produce currents depending
on where the incident light hits the active surface. It consists of two photodiodes with
a common cathode, see Figs. 3.44 and 3.45.

As illustrated in Fig. 3.45, both photodiodes will generate a current when an
incident light beam hits the surface, and the difference between these two currents is
proportional to x (the distance between the incident light beam and the center of the
active photodiode area). However, the difference between the currents also depends
on the light’s intensity. To get a reading that is independent of the light intensity, the
manufacturer recommends that you divide by the sum of the currents:

le - Ixz 2x
a2 X (3.25)
le + Ix2 Lx

In the S3932 model illustrated in Fig. 3.43, the active area is 12 mm long. They
are also available as two-dimensional detectors (x and y detectors). The common
cathode is usually reverse-biased (5-10 V). Figure 3.46 illustrates the recommended
signal conditioning where the currents are converted to voltages.

Once you have the voltages, you can proceed with either analog electronics to
generate the sum and difference currents (see solved Problem 3.4), or you can sample
them and do it in software. (Since Eq. (3.25) involves division, it is recommended
that you do it in software.)

A very common application of PSDs is distance measuring by ‘triangulation’.
Figure 3.47 illustrates the principle.

Depending on the distance to the obstacle, the reflected light will hit the PSD in
a different position relative to the center and the PSD output will be proportional to
the distance to the obstacle. For example, this is used by some projectors to measure
the distance to the screen (enabling auto-focusing) and by vacuum robots to detect
obstacles.

Fig. 3.43 PSD S3932 from
Hamamatsu

Fig. 3.44 Two photodiodes Ix1 Ix2
with common cathode
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3.7.5 Photomultipliers

Figure 3.48 illustrates a photomultiplier tube (PMT). The front end of a PMT consists
of a photocathode. When hit by a photon, an electron is emitted (a ‘photoelectron’).
Inside the tube are several ‘dynodes’ with successively higher potential: The photo-
cathode is at approximately —1 kV and the potential of the succeeding dynodes is
about 100 V higher (each). When the first photoelectron is emitted, it is accelerated
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Fig. 3.48 Photomultiplier tube (PMT)

towards the first dynode. The dynodes’ surface is made of a material that is specif-
ically designed to emit secondary electrons. Common materials are AgMgO, BeO,
or GaAsP. A typical PMT has 12-14 dynodes and the quantum efficiency* can be as
good as 30% and gains of 10° are common, which means that PMTs can be used for
photon counting (single photon detection).

4 The quantum efficiency is the fraction of incident photons that generate a primary electron emission
from the photocathode.
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PMTs are delicate instruments. First, the tube is evacuated, and the sealing must
never be broken. Second, they should never be exposed to daylight, even when not
powered. They are also very expensive and suffer from high dark currents.

3.8 Particle Detectors

3.8.1 Channel Electron Multipliers

Channel Electron Multipliers, CEMs (or ‘channeltrons’) are particle detectors that
use a similar electron multiplication technique as PMTs. CEMs come in many
different sizes and shapes, and Fig. 3.49 illustrates a common standard CEM.

It is primarily used to detect ions (positive or negative) but can also be used to
detect electrons or photons. The incoming ion hits a collector cone coated with a high
secondary electron emission material and then electrons are accelerated backwards
by an electric field and multiplied as they propagate through the channel to the end
collector. Unlike the PMT, the CEM does not have discrete dynodes, instead it has
one single ‘continuous dynode’ which creates a continuous electric field inside the
channel, forcing the electrons to propagate towards the anode end.

The inside channel is approximately 1 mm in diameter. Notice in Fig. 3.49 the
incurvation of the channel. This is necessary to prevent ‘ion feedback’. Because of
the multiplying effect, the electron density can be very high at the channel output, and
this can cause adsorbed gases on the channel wall to desorb and ionize. This results in
positive ions in the channel propagating back to the input, producing extra secondary
electrons which generate noise in the output signal. The incurvation prevents the ions
from gaining enough energy to produce secondary electrons. Without the incurvation,
the gain would be limited to <10°. Curved CEMs can have a gain factor of 108.

High secondary
emission surface

200 nm conductor
20 nm SiO2

R

Charge collector

Fig. 3.49 Channel electron multiplier
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3.8.2 Microchannel Plates

Microchannel plates (MCPs) are a development of CEMs. As the name indicates,
MCPs consist of several (parallel) channels, which provide a spatial resolution
(provided that the charge collector is designed for that). Figure 3.50 illustrates a
single MCP.

An MCP is typically 0.5-2 mm thick and the diameter can vary from 10 mm
up to 200 mm. Each microchannel’s diameter is 5-20 wm in diameter (less than a
human hair). Just like the CEM channels, the inside of the channels is covered with
a material with a high secondary electron emissivity. The top and bottom sides are
high-voltage biased to produce an electric field across the continuous-dynode of the
order of 10% V/m. Still, the gain of a single MCP is only of the order of 10,000. For
that reason, two (or more) MCPs are stacked to improve the gain, see Fig. 3.51.

Fig. 3.50 Microchannel plate

Chevron
pair

Charge
collector

Fig. 3.51 Chevron microchannel plate
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Notice in Fig. 3.50 how all the channels are tilted by a small angle against the
normal (8—13°). This is to guarantee that an incident particle hits the channel wall and
initiates an electron avalanche (instead of just passing straight through). Figure 3.51
illustrates a ‘Chevron” MCP.

A Chevron MCP consists of two microchannel plates where the channels’ angles
are in ‘opposite’ directions. This has two advantages. First, with two MCPs in series,
gains up to 107 are possible. Second, the ‘opposing’ channel angles reduce ion feed-
back and reduce the noise in the output signal. ‘2’ MCPs stack three microchannel
plates.

MCPs are used as particle detectors in mass spectrometers and space-based instru-
ments for detection of photons and high-energetic particles, but because of their
spatial resolution capacity, they can also be used as intensity amplifiers in night-vision
googles.

3.9 Vacuum Gauges

3.9.1 Introduction

Vacuum chambers are omnipresent in physics labs, and where there are vacuum
chambers there is a need to monitor the pressure, i.e., we need a vacuum gauge.
But before we get into the details of vacuum gauges, let’s first talk about pressure
units. Vacuum/pressure is one of the areas where the use of the SI unit (Pa, Pascal)
is not necessarily the most common unit. There is a plethora of vacuum pressure
units, and the preference depends on the context. ‘Context’ can refer to region and/
or application. My personal (prejudiced?) opinion is that Europeans use ‘mbar’,
Americans use ‘Torr’ and Asians use ‘Pa’. Fortunately, 1 mbar is approximately
equal to 1 Torr (1 Torr = 1.333 mbar), and the pressure in vacuum chambers are
usually only measured in orders of magnitude anyway, so, if the pressure in your
vacuum chamber is 10~ Torr or 10~° mbar, doesn’t matter, it is the same (for all we
usually care). I will use mbar in this presentation.

We distinguish between ‘low’ vacuum (LV), > 1073 mbar and ‘high’ vacuum
(HV) < 10~ mbar. This is the only distinction we need when it comes to choosing
a vacuum gauge. For LV, you use a ‘thermal conductivity gauge’ (called a ‘Pirani’
gauge) and for HV you must use a ‘gas ionization’ gauge.

3.9.2 The Pirani Gauge

There are several ways to implement a thermal conductivity pressure gauge, but the
most common one is the ‘Pirani’ gauge. In a Pirani gauge, a thin filament (usually
Platinum) is heated to approximately 50 °C. We know already (from Sect. 3.2.2) that
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the resistance of a metal filament depends on the temperature. When the filament is
heated, some of the heat will be dissipated to the ambient gas (the air) and this will
cool the filament (and cooling means decreasing resistance). The heat is carried away
by conduction and the gas’s ability to carry heat is called ‘thermal conductivity’. The
thermal conductivity is proportional to the gas density, which of course depends on
the pressure. When the gas is evacuated, the thermal conductivity is reduced and the
cooling effect on the filament is reduced, and the wire gets warmer and therefore the
resistance increases. In conclusion, the filament resistance goes up when the pressure
decreases.

A Pirani gauge consists of two filaments. Both are heated by the same current,
but only one is subjected to the vacuum chamber atmosphere. The other one is a
reference gauge that compensates for variations in the ambient temperature. The
reference gauge is sealed (under a ‘reference’ vacuum). Figure 3.52 illustrates a
Pirani vacuum head.

Hence, to measure the vacuum, we must measure the resistance of the filament
(relative the reference filament) and we know already that this is best implemented
in a Wheatstone bridge. However, there are several ways to implement the bridge.
We could keep the Wheatstone supply voltage constant and measure the resistance or
we could keep the current constant. A common implementation is a ‘self-balancing’
bridge, see Fig. 3.53.

In the bridge in Fig. 3.53, the output signal from an op amp is fed back as the
supply voltage to the bridge. Since it has negative feedback, the op amp will do what
it takes to keep the inverting (U_) and the non-inverting (U ) inputs equal; the op
amp will ‘balance’ the bridge.

When the pressure in the vacuum chamber decreases, Ry (the filament resistance)
increases, which means that U _ (inverting op amp input) increases. To compensate
for that the current through the filament must be reduced, which means that the supply
voltage (the op amp output voltage) must be reduced; the op amp output voltage

Fig. 3.52 A Pirani gauge
head; the reference gauge is
sealed

Inlet

L
i
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Rv Reref Uout

Ro Ro

Fig. 3.53 Self-balancing Wheatstone bridge

decreases when the pressure in the vacuum chamber decreases. The op amp’s output
is proportional to the pressure in the vacuum chamber. (The dependence is not linear
and needs to be calibrated.)

This vacuum gauge was invented by Marcello Pirani in 1906 in Germany and is
still one of the most common vacuum sensor techniques for ‘pre-vacuums’ down to
1073 mbar.

3.9.3 Gas Ionization Gauges

There are several ways to design ionization gauges too, but the most common one is
the ‘nude hot-cathode ionization” gauge designed by Bayard & Alpert in the 1950s.
(BAG = Bayard & Alpert gauge.) ‘Nude’ refers to the fact that it does not have any
protective glass shielding. Technically, it is a ‘triode’ since it has three electrodes.
The first electrode is a ‘hot’ cathode (a helical tungsten wire) that emits electrons.
The second electrode is a ‘grid” with a positive-biased potential to attract (accelerate)
the electrons and the third electrode is a charge collector (the ‘anode’). Figure 3.54
illustrates the gauge head.

In Fig. 3.54, the grid is a cylinder, and the anode is just a ‘pin’. The cathode
filament has a potential of 4-30 to +50 V and the grid has a potential of 4180 to
230 V. When the filament is heated (by a 10-mA current) electrons are emitted and
accelerated towards the grid. Most of the electrons pass right through the grid and
will interact with the gas atoms inside the grid cylinder. An atom/molecule hit by a
high-energy electron will be ionized (at some probability rate) and that will generate
a positive ion. This positive ion will be attracted to the 0 V anode pin and generate
a current in the anode circuit. The size of this current will be proportional to the gas
density in the chamber. The ‘conversion factor’ is of the order of 100 mA/mbar. At
a pressure of 107! mbar, the current is of the order of 100 pA.
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Fig. 3.54 The nude
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The range for a typical ionization gauge is 107> to 107! mbar and hot-cathode
gauges should never be exposed to atmospheric pressure (when they are powered)
since this can damage them permanently.

3.10 Solved Problems

Problem 3.1 In athermocouple experiment two conductors A and B were combined
as illustrated in Fig. 3.55 and this produced the thermo emf U s and this experiment
was repeated with conductors B and C, see Fig. 3.56, which generated the thermo

emf UBC.

Then finally, conductors A and C were combined to form a third thermocouple,
see Fig. 3.57. Prove that Uac will equal Uag + Ugc.

Solution The sum of the emfs in the first two experiments is:

Uup +Upc ={Ep(Ty — Tc) — Ea(Ty — T¢)}



3.10 Solved Problems 73

A ® +
TH @ Uas
B @ —

Fig. 3.55 Thermocouple 1

® +
B
Th @ Usc
C o —

Fig. 3.56 Thermocouple 2

A ® +
Th < @ Uac
C
° Z

Fig. 3.57 Thermocouple 3

+{Ec(Ty — T¢c) — Eg(Ty — To)} =
=Ec(Ty — Tc) — Eo(Ty — Tc) = Uac

Problem 3.2 Figure 3.11 illustrates the 4-wire method for resistance measurements.
The disadvantage of this method is that it requires an ‘expensive’ DMM. Prove that
you can eliminate the wire resistance using a ‘cheap’ DMM (see Fig. 3.10) and only
three wires.

Solution Figure 3.58 illustrates the solution.

When the switch is in position ‘1’ the DMM will measure Ry = 2Rye and when
the switch is in position ‘2’ it will measure R, = 2Ry + Rp;. Hence, by subtracting
the first measurement from the second, we will get Ry, = R, — R; = Rpy.

Problem 3.3 According to local traffic regulations, your bicycle must have a white
headlight and a red taillight. The headlight “must be strong enough to be visible from
300 m”. In physical units, that translates to 100 lumens, minimum. Assuming you
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'Cheap’ DMM

Rept
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Fig. 3.58 The 3-wire method

have a photodiode BPW21, how would you test if the headlight on your bike meets
the local traffic regulations?

Solution I would use the circuit in Fig. 3.40 with a feedback resistor of 1 M2. The
setup would be in a completely dark room with the headlight as the only source
of light and I would place the photodiode 10 cm in front of the headlight. At this
distance, the illumination must be at least

100 lumen

I om0k

With a sensitivity of 9 nA/lx, the photocurrent would be 796 x 9 =7.16 pA and
the output voltage would be 7.16 pA x 1 M = 7.16 V. Hence, if the voltage at the
op amp output exceeds 7.16 V, my headlight complies with the local regulations.

Problem 3.4 Prove that the circuit in Fig. 3.59 produces both the sum and difference
signals for the PSD.

Solution The left part of Fig. 3.59 is just the current-to-voltage conversion. We only
need to prove that the right-hand side produces the sum and the difference. The op
amp circuit in the upper right corner is the ‘difference’ circuit (Fig. 3.60).

To see that, first notice that the potential on the op amp’s ‘+’ input is Vx»/2 which
then is also the potential at the ‘—’ input. That means that the current /; is

[ =
: R

This current has nowhere else to go, but to the output. The potential at the op
amp’s output is

Vxo Vxo Vxo
Uit = TX—11R= TX— (Vx1 —TX> =Vxo — Vxi = —(Vx1 — Vx2)
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Fig. 3.60 The difference
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Next, we analyze the lower right-hand side op amp (Fig. 3.61).

In this circuit, the ‘—’ input of the op amp has potential O V. That means that the
currents I, and I, are just Vx;/R and Vx,/R, respectively. These currents must go to
the op amp’s output and the potential at the output is

Usum =0- (11 + 12) X R = _(VXI + VXZ)

Fig. 3.61 The summing lh+l2 R
circuit |
Vxi— 4
Vxo—p— 11—

L R Usum



76 3 Sensors

Notice that if we divide U gi¢ by Ugum, the minus signs cancel.

Problem 3.5 Suppose that the thermocouple in Fig. 3.4 is a type K thermocouple
and that T¢ = 20 °C. If U,,, = 25.000 mV, what is the temperature at the hot junction.

Solution A quick Google search for a ‘type K thermocouple table’, gives that 20 °C
corresponds to 0.798 mV. Adding that to 25 mV gives 25.798 mV. Going back into
the same table gives Ty = 621 °C.
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Chapter 4 ®)
The Instrumentation Amplifier e

Abstract This chapter introduces the instrumentation amplifier. This is perhaps the
most important of all amplifiers in electrical measurement systems. The common
mode rejection ratio is redefined and its relationship to the signal-to-noise ratio is
emphasized. Instrumentation amplifiers are implemented with op amps, and the most
common implementation circuits are illustrated.

4.1 Introduction

Different kinds of amplifiers are used in almost all measurement systems and in
this chapter, we will introduce one of the most common and versatile amplifiers,
the instrumentation amplifier. The instrumentation amplifier is a differential-ended
amplifier, i.e., the input voltage is not referenced to ground. We saw in the previous
chapter that there are plenty of sensor implementations that rely on such ampli-
fiers (the strain gauge, thermocouples, etc.). From here on, we will refer to the
instrumentation amplifier as the ‘IA’ and its symbol is illustrated in Fig. 4.1.

As you can see, it has the same symbol as the operational amplifier, but unlike the
op amp, this amplifier does not need feedback, because the open-loop amplification
is ‘small’. It amplifies the potential difference between the plus and minus inputs by
a ‘reasonable’ number (10—1000). A huge amplification is not what characterizes the
IA.

The TA is all about CMRR (see Sect. 1.2), i.e., the quality of the subtraction.
The subtraction of potentials in electronics is never perfect and there will always
be a small common mode residual. In Chap. 1, we introduced the signal model that
we repeat in Fig. 4.2. The noise is the common mode voltage, and the signal is the
normal mode voltage. (See, for example, the Wheatstone bridge signal in Fig. 3.20.)
Because of the imperfection in the subtraction, the signal model in Fig. 4.1 is too
naive; instead, we use the model in Fig. 4.3.

FnwMm represents the amplification of the normal mode voltage (the ‘signal’) and
Fcm represents the suppression of the common mode voltage (the ‘noise’). The
output voltage is
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Fig. 4.1 The instrumentation amplifier
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Fig. 4.3 There will always be a small cm residual

Uout= FNmUNM + FemUcem

Uowt = FnmUnm + FomUcem “4.1)

where FoymUcewm represents what is left of the common mode voltage after the
amplifier.

Instrumentation amplifiers are most of all characterized by how well they suppress
the common mode voltage compared to how much they amplify the normal mode. We
defined the common mode rejection ratio (CMRR) already in Chap. 1 for a DMM.
We use the same number to represent the quality of an TA:
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Fig. 4.4 The Wheatstone Uo/2 + Up
bridge signal is amplified by B
an [A
Ro(1+A) Ro(1-A)
U
Us Up=12V =
- Ro Ro
A Uo/2
'3
CMRR = 20log —[dB] 4.2)
Fem

The following example will illustrate the use of an IA.

Example 4.1 Figure 4.4 illustrates how a Wheatstone bridge produces two voltage
potentials: One with the common mode potential and one with the common mode
plus the normal mode potential.

Assuming we have a bridge voltage of 1 mV and an IA with CMRR = 105 dB
and Fxy = 100, what is the output voltage from the TA?

Solution First, we find the Fcy from Eq. (4.2): Foyq = Fam x 107EMRR/20 —
100-1071%5/20 = 5.6.10~*. Hence, normal mode voltages are amplified by 100 and
common mode voltages are suppressed by a factor of 0.00056. The common mode
voltage is Uo/2 = 12/2 = 6 V. The output voltage is

Uowt = FamUnm + FemUem = 100 - 0.001 4 6 - 0.00056
=100+ 3.4mV = 103.4mV

4.2 Implementations

4.2.1 Classic IA Circuit

Before we get into the details of IA circuits, we need to understand the classic
differential amplifier in Fig. 4.5.

The potential on the op amp’s + input is U;»,R2/(R; + R»). Since this is also the
potential on the op amp’s — input, the current i is

VR § A (N
Um 1 Um 2 Ri+R,
R,

1 =
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Fig. 4.5 Classic differential
amplifier

Uin1
Uin2

Hence, the output voltage is

Ui =U_—i-R = Uin’zL - &<Uin’l - Uin’zL)
Ri+R, R Ri+ R
= Uin’2L<l + &) - &Uin’l = &(Uin’z — Uw1) 4.3)
Ri+R R, R, Ry

Hence, we have a differential amplifier where we can choose the amplification
arbitrarily with the resistors R; and R;.

This is what we were looking for, but we are not done yet; the circuit in Fig. 4.5
has a disadvantage. Since the 4+ and — inputs of the op amp are ‘virtually’ short-
circuited, the input impedance of the circuit is R; + R; = 2R and we must have a
large R resistor to have a large input resistance. But then R, must be very large to
get an amplification of 10-1000, and it is likely to be impractically large. For that
reason, we are looking for another solution. This solution is illustrated in Fig. 4.6.

In Fig. 4.6, we can see that the problem with the input impedance is remedied
since the signal inputs are now connected directly to the inputs of op amps. Let’s see
what the output voltage is (to make sure we still have a differential amplifier).

Assuming Ui, > Ujpp, the current iy, through the Ry, resistor is

Uini — Ui
b=
b
Fig. 4.6 Instrumentation
amplifier circuit Uin1
Ra
—{
Ro(]
—
Ra

Uin2 -
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Then the voltages U;,, and U,y are

Uit = Uit + ivR .
" " C U VWUiws — Uiy = Uing — Uit — 2ipR,
Uiz = Upys — ivRa

2R,
= U2 — U1 = Uin2 — Uin1 — R_(Uinl = Uin)
b

= 1+2Ra U 1+2Ra = 1+2Ra (Uinz — Uin1)
— Uin2 Rb inl Rb - Rb in2 inl

Inserting this into Eq. (4.3), we get the output voltage:

Ui = 2 (14 25 W — V) (44)
out — Rl Rb in2 inl .

The normal mode amplification is Fxny = (1 + 2R,/ Rp)R2/R; and there are
obviously several ways to vary the amplification, but, if we change R|, R, or R,, it
involves two resistors. Changing Ry, only involves one resistor. For that reason, IAs
with variable Fyy usually allow the user to apply an external R, resistor.

Example 4.2 Figure 4.7 illustrates an [A-integrated circuit. By varying Ry, what is
the range of possible normal mode amplifications?

Solution R,/R| = 10, so if R, = o0, then Fyyv = 10 and if Ry, = 0, the Fy = o0.
The range is Fnm € [10, oo].

The popular IAs from Texas Instruments (INA128) and Analog Devices (AD622)
both have exactly the configuration illustrated in Fig. 4.6. Linear Technology though,
has a different implementation that only requires two op amps (LT110x). However,
this is at the expense of not offering arbitrary amplifications. The circuit is illustrated
in Fig. 4.8.

] 90k
ri_{"": 90k ok
Ro} | N —
T 90k 9K Y
----- — 90k
i -

Fig. 4.7 Integrated IA
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Fig. 4.8 2-op amp IA Gnd—

Uout

9R 9R

Uin— 1 i Uint

As in the previous solution, the inputs are directly connected to the input of op
amps, so the input impedance is fine. The current 7 is Uj,—/99R. Hence, the potential
at point A is

1

100
Uy =Up—+ 1R =Ujn- 1+ — = Ujn—

99 99

The current 15 is

100
_Ur—Uny U959 — Unny

R R

I
And finally, Uy is
Uout = Uiny — L99R = Uy — 100U3— + 99Uiny = 100(Uiny — Uin—)

We conclude that the IA in Fig. 4.8 has a normal mode amplification of 100, and
it is easy to derive that it would be reduced to 10 if we short-circuit the 90R resistors
(and Fcpm would also decrease by a factor of 10).

Example 4.3 In Fig. 4.9, we use an IA to amplify the emf from a thermocouple.
The circuit is radiated with 50 Hz EMC interferences from the surrounding power
grid which induces a common mode voltage of 1 V in the circuit. The application
requires a normal mode amplification of the thermo emf of 50. What CMRR does
the IA need if we want the common mode contribution in the output signal to be less
the 5%? (The thermo emf is around 0.8 mV.)

Solution The normal mode contribution is 50 x 0.8 mV = 40 mV. The output signal
is40 mV + Fcy-1 =40 mV 4 Fey. The CM part of the output should be less than
5%:
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® +
< Uout

Fig. 4.9 Thermocouple amplifier

FemUcm __Fm  _ 5
FamUnm + FemUem 0.04 + Fem — 100
= 95Fem =02 = Foyqy =2.1-1073

CMRR > 20log -2 — 88 dB
2110

We should look for an IA with a CMRR of at least 90 dB.

4.3 CMRR Versus SNR

If we revisit Fig. 4.3, we can see that the ‘signal’ is the NM part of the voltage before
the IA and the ‘noise’ is the CM part; the signal-to-noise ratio before the IA is

U
SNRbefore = % (45)

CM

In the output signal, the ‘signal’ is FxnmUnm, and the noise is FemUcewm; the
signal-to-noise ratio after the IA is

Fam U,
SNR,fr = — M (4.6)

FemUcewm

Next, we take the quotient of the signal-to-noise before and after the IA:

Faul,
SNRafer FouUcn _ v — CMRR 4.7

- U
SNRbefore —UNM F CM
M

The quotient of the signal-to-noise before and after the IA is equal to the CMRR.
This is how I recommend you think of CMRR. Rather than thinking of CMRR as a
quotient between two amplifications, it tells you how much the signal-to-noise ratio
is improved (with respect to the common mode noise).

Example 4.4 Recalculate Example 4.4 using Eq. (4.7).

Solution The SNRpefore = 0.8 mV/1V = 0.8 - 1073. In the output signal, the CM
part should only correspond to 5% of the total signal:
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CM _ 5 :>NM>95—SNR~
CM+NM — 100 ' CM — 5
The CMRR we need is
95/5
CMRR = 2010g—/3 =88 dB
0.8-10"

4.4 Solved Problems

Problem 4.1 An IA has a normal mode amplification of 100 and a CMRR = 80 dB.
How much does it attenuate the common mode signals?

Solution 80 = 20log £ = Fem = 100 - 10752 = 0.01

Problem 4.2 If we use the A in problem 4.1 in an application where Ucy =2 V and
Unxm = 5 mV, what will the output signal be, and what are the normal and common
mode contributions to the output signals?

Solution U,y = 100x0.005+0.01 x2 = 0.5+0.02 = 0.52 V. The NM contribution
is 0.5 V, and the CM contribution is 0.02 V.

Problem 4.3 An IA is used to amplify the signal from an ECG measurement, see
Fig. 4.10. What CMRR is required for the CM contribution at the output to be less
than 1%?

Solution The SNRyefore =3 mV/1.5V =2- 1073. In the output signal, the CM part
should only correspond to 1% of the total signal:

CM 1 NM 99
>

—— < — — > — = 99 = SNRfier
CM+NM ~ 100 ~ CM — 1 :
The CMRR we need is
99
CMRR = ZOlog—3 =94 dB
2-10" -
Fig. 4.10 IA in ECG 50/60 Hz: 1.5V
measurement ECG:3 mV

50/60 Hz: 1.5V




Chapter 5 ®)
Transmission Lines Check for

Abstract This chapter explains why the impedance 50 €2 is so ubiquitous in physics
labs. First, the transmission line is introduced and then the extremely important
concept of its characteristic impedance is defined. Fresnel’s law is used to find the
reflection coefficient for electric signals in a transmission line (Eq. 5.2) and that
will explain why transmission lines need to be ferminated. One section treats the
problem of how to properly split and splice transmission lines. Finally, one of the
most common applications of signal reflections in transmission lines is presented,
namely, the Time Domain Reflectometer.

5.1 Introduction

Once you start working in a physics lab, connecting cables between instruments,
lasers, and vacuum chambers, it doesn’t take long before you hear people talking
about ‘50 2’ and that number keeps popping up in manuals and datasheets and it
is almost like 50 €2 is a magic number. There is nothing magic about it, but it is
paramount that you understand the fuss about 50 €2. This chapter will remedy that
and unravel the ‘50-$2 secret’.

5.2 The Characteristic Impedance

It all starts with a very simple experiment. In Fig. 5.1, a signal source with internal
impedance 100 2 is connected to a 100-$2 load impedance via a switch. The switch
is closed at t = 0.

InFig. 5.1, we can easily conclude that exactly at t = 0, the 10 V will immediately
be equally distributed across the internal impedance Z; and the load impedance Zj,,q4;
att =0, Ujpaq goes immediately from O to 5 V.

The experiment in Fig. 5.1 is straightforward, 5 V across the load and 5 V across
the internal impedance.
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Voltage source

Up=10V Uload

\/

Fig. 5.2 Same experiment but with a small twist

However, as the next example will illustrate, it doesn’t take much for your under-
graduate electricity skills to ‘break down’. In Fig. 5.2, we repeat the exact same
experiment, only with one small difference; we place the load impedance at some
distance. This distance is ‘long enough not to be ignored’.

What happens to the voltage across the load impedance now (at ¢+ = 0)? That’s
easy: Nothing! Because it takes some time for the voltage to propagate to the load
impedance. Something will happen later, but exactly at t = 0, nothing happens.

Here is a harder question: How large is the voltage across the internal impedance
Zi, at t = 0 (the moment immediately after the switch is closed)?

This is the key question here (and the key to the whole 50-2 fuss). At ¢t = 0, the
voltage source cannot see the load impedance, so how much should it ‘keep’ across
Z; and how much should it send down the cable to Z;,,q? Most students answer, ‘0 V’
or ‘10 V’, but that is just wrong. It is more complicated than that. At # = 0, the voltage
source ‘sees’ the internal impedance and ..... the cable!!! To answer the question,
we must understand how the cable behaves at r = 0 (from the voltage source’s point
of view).

The answer is that at ¢+ = 0, the cable is ‘perceived’ as an impedance to ground,
see Fig. 5.3. This ‘perceived’ impedance is the cable’s characteristic impedance and
is denoted Z. Here are some facts you should know about Z:

e Equation (3.9) tells us the ‘ohm resistance’ of a conductor of some length and
diameter. Most students think that the characteristic impedance has something to
do with Eq. (3.9), or even think that Z, is the same as Eq. (3.9). This is completely
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Fig. 5.3 Attr=0,thecable =~ 777N
is perceived as an impedance
to ground
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wrong! Zy has nothing to do with the ohm resistance in Eq. (3.9)!! (Of course it
doesn’t! Eq. (3.9) depends on the cable length. In Fig. 5.3, the cable length is still
unknown, and still, we have a number for Z.)

e 7, is the ‘wave impedance’; how hard it is for the EM field to propagate down
the cable.

e 7, still depends on manufacturing parameters, but ‘standard’ cables have ‘stan-
dard’ Z, values. The standard cable in a physics lab is the RG58 coaxial cable
which has a characteristic impedance of ..... 50 2!

This is the origin of the ‘50-€2’ fuss; since RG58 cables are omnipresent in all
labs, a lot of equipment have been customized to work in that ‘environment’.

Obviously, from Fig. 5.3, we can see that at time ¢ = 0, the voltage U, will be
distributed across Z; and Z;. The voltage across Zj is

C Zo+ Z;

Uzo Uy (5.1

Uy is the voltage that will propagate down the cable towards the load. (Uzg has
nothing to do with the size of the load Z,,q.) The rest of Uy (i.e., Uy — Uzyy) stays
over Z;. We will illustrate the consequences of the characteristic impedance by a
detailed example.

Example 5.1 Suppose we have the system in Fig. 5.4. If U is a step voltage that
goes from 0 to 45 V att = 0, plot the signal levels at the ‘near’ end (u,) and the ‘far’
end (ur) as a function of time (in the same diagram).

Solution Since we have an RG58 coax cable, Zy = 50 Q2. According to Fig. 5.3, we
have the equivalent circuit in Fig. 5.5 at 7 = 0.
Equation (5.1) gives us

50

=— 5V=4357V
20+ 50 *

Uzo

This is the voltage that will propagate down the coax cable towards the far end,
and since this is the voltage at the near end, u, will go from 0 V to +3.57 Vatt =



88 5 Transmission Lines

20m

Fig. 5.5 Systematr =0

0. Nothing happens at the far end (yet); us still = 0. Figure 5.6 illustrates the near-
and far-end signals a few moments after t = 0.

A V] ---- Input step
T — Near end up
— Far end us
5__ __________________________________________________________________________________________
357V

Fig. 5.6 Signal levels just after t = 0
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V] A

A
o ——
357V oV
Y . . . L
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Near end Far end

Fig. 5.7 The signal situation on the cable just after r = 0

Next, we need to understand what happens in the cable after t = 0. U represents
the voltage that moves towards the far end; a ‘wavefront’, 3.57 V high, propagates
down the cable, see Fig. 5.7. This ‘wavefront’ leaves the voltage level +3.57 V
behind it on the cable (but the voltage in front of the wavefront is still 0 V).

Nothing will happen at the far end until the wavefront in Fig. 5.7 reaches the far
end. Before we worry about what happens when the wavefront hits the far end, we
must first figure out how long it takes until this happens. How fast does the wavefront
in Fig. 5.7 propagate? The wavefront in Fig. 5.7 represents the propagation of the
EM field in the cable, and EM fields travel at the speed of light. That is, the speed of
light in the cable, which for an RG58 coax cable is 0.66 x ¢y = 2-10® m/s. So, if the
cable is 20 m long, it will take 20/2-10% = 100 ns. After 100 ns, the wavefront hits
the load impedance. To understand what happens at that moment, we will rephrase
that: After 100 ns, the wave enters a new medium. And we know from wave theory
that when a wave enters a new medium, there will be wave reflection; some wave
energy will be absorbed (or transmitted) and some will be reflected. Fresnel’s law
gives us the reflection coefficient as the quotient between the difference and sum of
the refractive indices, but we don’t know the refractive indices here.

Fortunately, the refractive indices are proportional to the wave impedances, so we
can write Fresnel’s law as

_nz—nl _Zz—Zl
y_nZ“l‘nl  Z+ Z

(5.2)

At the farend, Z, = Zjpaq = 00 and Z1 = Zy = 50 2, so the reflection coefficient
at the far end is

oo — 50

=+1
oo + 50 +

vr=

That means that all of the incoming wave is reflected. (Of course, it is. The far
end is open. Where else would it go?). So, after 100 ns we will have a wave of +
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357V
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Fig. 5.8 The signal situation on the cable just after 100 ns

3.57 V going back to the near end. The ‘+’ sign indicates that there is no phase shift,
so the ‘back’ going waves will interact constructively with the incoming waves, and
hence the back/left-going wavefront will leave a voltage level behind of 3.57 + 3.57
= 7.14 V. This is illustrated in Fig. 5.8.

And, since we measure us at the far end, uy = 7.14 V after 100 ns. We can now
update our timing diagram in Fig. 5.6, see Fig. 5.9. Nothing happens at the near end
(yet). The near-end signal is stationary until the new wavefront reaches the near end.

(Notice in Fig. 5.9 that neither signal is nowhere near the ‘expected’ 5-V line.
Yet...).

After 200 ns, the wavefront in Fig. 5.8 reaches the near end, and we will again
have wave reflection. The reflection coefficient at the near end is

A V] ---- Input step
T 714V — Near end un

— Farend uf

5__ __________________________________________________________________________________________
1 s57v
t
f t t t f t t f t f t >
100 200 300 400 500 600

Fig. 5.9 Signal levels just after = 100 ns
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Z.—Zy 20—
- 0o_ 20 50=—0.429
Zi+ Zy 20 + 50

Vn

Hence, the reflected wave is —0.429 x (+3.57) = —1.53 V. So, after the wavefront
impacts the near end, a wave with amplitude —1.53 V will go back again towards the
far end. The ‘—’ sign indicates a phase shift of 180°, which means that the back-going
waves will interact destructively with the incoming waves. The incoming wavefront
left a voltage level of 7.14 V behind. The new wavefront going back to the far end
will leave a voltage of 7.14 — 1.53 = 5.61 V behind. This is illustrated in Fig. 5.10
and in Fig. 5.11, we have updated our timing diagram; the near-end voltage goes up
to 5.61 V.

i A 153V A
\ A T
A
561V 714V
\ 4 . , Y , »
I I T I =
0 5 10 15 20 [m]
A A
Near end Far end
Fig. 5.10 The signal levels on the cable just after # = 200 ns
A V] ---- Input step
T 714V — Near end un
— Farend us
T 561V
5__ __________________________________________________________________________________________
1 ss7v
t
f f t f t f f t f t »
100 300 400 500 600

Fig. 5.11 The far- and near-end signals after 200 ns
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After another 100 ns (¢ = 300 ns), the —1.53 V wavefront in Fig. 5.10 will hit
the far end and since the reflection coefficient at the far end is (still) +1, all of the
incoming wave is reflected; there will be a wavefront of —1.53 V going back to the
near end. This will interact destructively with the incoming waves, leaving a voltage
level of 5.61 — 1.53 = 4.08 V behind the wavefront, see Fig. 5.12. Hence, the far-end
signal level will drop to 4.08 V, see Fig. 5.13.

At t =400 ns, the —1.53 V wavefront returns to the near end where the reflection
is —0.429 x (—1.53) = +0.65. The ‘+’ sign indicates a constructive interaction with
the incoming waves which means that the wavefront returning to the far end will

A 1\1 53V
1
5.61V

4.08V
, Y , . 4 . >
T T T T [l
0 5 10 15 20 [m]

A A
Near end Far end

Fig. 5.12 Signal levels on the cable just after # = 300 ns

A V] ---- Input step
T 714V — Near end un

— Far end us
T 561V

5__ __________________________________________________________________________________________
1 357V 4.08V
t
} t t t f t t f t f t »
100 200 300 400 500 600

Fig. 5.13 Far- and near-end signals after 300 ns
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leave behind a voltage level of 4.08 4 0.65 = 4.73 V, see Fig. 5.14, and this will also
be the signal level at the near end, see the updated timing diagram in Fig. 5.15.

After 500 ns, the +0.65 V wavefront is reflected at the far end (+1) and a new
+0.65 V wavefront goes back to the near end. The new +0.65 V wave interacts
constructively with the incoming waves, leaving behind a voltage level of 4.73 +
0.65 = 5.38 V (= uy), see Figs. 5.16 and 5.17.

Att =600 ns, the 0.65 V wave returns to the near end and the reflected wave is —
0.429 x 0.65 = —0.28 V, interacting destructively with the incoming waves, leaving
5.38 - 0.28 = 5.10 V behind (= u,), see Figs. 5.18 and 5.19.

065V |
Y
l —>
|
473V 4.08V
4 | | v , Ly
T T T T »
0 5 10 15 20 [m]
A A
Near end Far end
Fig. 5.14 Signal levels on the cable just after # = 400 ns
A V] ---- Input step
T 714V ~— Near end un
— Farend us
T 561V
S o
473V
h 357V 4.08V
t
f f f f f f f f f f f >
100 200 300 400 500 600

Fig. 5.15 Far- and near-end signals after 400 ns
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| 0.65V
Y
<« l A
|
473V 538V
A ; , : A , >
T T T T Ll
0 5 10 15 20 [m]
A A
Near end Far end
Fig. 5.16 Signal levels on the cable just after # = 500 ns
A V] ---- Input step
T 714V — Near end un
— Far end uf
561V 538V
SN N I N N S R
473V
h 357V 4.08V
t
f f t t f t f f t f t »>
100 200 300 400 500 600 [ns]

Fig. 5.17 Far- and near-end signals after 500 ns

We got the idea. Both the near- and far-end signals converge to 45 V, see Fig. 5.20.
Of course, they do; it’s an open circuit! Eventually, it is just a DC voltage on an open
wire. But it takes a while! In this case, more than a microsecond. That may or may
not be okay, but it is easy to see how this could cause some serious problems.

First, it takes over 1 s for the reflections to peter out. What if we don’t have
that time? Suppose the source signal is not a step function, but a square wave with
frequency 10 MHz, i.e., a period of 100 ns. Then, because of the reflections, the
signal would be seriously distorted.

Second, suppose we have some kind of digital counting device at the far end (high-
impedance input) with a trigger level of 5 V, then according to the timing diagram
in Fig. 5.20, each pulse would generate multiple counts.
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Fig. 5.18 Signal levels on the cable just after # = 600 ns

A V] ---- Input step
B 714V ~— Near end un
— Farend ur

4.08V

357V

t
f f f f f f f f f f f >
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Fig. 5.19 Far- and near-end signals after 600 ns

Third, if this situation was allowed to occur in a serial digital network, like Ethernet
or the automotive CAN network, it would corrupt all communication in the network.

5.3 Termination

Reflections in a transmission cable, like the ones we saw in Example 5.1, are almost
always unwanted. Admittedly, there are some applications that capitalize on this
phenomenon (see Sect. 5.5), but in most situations, pulse reflections are unwanted
and need to be remedied. It is not that hard; Eq. (5.2) gives us the answer. The
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A V] ---- Input step
B — Near end un
— Far end us

100 500 1000 [ns]

Fig. 5.20 Far- and near-end signals after 1200 ns

reflections are promptly cancelled if the reflection coefficient is zero. It is zero if the
numerator in Eq. (5.2) is zero, i.e., if

Ziowd=2o=>Yy = 0 (5.3)

If the load impedance equals the characteristic impedance of the cable, then reflec-
tions are cancelled. If we have a 50-Q2 cable (RG58) we must ‘terminate’ the cable
with a 50-€2 load resistor to prevent reflections. This is called ‘impedance matching’.
And this is true for both ends. That is why most waveform generators, like the popular
Agilent/Keysight 33220 series, have an output impedance of 50 €2; if anything comes
back from the far end, the waveform generator will absorb it. This is also why modern
oscilloscopes always have a 50-2 input option. The default input impedance of an
oscilloscope is 1 M€2, but it can always be changed to 50 €2 if you have a problem
with reflections. Figure 5.21 illustrates an external 50-2 terminator for an RG58
coax cable.

Don’t you always have this problem? Of course, not. See Fig. 5.1. We had no
problems there. The problem only occurs when you have ‘long’ cables or ‘fast’
signals. ‘Long’ and ‘fast’ are relative terms; a cable is ‘long’ compared to the signal’s

Fig. 5.21 50 Q terminator
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wavelength. You need to worry about cable termination if the cable is longer than
about half the wavelength (for a sinusoidal signal). For a square signal, you terminate
the cable if the signal rise time is shorter than the propagation time in the cable. (These
are just rules of thumb. You must always assess the situation at hand.)

5.4 Splitting and Splicing

Sometimes one cable is not long enough and needs to be spliced, or maybe it
needs to be split to feed multiple instruments. Splitting and splicing of high-speed
transmission lines is a precarious task and we will investigate both here.

If you need to splice a cable, you should obviously be careful to use identical
cables (preferably even from the same cable drum). However, sometimes you might
have to splice an RG58 cable to another kind of cable (RG59, TP, ...) which does
not have the same characteristic impedance. If you connect two cables with different
Z,, there will be reflections at the the joint, see Fig. 5.22. To avoid that, you need to
design a simple interface between the cables.

In Fig. 5.23, we want to splice an RG58 coax (Z; = 50 2) with an RG62 coax
cable (Z; = 93 2). All we need is the simple resistor network in Fig. 5.23.

The resistor values are given by the expressions in Eq. (5.4):

V4
Ri=2Z|—"— Ry=\7,(Z,— Zy) (5.4)

Z1=50Q

Fig. 5.23 Splicing two cables
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=

Example 5.2 Find the resistor values for R} and R, if you need to splice an RG58
cable with an RG62 cable.

Fig. 5.24 Splitting a cable with a T-cross will cause reflections

Solution Z; =50 Q and Z, = 93 Q:

93
R =50,/ ——— =74Q R, =,/ —50) =63
1 =50 55— 2 =+/93(93 — 50) = 63

Another problem is splitting a transmission cable. Most people just use a ‘T-
cross’ connector, see Fig. 5.24. This is not a good idea if you have ‘fast’ signals,
because this splitting will cause reflections. The reason is that the incoming signal
(from any direction) will see two cables, i.e., two 50-2 impedances to ground, which
corresponds to 25 €2 to ground, which is an impedance mismatch, and we will have
reflections.

The trick is to insert a network so that the perceived impedance is always 50 €2,
regardless of where the signal comes from. The solution is illustrated in Fig. 5.25.
This splitting is reflection-free since from any direction the total impedance is 16.7
+ (16.7 + 50)//(16.7 4+ 50) = 16.7 4+ 66.7//67.7 = 16.7 4+ 33.3 = 50 Q.

5.5 Attenuation

Because of the non-zero ohm resistance in any conductor, a propagating signal will
be attenuated. This is illustrated in Fig. 5.26.
The attenuation factor is expressed in ‘dB/m’:

20 - log=>
o = —[dB/m] (5.5)
X
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Fig. 5.25 Reflection-free splitting

Y Ll A
UOV RG58 RG58 | ux
Fig. 5.26 The signal is attenuated in the cable
and hence
Uy = ug - 109%/20 (5.6)

There is one important aspect of the attenuation factor that you need to know; it
is highly frequency dependent, ¢ = «( f). You will find an attenuation number in
the data sheet but remember that it is for a specific frequency. For example, it could
say ‘—0.1 dB/m @ 50 MHz’. That means that you can use that attenuation factor
only for a 50 MHz sinusoidal signal. If you use anything else, you must measure the
attenuation yourself (by first applying your signal to a cable with a known length.)

5.6 Time Domain Reflectometry

Time Domain Reflectometry, TDR, is an example of a measurement technique that
takes advantage of impedance mismatching. Consider the setup in Fig. 5.27.

In Fig. 5.27, the cable type and the cable length are unknown, and so is the load
impedance at the far end. Next, suppose the waveform generator sends out a ‘short
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Fig. 5.27 We don’t know the cable type, the cable length, or the load impedance

pulse and that we monitor the near-end signal u, on an oscilloscope. Figure 5.28
illustrates u,,.

There is a lot of information that we can extract from Fig. 5.28. First, we can
figure out the characteristic impedance of the unknown cable. By measuring uzy and
applying Eq. (5.1), we can solve for Z.

And once we know Z, we can identify the cable and then we know the propagation
velocity in the cable. And if we know the signal velocity, we can find the cable length,
since the time it takes for the pulse to return corresponds to twice the cable length:
L =v-15./2.

Finally, we can also figure out the far-end load impedance by studying the size of
the returned pulse; if we can figure out the far-end reflection coefficient, we can use
Eq. (5.2) and solve for Zjo,q (= Z»). But this is a little precarious.

The returned pulse will be smaller than uz, but it is important to understand that
there are rwo reasons for that. It will lose amplitude partly because of the attenuation
in the cable and partly because of the reflection against the far-end impedance (see
Fig. 5.29).

If we send out a pulse of height uz, then according to Eq. (5.6), uzo - 1 will
arrive at the far end. At the far end, there will be wave reflections and the size of the
reflected wavefront will be u, - 10%%/20 . ;. On its way back to the near end, the
pulse will again be attenuated, so the height of the pulse returning to the near end is

0L /20

A Un

uzo

oL

A
Y

Fig. 5.28 A typical TDR response
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Fig. 5.29 There are two
contributions to the signal Loss due to o
loss
uzo Loss due to y{
} uzL
— . alL/20 ., . alL/20 _ . alL/10
Upy = Uz 10920y 109H/20 = ugyp- 107
Sent out
from near end 5.7)
Arriving at far end
Reflected back from far end
Returns to near end
And solving for yy:
uzp _
yr= — - 107110 (5.8)
Uzo

Inserting this y¢ number into Eq. (5.2), we can solve for the load impedance.
There is just one problem; we must know the attenuation coefficient in the cable for
our probing pulse. There is no easy way to find «. Once you have identified the cable
(from Z), you must find an identical cable of known length (open-ended) and send
in your pulse and study the attenuation of the returned pulse.

This is the basic TDR theory. It can be used to find anyone of the parameters, Z,
L, and y, but in “TDR applications, it is usually understood that it is used only to
find L. For example, it is used to localize cable failures in long transmission lines or
communication networks.

However, due to the versatility of the TDR technique, it has found applications in
awide range of areas. For example, a TDR-based technique for automatic monitoring
of the water content in soil [1, 2] has been reported, landslide warning systems in
Taiwan [3] and monitoring of rock mass response in underground mining [4] are
other examples of TDR applications.

5.7 Solved Problems

Problem 5.1 A 10-m RGS58 coax cable is used to transmit a 45-MHz sine signal.
Does this cable need to be 50-2 terminated?

Solution It needs to be terminated if the cable is longer than half the signal
wavelength. The signal wavelength is
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Un
Zi=50Q /

A
2V

Fig. 5.30 A TDR experiment

v 2.108
=—=_—"_ —44m

f o 45.10°

Half the signal wavelength is 2.2 m which is shorter than the cable length. Yes,
this cable needs to be 50-Q2 terminated.

Problem 5.2 A CAN bus runs at a bit rate of 5 Mbits/s and the bits’ risetime is 10 ns.
How long network can you have before you need to terminate the ends of the bus!?

Solution If we assume the same velocity factor in a CAN bus cable as in an RG58
coax cable, the signal travels 2-10% x 10-10™ = 2 m during the rise time. If the
network is longer than that, it needs to be terminated (at both ends).

Problem 5.3 In Example 5.2, we got the resistor values 74 and 63 2. These are
not ‘standard’ resistor values. How would you solve this if you only have access to
resistors from the E12 series?

Solution The E12 series comprises the numbers 10, 12, 15,22, 27,33, 39, 47, 56, 68,
and 82 (multiplied by any multiple of 10). Then we use the following combinations
to get the desired resistances:

82270

TAQ=4T427  63Q=82270 = — = _
T 82 + 270

63
To get 74 2, we connect a 47-2 resistor in series with a 27-$2 resistor. To get 63
Q, we connect an 82-<2 resistor in parallel with a 270-<2 resistor.”

Problem 5.4 Consider the TDR experiment in Fig. 5.30. Figure 5.31 illustrates the
near-end signal.

The propagation speed in the cable is 0.7¢y.

! The characteristic impedance of a CAN bus cable is typically 120 £2, so ‘termination’ in this case
would be a 120-€2 resistor.

2 Google “resistor el2 series online combination” and you will find an online tool for how to
combine standard resistor values to any other resistance.
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A Un

12v 1.0V

230 ns

A
\/

Fig. 5.31 The near-end signal

(a) Determine the characteristic impedance of the cable. (b) What is the cable length?
(c) What is the attenuation in the cable? and (d) Draw the corresponding diagram if
the far-end is short-circuited to ground.
Z
Solution (a) Equation (5.1) gives Uzg = ————— .2 = 1.2 = 2Zy = 1.2Zy + 60
Zy+ 50

= 08Zy=60= Zy =75

(b)L=vt/2=0.7-3-10%.230-10"7/2 =24.15m

20logix 20log
— [ 7o _
(©a = o = X%z — _0,033dB/m

(d) Short-circuit to ground = y¢ = —1 (see Fig. 5.32).
Problem 5.5 Consider the experiment in Fig. 5.33.

This is what we know about the cable: It is 30 m long, has a characteristic
impedance of 50 €2, and, for the pulse-type signal in Fig. 5.33, the attenuation is
—0.02 dB/m.

Determine the load impedance if the near-end signal looks as in Fig. 5.34.

Solution u, =2 - 10700230/20y,. . 10=0.0230/20 — 1 74y, = —1 = y; = —0.574

A Un

12V

\ A

[s]
230 ns 1.0V

A
Y

Fig. 5.32 The near-end signal if the far end is short-circuited
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Zi=50Q /

A
v

o
&
]
N
Fig. 5.33 The TDR experiment
A Un
A
20V
t
Y >
T >
1.0V [s]
\

Fig. 5.34 The near-end signal

_ Zioad — 50

= =-05714= 7 —50 = —-0.574- 7 —28.7
f Z1oad + 50 load load

1.574 - Zijpad = 21.3 = Zjgag = 13.5Q

Problem 5.6 Consider the experimentin Fig. 5.35 (the input signal is a step function).

Plot the near-end signal if Zo,q is (2) an open end, (b) a short-circuit to ground,

(c) a 50-Q2 resistor, (d) a capacitor, and (e) an inductor. (Disregard attenuation in this
problem.)

Solution First, let’s figure out what the step response of u, is. Since we have an
RG58 cable, it has a characteristic impedance of 50 2; at t = 0, 2 V will propagate
down the cable. If anything is reflected at the far end, it will return to the near end

Fig. 5.35 A TDR experiment
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A Un

20V

toL

Fig. 5.36 The first t51, seconds are independent of the load

after t,;, = 2L/v seconds. So, whatever Zj,,q i, the near-end signal will always look
the same for the first 7,1, seconds, see Fig. 5.36.

If the far end is open, y; = +1 and all the incoming +2 V is reflected, interacting
constructively with the incoming waves, leaving a voltage of 2 + 2 = 4 V behind.
When it reaches the near end, u,, will =4V, see Fig. 5.37.

If the far end load is a short-circuit, the reflection coefficient is —1, and the reflected
2 V will interact destructively with the incoming waves and since 2 -2 = 0, the voltage
level on the cable is cancelled. At #,1, 1, = 0, see Fig. 5.38.

If Z10aa = 50 2, the far-end reflection coefficient is 0 and nothing is returned, see
Fig. 5.39.

If the load is a capacitor, it will initially be uncharged and as long as it is uncharged,
current can pass right through it (like a short-circuit). But soon (sooner rather than
later) it will be fully charged and then it will stop conducting current and act like
an open circuit. Hence, at first it will act like Fig. 5.38, but soon it will act as in
Fig. 5.37. Figure 5.40 illustrates the capacitor case.

A Un

4V

Fig. 5.37 uy if Zioad = 00



106 5 Transmission Lines

t
[s]
Fig. 5.38 u, if Zjpaa =0
‘\ Un
t
[s]
Fig. 5.39 u, if Zjgoq =50
‘\ Un
t

Fig. 5.40 u,, if Zjoaq = a capacitor

On the other hand, if the load is an inductor, it will initially act as an open circuit
(Fig. 5.37), but once it understands that it is just a DC signal, it will act as a short-
circuit (Fig. 5.38). Figure 5.41 illustrates the inductor case.
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A Uun

Y ~

Fig. 5.41 u, if Zjqag = an inductor

Fig. 5.42 Splice the cables

Problem 5.7 In an experiment, a TP signal cable needs to be spliced to an RG58
coax cable, see Fig. 5.42. How would you do that if the characteristic impedance of
the TP cable is 75 Q27

Solution Eq. (5.4) gives

75
R =50,/ —— =87Q =100Q//680%
75— 50

Ry =+/75(75—50) =432 = 10Q + 33 Q

Above we have assumed that we only have access to E12 series resistor values.
The reflection-free splicing is illustrated in Fig. 5.43.

Problem 5.8 Suggest another way to do the splitting in Fig. 5.25.

10Q |-

Fig. 5.43 Reflection-free splicing
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R1

R2 Rs

2 3 2 L 3

Fig. 5.44 Y and A networks

Fig. 5.45 Alternative splitting

Solution The circuit in Fig. 5.25 is a ‘Y’ network (‘wye’). This can be transferred
to a ‘A’ network (‘delta’) (see any electricity handbook) (see Fig. 5.44).

For example, Ry, = R1R2<RL1 + Riz + R%)’ but if R; = R, = R3, then this is
reduced to Ry, = 3R;. For our network in Fig. 5.25, that would give us Ry = Ry3 =
Ri3 =3 x 16.7 = 50 2. The alternative network is illustrated in Fig. 5.45.
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Chapter 6 )
Probes ek

Abstract This chapter emphasizes the need for probes in electrical measurements.
A ‘probe’ is used to minimize the measurement system’s interference with the
measurement object (observing without interfering). Passive probes are introduced
in Sect. 6.2, active probes in Sect. 6.3, and current probes in Sect. 6.4.

6.1 Introduction

Consider the simple network in Fig. 6.1.

It is easy to see that the potential at point A is 2.5 V. But, of course, we don’t
really know that until we measure it. A common DMM (or an oscilloscope) has an
input impedance of 1 M. If we connect that over the 200-k$2 resistor, see Fig. 6.2,
then the voltage meter’s impedance will be in parallel with the 200-k€2 resistor, and
the total impedance will be 200//1000 = 167 k<2, see Fig. 6.2.

By trying to measure the voltage, we change the system. In this example, the
result is off by almost 10%! System interference is inevitable; you can (almost)
never measure something without disturbing the system. The important thing here is
to first be aware of that, and second, to do what you can to minimize your instruments’
interference.

In the previous example, it is obvious that the problem is the ‘high’ source
impedance (or the ‘low’ instrument impedance); the source’s and the instrument’s
impedances are of the same order. Obviously, the remedy is to increase the impedance
of the instrument so that it is ‘much higher’ than the source impedance.

That is exactly what a ‘probe’ does; it increases the impedance of the instrument to
minimize the instrument’s interference with the system. In the previous DC example,
the probe would just be a simple high-<2 resistor in series with the voltage meter. In
Fig. 6.3, we have connected a 9-MS2 resistor in series, which means that the total
impedance is now 200//10000 = 196 k€2 and the potential in point A is now 2.47 V;
our new instrument only causes a disturbance corresponding to 1%. That is quite an
improvement.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 111
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5V
200 kQ
A +
200 kQ Ua=25V
Fig. 6.1 Simple DC measurement
5V +B5V
200 kQ 200 kQ
A A ¥
200 kQ Rv=1MQ — 167 kQ Ua=227V
Fig. 6.2 Connecting the instrument will change the impedance
Fig. 6.3 Using a probe +5V
_...Probe ______ Oscilloscope ____
200kQ | | | i !
. Rp=9 MO, !
: V) Ry = !
200 kQ ! h Uosc
| X 1 MQ !

Of course, it could be argued that this will cause an error in the measurement; the
voltage meter in Fig. 6.3 will only measure one-tenth of this (0.247 V), but that is
easily compensated for (just multiply by a factor of 10).

In this example, it was easy and straightforward to design a probe. However,
probes are mostly used with oscilloscopes measuring AC signals, and that makes
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things a little more complicated. The main objective here is to design probes for
oscilloscopes.

6.2 Passive Probes

First, we need an accurate model of the oscilloscope’s input. An oscilloscope input
is always marked with a resistance and a capacitance, see Fig. 6.4. That refers to the
input impedance values as illustrated in the right-hand side of Fig. 6.4; the input is
modeled as a resistor and a capacitor in parallel. (The ‘capacitor’ is not a capacitor;
it is the inherent capacitance of the input.)

Hence, the input impedance is

1
e R R,
Z] = XC]//Rl = 1 = . (61)
e + R, 1+ joR C

In Eq. (6.1), we see the problem; Z, depends on the frequency.

In Fig. 6.3, we multiplied the voltage meter reading by a factor of 10 to get the
right answer. That is acceptable, if we can always multiply by the same constant (=
10) to get the right answer, but if we did the same trick in Fig. 6.4, the portion of the
input voltage that falls over R; would depend on the frequency; we would have to
calculate a new multiplication factor for each new frequency, and that would make
the trick next to useless. So, for AC signals and oscilloscopes, we need to be a little
more creative. Figure 6.5 illustrates our ‘creative’ solution.

In Fig. 6.5, the ‘probe’ is the R,/C, circuit, and this is what we need to make
the fraction of u;, that ends up over R; independent of the input signal’s frequency.
That may look unlikely at first sight, since we have added one more component that
has a frequency-dependent impedance (C5), but we will prove it shortly. First, we
consider the DC case. If the input signal is DC, then we can disregard the capacitors
and we are back to the same problem as in Fig. 6.3. The most common probes are
‘X10’ probes, meaning that only one-tenth of the input signal ends up over R; and
that’s what we are aiming for here. Well, for that to be true for DC signals, we must
have R, = 9 M€, just like in Fig. 6.3.

So, we already know the value of R,. The trick now is to, if possible, select a value
for C; such that the fraction of the voltage u;, that falls over R; is always one-tenth

Ci=12 Fl
1MQ 1=1ep
12 pF

Fig. 6.4 Oscilloscope input

R1=1 MQ
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_________________

o

scilloscope

: R2 E l i
Uin Dl 1C1 T R1i Uosc

Fig. 6.5 Oscilloscope with probe (R; = 1 MQ2)

of u;,, regardless of the input signal’s frequency. If we can’t find such a capacitance,
the whole idea will be rejected. Let’s see what ug is

Ry
I+joR,C

Uose = R R,
- + -
14+ jwRC 1+ jwR,Cy

8

X Uin (6.2)

Equation (6.2) does not look very promising; there are a lot of ws in Eq. (6.2) and
we want § to be independent of w; we want § = 1/10. Well, that is possible; if we
make R;C| = R,C,, we can cancel all the 1 + jwR,Cx denominators and then:

R 1 1

= —— X = — X u 6.3
R1+R2xun 1+9Xl4m 10XM1n (6.3)

Uogsc =

which is exactly what we are looking for. So, if

R, 1
Cyo=—C;=—-x12=1.33pF 6.4
= %075 X p (6.4)

we have a frequency-independent voltage divider in Fig. 6.5, and that’s what a passive
probe is. Figure 6.6 illustrates a typical oscilloscope probe.

The advantage of an oscilloscope probe is that your instrument’s ‘disturbance’ on
the system is significantly reduced (which is paramount), but the disadvantage is that
since only a fraction of the input voltage (one-tenth) ends up over the oscilloscope
(the rest is over the probe), the sensitivity is reduced by a factor of 10. However,
if you insert the right probe (i.e., the oscilloscope vendor’s probe), the scope will
automatically recognize it and automatically recalibrate the vertical scale to give you
the correct reading (you don’t have to think about the 1/10 factor). As you can see
in Fig. 6.5, the C; capacitance is adjustable, usually by a small screw on the probe’s
head, (see oscilloscope manual for the procedure), but modern oscilloscopes have an
‘auto-calibration’ option for probes (in some menu somewhere...).
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Apart from not disturbing the voltage at the measurement point, there is one more
thing you need to consider. We will illustrate that by an example.

Example 6.1 In Fig. 6.7, two systems are cascaded, one with bandwidth 100 MHz
and one with bandwidth 120 MHz. What is the overall bandwidth of this system?

Solution On an exam, a lot of students would answer ‘100 MHz’, arguing that in a
cascaded system, the component with the narrowest bandwidth defines the overall
bandwidth. That is wrong (and earns you zero credits on an exam). It is a lot worse
than that. Go back to Chap. 1, Fig. 1.4, and Eqgs. (1.7) and (1.8), and you will see
why. The overall risetime of the system in Fig. 6.7 is

0.35\> /0.35\°
= (== T2 —4.56
frour \/(0.12) + <0.10> e

which means that the overall bandwidth is

—_ — = 7 y4
total 1.56

Fig. 6.6 A ‘passive’
oscilloscope probe

Fig. 6.7 Two cascaded System 1: - System 2:

systems ™ Bi=120 MHz 1 Bz=100 MHz

(Probe) (Oscilloscope)
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We learn two things from this example. First, we learn that the overall bandwidth of
acascaded system of components is always less than the bandwidth of the system with
the narrowest bandwidth. Second, notice that by adding the probe to the oscilloscope
above, we significantly reduced the system’s bandwidth. We went from 100 MHz
without the probe to 77 MHz, with the probe. So, we learned one more thing:

The probe’s bandwidth must be significantly larger than the oscilloscope’s
bandwidth (or the overall bandwidth will be reduced).

6.3 Active Probes

If high input impedance is what we want, then we can easily find a better solution;
feed the input signal to the input of a op amp in a voltage follower circuit, see Fig. 6.8.

The probe in Fig. 6.8 is an ‘active’ probe; it is ‘active’ because it needs external
power to work. Anyway, this is obviously the perfect probe! The input of an op amp
is extremely large so it would not induce any disturbance at the measurement point,
and it also does not reduce the sensitivity like the passive probe does. So, if this
probe is so perfect, why don’t we always use it? Why do we bother with passive
probes at all? The probe in Fig. 6.8 is so perfect, it is almost too good to be true....
And when something sounds too good to be true, it usually is. Active probes are
no exception. The problem with active probes is that they are very expensive. An
active probe could easily be €10,000. Why are they so expensive? It looks like a
simple enough circuit. The answer is in the previous example. We concluded that the
probe’s bandwidth must be much larger than the oscilloscope’s bandwidth. If you
have a 500 MHz oscilloscope, you need maybe a 5 GHz probe. So, even if the circuit
in Fig. 6.8 looks simple and innocent enough, if you scale it up to the GHz range
(and above), it becomes a very complicated (and expensive) design. So, unless you
have very deep pockets, you will be stuck with passive probes.

Here is a common question about active probes: If ‘active’ means that it needs
external power, does that mean that I need to supply power from an external DC
power supply?

No, you don’t. Again, if you use the right probe, the oscilloscope will recognize
it, and provide the necessary power automatically through the copper pads on the
oscilloscope input, see Fig. 6.9. (So, for God’s sake, don’t buy the wrong active probe
to your oscilloscope! If the scope doesn’t recognize it, it is a lot of money down the
drain.)

Fig. 6.8 An ‘active’ probe

u
Uin osc
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Fig. 6.9 An active probe is An active probe

powered from the - will get power
oscilloscope from these pads.

6.4 Current Probes

Oscilloscopes are voltage meters; they inherently measure voltage. You could of
course measure current by measuring the voltage across some reference resistor, but
the vertical scale on your scope would still be voltage [V]. However, you can measure
current with an oscilloscope (with amps [A] on the vertical axis) if you buy a current
probe.

Current probes for oscilloscopes are non-contact probes; the probe clamps an
iron core around the wire-under-test and the induced magnetic flux in the iron core
is proportional to the current. Figure 6.10 illustrates the principle.

Wire-under-test

Slidable
C ®
| DY
/ E N u = kx|
DY
N °
A
Flux generated by | J

Fig. 6.10 The current probe principle
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Wire-under-test

Slidable

v

u = kx|

4

JAWANAWA

A —

Flux generated by | -J /

Flux generated by op amp <&

Hall
sensor

Fig. 6.11 Current probe with op amp feedback

The disadvantage of the current probe in Fig. 6.10 is that it doesn’t work for DC
currents. For that reason, current probe designs typically include a Hall sensor and a
feedback op amp, see Fig. 6.11.

In Fig. 6.11, the Hall sensor signal is fed to an op amp with negative feedback and
since the non-inverting input is at 0 V, the op amp will generate a signal that makes
the Hall sensor signal zero; the op amp will generate a signal in the coil that cancels
the total flux in the iron core. Hence, the op amp output signal is proportional to the
current.

Current probes are expensive too, and the price depends on the bandwidth you need
for the current measurement; the higher the current bandwidth the more expensive
will the probe be.

If the current is small, a common trick is to twist the wire multiple times around
the iron core. Figure 6.12 illustrates a common current probe.
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Fig. 6.12 Current probe

6.5 Solved Problems

Problem 6.1 Design a x 10 probe for the oscilloscope in Fig. 6.13.

Solution Fig. 6.14 illustrates the probe. If we first consider the DC case (ignore the
capacitors), we can find Ry:

301
== 5 R =27MQ
3t R, 10 SR

Equation (6.4) givesus C; = RiC; /Ry =3 - ‘2‘—(7) = 4.44 pF.

_____________________________

Signal i l E

Fig. 6.13 Instrument input

; 3 MQ
input
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Fig. 6.14 The probe Tttt
: CZ i |'-'_'_'_'_'____'___'-'_'_'-'_'-":
i H i i Instrument i
R R S §
i Rz b l :
! o 40pFT 3Ma i
Probe  bi ]
Fig. 6.15 Find the ‘true’
potential at A
300 kQ
A
X(t) = 4xsin106t <~>
100 kQ

Problem 6.2a What is the voltage at point A in Fig. 6.15?

Solution One-fourth of x(¢) falls over the 100-kS2 resistor: us () = 1 x sin10°¢ V.

Problem 6.2b What signal will the oscilloscope in Fig. 6.16 measure?

Solution 100//1000 = 90.9 kQ. X¢ = —j/wC = —j/10° - 15 - 10712 = —j66.7 k<

300 kQ

X(t) = 4xsin106t <~>

100 kQ

|

15pFT 1 MQ

!

Fig. 6.16 What signal will the oscilloscope display?

____________________________
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—j66.7-90.9 6063 - e

_ a3’
90.9 —j66.7  112.7 - ei363 =338e

Z =90.9// — j66.7 =

= 31.8 — j43.5kQ
UA(t) = L‘xm: 53.8 . e—i%37 " .loﬁt:M.meﬂoe,
Z + 300 31.8 —j43.4 4+ 300 334.6 . 15

064 ej(lO(’t—46.2°)

Compared to the ‘true’ value, we have an amplitude error of 36% and a phase
error of 46.2°.

Problem 6.2¢ Design a x 10 probe for the oscilloscope in Fig. 6.16.

Solution R, =9 MQ, C, = 15/9 = 1.67 pF.
Problem 6.2d What will the oscilloscope measure if we use the probe at point A?

Solution Fig. 6.17 illustrates the oscilloscope with the probe.
First, we find the impedances Z; and Z, (see Eq. (6.1)):

B IM
©14j-106-10%-15-10-12

B 9M
T 14j-109.9.105-1.67-10-12

Z =66.5-e B0 kQ = 4.4 — j66.4k2

Z — 598.7 - e 862" kQ = 39.7 — j597.4 k2

Z) + Z, = 44.1 — j663.8kQ = 665.3 - e ¥ kQ

Z>
l 1.67 pF
300 kQ
A

X(t) = 4xsin108t <~>
9 MQ
100 kQ 15 pF —l— 1 MQ

Fig. 6.17 Measuring with probe
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100 - 665.3 - e 502" 66530 - e7I502°
144.1 —j663.8 6793 .e7i778

= 97.9. ¢4 kQ = 96.8 — j14.3kS

Za = (Z1 + Z5)//100kS2 =

Za 97.9 . e84 o 97.9-e7B¥
Z4 + 300 396.8 —j14.3 T 397.1.e2T°
=0.99.e(9703) — 0.99 x sin(10° — 6.3°)V

ua(t) = x(t) = 4. 10

We now have a 1% error in the amplitude and 6.3-degree error in the phase.
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Transform Theory e

Abstract This long and important chapter introduces a mathematical tool called
transforms. This is probably the most important mathematical operation used in
electrical measurements. It transforms a signal in time space to frequency space, and
this is extremely common (and useful) to understand and analyze your measurement
signal. The focus in this chapter is the understanding of transforms and it starts with
understanding exactly what is meant by the frequency (and later we must under-
stand why the frequency can be a complex number). Transform theory is by most
students perceived to be ‘hard’ and the main reason for that is that there appears to
be so many different transform expressions; depending on the nature of the (time)
signal, it is necessary to use different mathematical expressions, but they all really
do the same thing (i.e., transfer a time signal to frequency space). Because there
are so many different expressions, this chapter tries to organize them for you (see
Table 7.6). Several different transforms are introduced; the Fourier transform, the
discrete Fourier transform, the Fast Fourier transform, the Laplace transform, and
the z transform, but remember they all do the same thing; they take your signal from
time space to frequency space. The main objective of this chapter is to help the reader
understand transforms and see how they are related. This chapter also introduces the
Bode plot and defines LTI systems (linear and time-invariant system).

7.1 Introduction

You should consider this to be one of the most important chapters in this book.
‘Transform theory’ is what we use to transfer a signal from ‘time space’ to ‘frequency
space’. It will become obvious that we can learn so much more about any signal (or
system) if we leave time space and go to frequency space. Our primary objective here
istodo a ‘frequency analysis’ and the tool(s) we need to do that is called a ‘transform’.
There is not just one transform, there are several different ones, depending on the
signal we are looking at. The signal could be ‘analog’ or it could be ‘digital’. In
this context, ‘digital’ means ‘sampled’ (the mathematical term is ‘discrete’). We
will also introduce a few new frequency variables. For example, we will have both
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‘non-complex’ and ‘complex’ frequencies. That gives us four transforms already,
see Table 7.1.

We will fill the gaps in this table as we learn about the transform tools in this
chapter.

But we need to start from the beginning. We should start by properly defining
exactly what we mean by ‘frequency’. I’'m sure you have a clear idea about what a
signal’s ‘frequency’ is, but our definition of ‘frequency’ in this context is very strict:
If a signal has frequency f, it is a harmonic function (sinusoidal) with period 7' = 1/
f. Hence, the signal in Fig. 7.1 has frequency f, but not the signal in Fig. 7.2. (Well,
it does have the frequency f, but also at lot of other frequencies, see Example 7.1.)

Hence, when we say ‘frequency’ we mean the frequency of a harmonic signal.

We also need to define the word ‘analysis’, but first we will present a fundamental
theorem.

Theorem All signals can be expressed as a sum of cosines:

x(t) = ap + a) cos(wt + ¢1) + az cos(wat + ¢2) + ...

=ay+ Y arcos(wt + pr) (7.1)
k

Table 7.1 The transform
map Non-complex frequency | Complex frequency

Analog

Sampled

[volt]
N

1 1 1
time [s]

Fig. 7.1 A signal with frequency f = 1/T

[volt]

1 1 1 1 1 1 1 | 1 1 1 | 1 1
time [s]

Fig. 7.2 This signal has frequency f = 1/T and many more (see Example 7.1)
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The domain of k depends on the signal; if x(¢) is periodic with period T, then the
domain of k is all positive integers and w € k - wp, where

2
wo = 7” = woT =27 (1.2)

On the other hand, if x(¢) is not periodic, then k can be any number and w € R
(all real numbers). When x(t) is not periodic, Eq. (7.1) doesn’t make sense. We will
come back to that later.

Now we can define ‘analysis’. In general, ‘analysis’ means ‘decompose into
constituents’. When we do ‘frequency analysis’ of a signal, we express it as in
Eq. (7.1),1.e., we write it as a linear combination of cosines (the cosines are the ‘base
vectors’). If x(¥) is periodic, we already know the frequencies (they are k - wg); we
only need to find all the amplitudes a; and phase angles ¢;. The tool we use to find
the amplitudes and the phase angles is called the Fourier transform.

7.2 The Fourier Transform

The Fourier transform takes our signal and produces an expression that is a function
of the frequency, X(w) (Fig. 7.3); this is a complex function and the magnitude of
X(w) gives us the amplitude of the cosine with frequency w, and the argument (arg
X(w)) of X(w) gives us the phase angle.

Depending on the signal, we can identify three different cases that we need to
treat separately.

7.2.1 Case 1: Signal is Periodic

In the first case, the signal is periodic, the period is T and, in that case, only frequencies
which are a multiple of w( can exist in Eq. (7.1). For that reason, we write the Fourier
transform X (w) as X(w) = X(k-wy) = X(k), and we define it as

17 A 17 A
X(k) = = [x(t)-edt = — [x(t) - e Fn' gy (7.3)
T o T

Example 7.1 Express the square wave in Fig. 7.4 as a sum of cosines.

Fig. 7.3 The Fourier
transform operator Xty ———————» _T{X(t)} — > X(o)
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A X(®)

\ Aas

i 1
-T/2 -T/4 T4 T2 T

Fig. 7.4 We will analyze a square signal

Solution First, we find the Fourier transform expression. In Eq. (7.3), we can inte-
grate over any period. Since the signal is symmetric, we choose to integrate over a
symmetric interval:

1 72 4 1 7/4 4 T
X(k) = — ¢ 7_]ka)otdt —_ 1. 7kaotdt - _ —jkawot
=3 [ xe R Fonr "
_ 1 (e—jkwo% _ ejkw()g) _ 1 l(ékn/Z — ) = 1 sin km
jk2m km  2j km 2
(7.4)

In Eq. (7.4), we can immediately see that X (k) = 0 if k is an even number (3 0).

If k is odd, then sinkmt/2 = 4+ 1 and X(1) = 1/wt, X(3) = —1/37t, X(5) = 1/5T, etc.

For k = 0, we need to find the limit when k — 0. We use 1’Hospital’s rule to find the
limit:

sink

bLs bls T
2 cosk2

. 3 . 1
lim =lim *—= = —
k—0 kT k—0 1A 2

Hence, we get the following Fourier transform:

1 ifk=0
X(k) = § £ ifkis odd (7.5)
0 ifkiseven

Notice in Eq. (7.5) that k is both positive and negative, which suggests negative
frequencies. But of course, frequencies cannot be negative; the negative k values are
only a consequence of Euler’s formulas for sine and cosine:

1, . .
ay cos(wpt + @) = akz(e](wkﬂr(ﬂk) + e*](wkfﬂﬁk))

1 . . 1 . .
= —a . g%k _e]wkt 4+ —a;-e LN Jokt

——— ——
X (k) X (=k)

(7.6)
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Euler’s formula for cosine assigns half the signal energy to the ‘positive’ frequency
and the other half to the ‘negative’ frequency. Except for k = 0, of course, where + 0
and —O0 coincide, and all the energy is in k = 0 (k = 0 is the ‘DC’ part of the signal).
From Eq. (7.6), we can see that

|X (k)| = %ak Sa=2-1Xk)| k#0 (7.7a)
o = argX (k) (7.7b)
ap = | X(0)] (7.7¢)

Expression (7.7) is the link between the Fourier transform and the sum of cosines
in Eq. (7.1). In our example, we get

1
ap = |X(0)| = 2
1 .
X()=—=—-e"=a=2-— ¢ =0
|
X@3) ! Lo !
= —-—— = — azy = - =T
31 31 } 3n &
1 1 . 1
X(5) =—=—¢e" =2.— =0
OV =5 =5 7s=2 5 ¢
Since cos(o + 1) = —cos(«), we can now use Expression (7.1) to write x(¢) as
1 2 1 1
x(t) = = 4+ — | coswot — = cos 3wyt + — cos Swyt — ... . .. (7.8)
2 0m 3 5

In Fig. 7.5, we have plotted the amplitude spectrum of x(#) and in Fig. 7.6 we have
plotted the different components and the sum of the first four terms in Eq. (7.8) to
compare it with the original square signal.

We can learn a few important things from this example. First, notice that we use
k as the frequency variable. Get used to that! The frequency is a multiple of wy and
it is very important that you get used expressing frequency in terms of k. wy = 27/T

0.6
=04 1
<
X02f T T 1

06 o i o T o @ o © o o 4
2 0 2 4, 6 8 10 12

Fig. 7.5 The amplitude spectrum of x()
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total ‘

coswt - = = -square -cos3wt cosbwt ——DC

-6.28 -4.71 -3.14 -1.57 0 1.57 3.14 4.71 6.28 7.85 9.42

Fig. 7.6 The different frequency components of x()

or fo = 1/T. So, for example, when we say that the frequency is ‘3’, we mean that
itis 3 x fo. Here is an alternative way to think of k: We know the period T of the
signal and k tells us how many periods of a cosine that fits in 7', see Fig. 7.7.

Second, notice that we only plotted the amplitude spectrum in Fig. 7.5; we didn’t
plot the phase spectrum. We could have done that too, but we didn’t. This is typical;
in most cases, we only care about the distribution of amplitudes in a signal (see
Chap. 8 about spectral analysis).

Let’s return to Eq. (7.3). The Fourier transform expression has a very important
feature; the amplitude spectrum is symmetric, i.e.,

X (k) = X*(k) = |X(=k)| = [X (k)| (7.9)

(In Eq. (7.3), it doesn’t matter if we change sign of k or j.) As we will see later,
this is a feature that characterizes all Fourier transforms.

Now we can update our transform map in Table 7.1 with our first transform.

In Table 7.2, we had to split the analog/non-complex frequency cell into two,
because we are not done with this signal category yet.

I I I
[----defines period T —k=1—k=2—k=3

! ! ! I | ! I
-1.5708 0 1.5708 3.1416 4.7124 6.2832 7.8540

Fig. 7.7 k is our frequency variable
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Table 7.2 The transform

map Non-complex frequency Complex frequency

Anal T
T Xt = Ly x(nyeikent gy
0

Sampled

7.2.2 Case 2: Signal is Non-Periodic, But ‘Time-Limited’

Another name for a ‘non-periodic, time-limited’ signal is a ‘transient’, see Fig. 7.8.

A transient is characterized by the fact that its energy is limited. (A periodic signal
has infinite energy, but limited power.) Since a transient doesn’t have a period T', we
cannot define an w( and the frequencies of the cosines in Eq. (7.1) cannot be predicted
with some simple formula. As a matter of fact, when x(7) is a transient, all frequencies
are allowed and w € R (all real numbers). That means that Expression (7.1) is no
longer meaningful, and when we describe a transient, we only present its amplitude
spectrum (which is now a continuous function). Fourier transform Expression (7.3)
must be manipulated to allow any frequency:

X(@) = | x(t) - ey (7.10)

Example 7.2 Plot the magnitude spectrum of the transient in Fig. 7.9. What is the
signal’s bandwidth?

Solution First we need to find the Fourier transform:

[volt]

| |
time [s]

Fig. 7.8 A transient
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AX®

Fig. 7.9 A transient

1 . 1 . 1 1 1 .
X()=f1-edt=——.[e]| =——. (e —-1) =
0 L= ey
=2 Lon _gonyor 2 gn @ gor _gine® oo —_—
o 2j w 2 2 )
[ —

—sinw/2

= | X(w)| = |sincw/2|

The amplitude spectrum is plotted in Fig. 7.10.

In Fig. 7.10, we can see that the signal’s bandwidth is infinite, but most of its
energy is in the interval O... 2m rad/s.

Notice in Eq. (7.10) that the Fourier transform for a transient is also symmetric:
X(—0) = X*(0) = | X(-~0)| = |X(0)] (7.12)

So, if we also plotted the amplitude spectrum in Fig. 7.10 for negative frequencies,
it would just be a mirror of the positive frequency values.

Compare the amplitude spectrums in Figs. 7.5 and 7.10; for periodic signals,
the amplitude spectrum is always a discrete function (only certain frequencies are

allowed) and for transients the amplitude spectrum is always a continuous function
(any frequency is allowed).

abs(X(w))

0 6.2832 12.5664 18.8496 25.1327 31.4159 37.6991 43.9823
w [rad/s]

Fig. 7.10 The amplitude spectrum is now a continuous function
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Table 7.3 The transform map

Non-complex frequency Complex frequency
Analog Periodic X(k) = %}x(r)e’jk‘“‘”dz
0
3 oo .
Transient X() = [ x@)eidt
—00
Sampled

Let’s update our transform map with our new Fourier transform (Table 7.3).

7.2.3 Case 3: Signal is Non-Periodic and Infinite

Figure 7.11 illustrates a non-periodic, infinite signal.

This signal is a little bit of a headache because we don’t have a transform formula
for it. It is not periodic, and it is not a transient. It is not even deterministic, i.e., we
don’t have a closed-form expression for it to put into a formula. So, what do we do?
If you think about it, this must be what most ‘real-life’ signals look like, and there
are plenty of situations where we need to know the amplitude spectrum of this kind
of signals (to find the signal bandwidth, for example).

The answer is that we must sample it. ‘Sampling’ means recording its signal value
at regular time intervals, see Fig. 7.12.

T's is the sampling time interval, the time between each sample, and the inverse
is the sampling rate:

1
fs = TS[S/S] (7.13)

(The unit is ‘Samples per second’.) Sampling is a precarious operation; there is a
strict rule that you must always follow:

A X(®)

Fig. 7.11 A non-periodic and infinite signal



132 7 Transform Theory

< T =NxTs >

Fig. 7.12 Sampling a signal

Theorem When you sample a signal with a maximum frequency of fmax (= the
signal bandwidth), the sampling rate must exceed 2-f

ﬁ>2jwﬁ¢mm<§- (7.14)

This is the sampling theorem, sometimes also called the Nyquist sampling theorem
(or the Shannon sampling theorem'). Notice the use of >’ and ‘ <’ in Eq. (7.14) and
not ‘>’ and * <’. The sampling rate must be greater than 2-f y.x. Not greater than or
equal! This is important and we will talk a lot more about this later. A consequence
of the sampling is that the signal becomes discrete: x(t) becomes x(n):

x() = x(n-Ts) = x(n) (7.15)

x(n) should be interpreted as x(n-T's). Also, we will usually write ‘x,” instead of x(n)
(laziness wins).

Another thing we need to decide is when to stop sampling. The signal is infinite,
but we can’t just sample forever. Sooner or later, we must stop sampling and do
something with our samples (like finding the Fourier transform). Hence, we take
N samples and then we stop (temporarily) to do some calculations on our samples.
When we stop sampling, we have observed the signal for a time duration 7

T=NxTs (7.16)

The question is: What do these samples represent and how do we find the Fourier
transform? Well, the answer is that we must adjust one of the Expressions (7.3)
or (7.10) to discrete time. (We don’t have any other expressions for the Fourier
transform.) But, which one? Using Expression (7.3) would indicate that we consider
our N samples to be exactly one period of a periodic signal and using Expression
(7.10) would suggest that we consider the N samples to be a transient, equal to zero
outside the observed time T = N-Ts. So, whichever expression we use, it will not be

I Neither Shannon nor Nyquist'discovered’ the sampling theorem; Edmund Whittaker published it
already in 1915, but Shannon and Nyquist are usually credited for it. Fair or not, that is how it is.
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completely correct, but again, these are all the expressions we have. And, as it turns
out, it doesn’t matter which one we choose, the result will be the same! However, we
will arrive at the result a little faster (and a little more elegantly) if we use Expression
(7.3): We consider our N samples to be exactly one period of a periodic signal with
period T = N-Ts. We denote our samples in Fig. 7.12 as {xq, x|, X2, X3, X4, .Xy_1}.
To find the Fourier transform of the samples, we adjust Eq. (7.3) for discrete time: ¢
— n-Ty.

17 :
X (k) = ?gx(t) ceTket — g {1 —> nTs) = Zx g ikwonTs (7.17)

n()

But, wgTs = woT/N =2n/N, so

X (k) = eIk Zx ¥ = DFT (7.18)

Expression (7.18) is called the Discrete Fourier Transform, or just DFT. Notice
that we dropped the 1/N factor above; it carries no information (since it only scales
each X (k) value by the same factor), and we drop it because our samples will of course
be processed by a computer algorithm with a real-time constraint and multiplying
by 1/N is just a waste of processor time that doesn’t add any information. (Our X (k)
samples will be N times ‘too large’, though. We need to keep that in mind when we
use a computer to find the Fourier transform. See Example 7.4.)

Equation (7.18) requires exactly N (complex) multiplications for each X(k), and
there will be exactly N X(k)s to calculate (we will explain why there are exactly
N values later), so the DFT requires N> complex multiplications. This is a time-
consuming task that puts a limit on the real-time sampling rate. However, analyzing
Eq. (7.18) in more detail reveals that a lot of the multiplications are identical and/or
‘symmetrical’.

When a computer computes the discrete Fourier transform, it takes advantage
of the symmetries in Eq. (7.18) by using an algorithm known as the Fast Fourier
transform or the ‘FFT algorithm’. It was first presented by Cooley and Tukey in
1965 [1], and it reduces the number of complex multiplications to only N-log,N.
Anyway, the details of that algorithm are not important to us (let the computer worry
about that). In this context, ‘DFT’ and ‘FFT’ mean the same thing and will be used
interchangeably.

Before we present any examples of how to use the DFT, we make some obser-
vations. First, the Fourier transform Expression (7.18) is still symmetric (X (—k) =
X*(k)), so we still have symmetric amplitude spectra. However, the DFT expression
has a new property that we have not seen in our earlier expressions, and this new
property is all-important! To see this property, we find the DFT of X(k + N):
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. 2 o . oo
X(k+N)=ane—J(k+N)Nn:ane Jan.e JZnn:ane jkan 10
=1 .

= X (k)

We can easily see that Eq. (7.19) holds for any multiple of N: X(k + mN) = X (k),
which proves that the DFT is periodic.

If You Take N Samples of X(t), X(k) Becomes Periodic with Period N!

(Which explains why we only need to calculate exactly N X(k) values.)

Notice also that we still use k as our frequency variable! If the frequency is ‘3’, it
still means that the cosine has a frequency such that its period fits three times in 7.
The only difference is that 7" is now the ‘observation time’ defined in Fig. 7.12. The
frequency of the ‘fundamental’ is fo = 1/7, and all other signal frequencies must
(still) be a multiple if this frequency:

1 1 Js
=k fo=k==k—=k—=k- A 7.20
f fo=k= NTS N f (7.20)

where Af = fs/N is the frequency resolution. Notice that the frequency resolution
is improved if we reduce the sampling rate (or take more samples). The sampling
rate and the number of samples determine how small frequency differences we can
resolve in the amplitude spectrum. A high sampling rate gives us a high resolution
in the time domain, but a low resolution in the frequency domain.

7.2.4 FFT Outputs

If you use an FFT algorithm to compute the DFT, it will output exactly one period
of X(k); X(0) .... X(N — 1). These samples need to be treated ‘carefully’. First,
remember the sampling theorem: only frequencies < fs/2 are ‘legit’. Are all N DFT
samples produced by the FFT algorithm legit? Well, yes and no. First, according
to Eq. (7.20), the frequencies are k-f's/N. Inserting this into the sampling theorem
condition gives us

s fs N
=k - —<=—==k<— 7.21
f N < > = k< > (7.21)
Hence, you could argue that only the first half of the N X(k) samples are ‘legit’;
the second half has frequencies that violate the sampling theorem. On the other hand,
we have the symmetric and periodic properties of the DFT. Assume that N/2 < k <
N -1, i.e., k represents a frequency that violates the sampling theorem. Then,

Xy = X(k-N) = X'(N-k (7.22)

Due to, Due to
periodicity symmetry
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Suppose N = 16 and k = 10. Then X(10) = X(—6) = X*(6). Hence, you could
argue that the second half of the N DFT samples is legit; they are just the ‘negative’
half (and will always be the complex conjugates of the ‘positive’ half). Figure 7.13
illustrates some of these important aspects of the DFT.

Example 7.3 Figure 7.14 illustrates a sinusoidal function (not sampled). Without
doing any actual calculations, predict its Fourier transform.

Solution There is only one cosine in this signal, and it defines the period 7. That
means that only X(1) and X(—1) are # 0. Equation (7.7) gives us immediately that
the magnitudes are 0.5. Since it is a sine, and not a cosine, it has a phase shift of —
90°:

X(1) =05 =05 = X(—1) = X*(1) = 0.5
X(k)y=0forall k # + 1.
Notice how easy it was to find the Fourier transform once you understand what it

represents.

The ’legit’ samples that a
spectrum analyzer displays.
The samples that the fft
X A comand in MATLAB produces.

©
©

T

[ !
-10 -5 0 5 10 15 20 25 30

e.2 70115 _

=~

Fig. 7.13 A DFT spectrum when N = 10; notice the periodicity and the symmetry

Fig. 7.14 A sinusoidal function
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Fig. 7.15 Taking eight samples of a sinusoidal signal

Example 7.4 In Fig. 7.15, we have sampled the signal in Fig. 7.14. What would
MATLAB (or any other signal processing software) produce if we used the fft
command on these samples?

Solution It is important to understand that T is no longer determined by the signal’s
period; it is determined by the (total) sampling time N-T's as indicated in Fig. 7.15.
Since our signal’s period fits exactly two times in this time 7', only X(2) will be # 0.
From the symmetry property, we also know that X(—2) would be = X" (2), but the fft
algorithm doesn’t produce, X (—2), it only produces X (k) for k = 0...7. However, the
periodic property of the DFT implies that X(—2) = X(—2 + 8) = X(6) which indeed
is a number that the fft algorithm produces. Hence X(6) = X*(2) # 0, all other DFT
values will be 0. So, we only need to find X (2), everything else is predicted.

So, what is X(2)? Well, the phase angle is the same as in Example 7.3, so we will
again get a ‘—j’. The amplitude is also the same, but that does not mean that X(2) =
—0.5j! The reason is that in the DFT expression in Eq. (7.18), we dropped the 1/N
factor! Now we must face the consequences of that; our X (k) values will be N times
too large! So, instead of —0.5j, we will get —0.5j x 8 = —4j (and X(6) = 4j).

We encourage you to check this by applying the fft command in MATLAB to the
eight samples [0,1,0,—1,0,1,0,—1].

Finally, we should update our transform map, see Table 7.4. Notice in Table 7.4
that we use the same frequency variable k in two transforms, and that they mean the
same thing. Almost....! Make sure you understand the subtle difference between the
k variables in the two transforms.

7.2.5 Aliasing

If we don’t comply with the sampling theorem, there will be consequences, which
we will illustrate in the following two examples.

Example 7.5 Plot the amplitude spectrum of the signal x(#) = sin2w1000¢, if it is
sampled at a rate of f'g = 10 kS/s.
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Table 7.4 The transform map

Non-complex frequency Complex frequency

Analog Periodic X(k) = %}x(r)e’jk‘“‘”dz
0

3 oo .
Transient X() = [ x@)eidt
—00

Sampled N1 2
P Xk = 3 xpe K
n=0

Solution This is easy; there is only one frequency (= 1000 Hz), so we will have a
spectrum peak at f = 1000 Hz. But, since we are sampling, there will be other peaks
too, due to the symmetry and periodic properties. First, due to symmetry, we will
have an equally large peak for f = —1000 Hz, and then these two peaks will repeat
for every multiple of the sampling frequency, i.e., we will have peaks at (m-10,000
+ 1000) Hz, see Fig. 7.16.

Due to the symmetry and periodic properties of the DFT, there will be a lot of
‘peaks’ in the amplitude spectrum (infinitely many), but since we only look in the
‘allowed’ rangeO ... fs/2, thatis not a problem; our 1000 Hz signal shows up correctly
in this region. The other peaks are called ‘aliasing’ peaks and in this example, they
don’t cause us any trouble, but they will cause you trouble if you don’t comply with
the sampling theorem. The next example will illustrate that.

Example 7.6 Plot the amplitude spectrum of the signal x(¢) = sin2m9000¢, if it is
sampled at a rate of f's = 10 kS/s.

Solution Justaseasy; ‘real’ peak at 9000 Hz, ‘symmetry’ peak at —9000 Hz and then
the ‘periodic’ peaks at (m-10,000 £ 9000) Hz. That will give us peaks at frequencies
...—9000, + 1000, + 11,000, 4+ 21,000 ..... and —1000, 9000, 19,000, 29,000 .....
Exactly at the same positions as in the previous example!! (Fig. 7.17).

‘X(k)‘A We only look in this interval!
o L S e e
-10 5 0 5 10 15 20 25 30 kHz

f<fs/2

Fig. 7.16 Amplitude spectrum of a 1000 Hz sinusoidal signal sampled at 10 kS/s
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...but we are still only looking in this interval!

IX(k) A
The ’real’ peak is here....
I T o R . I ?
-10 -5 0 5 10 15 20 25 30 kHz
f<fs/2

Fig. 7.17 Same amplitude spectrum as in Fig. 7.16

T T ‘

The true signal O The samples —What we see

time [s]

Fig. 7.18 Aliasing in the time domain; sampling violates the Nyquist theorem

Since we still only look in the Nyquist interval (f < fs/2), we will only see the
1000 Hz peak and draw the erroneous conclusion that we are measuring a sinusoidal
with frequency 1000 Hz. We have aliasing in our amplitude spectrum, which will
happen when you don’t comply with the sampling theorem. Figure 7.18 illustrates
what aliasing looks like in the time domain.

7.3 Describing Systems

So far, we have only used transforms to describe signals, but it is very common to
also use them to describe systems. In Fig. 7.19, the signal x(¢) is the input to a system
and y(#) is what comes out of the system. The Fourier transform of the input signal
is X(w) and the Fourier transform of the output signal is Y (w). We now define the
system’s transfer function H(w) as the quotient between Y (w) and X(w):

H(w) = LZ; = |H(w)] - ¥ (7.23)

X(
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Fig. 7.19 Signals and x(t) y(t)
systems are described with ——» Ho) >
transforms X(w) Y (o)

H(w) is in general a complex function where |H(w)! is the amplification diagram
(or ‘gain’ diagram) and ¢(w) is the phase diagram. The amplification diagram tells
you what happens to the amplitudes of the cosines in x(¢) and the phase diagram tells
you what happens to their phase angles. An example will make this clear.

Example 7.7 If the signal x(#) = 4 cos(20000z + 25°) is the input to the system in
Fig. 7.20, what will the output be?

Solution First we find y():

0 = 2 2
— - X
Y Xc+R
1
=€ )= () = Y (©) = — 1 X(w)
ja+c+R 1 +jwRC 1 +jowRC
Y (w) 1 1-el0
= H(w) = = - = -
X (w) 1+ jwRC /12 + (a)RC)2 . gitan™! @RC/1
—jtan7l RCw
1 —_———
= . e @(w)
V14 R2C?w?
N e’
|H(w)|

Since |H (w)] is a first-order polynomial in w, the system in Fig. 7.20 is a first-
order system. It is also a lowpass system, since |H (0)| = 1, and |H (w)| — 0, when
w — o0. In Fig. 7.21, we have plotted the Bode diagram of the system, i.e., | H (w)|
and ¢(w) for R =1 k2 and C = 100 nF. From this plot, we can see that a signal with
frequency 20 krad/s will be attenuated by a factor of 0.45 and the phase angle will
be shifted by —63 degrees. Hence, the output y(¢) in Fig. 7.20 is

Y(t) = 0.45 - 4 c0s(200007 + 25° — 63°) = 1.8 cos(20000¢ — 38°)

Fig. 7.20 A first-order
system R=1k

x(t) C=100n —— y(t)

The system
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Fig. 7.21 The Bode plot

Notice in Example 7.7 that we mix radians and degrees in the cosine argument.
Mathematically this is of course wrong, but it is common practice, simply because
it is easier to imagine the size of an angle in degrees than in radians. You just have
to keep that in mind and be careful when you use your calculator.

Another detail worth pointing out in this example is that the system changed the
amplitude and the phase of the signal, but it didn’t change the frequency. This is
what characterizes linear and time-invariant systems (LTI), and we will only treat
LTI systems in this book. That is the most common restraint in signal processing
textbooks.?

The Bode plot in Fig. 7.21 is what characterizes any system; if you know the
transfer function, you know the Bode plot and then you know everything you need
to know about the system; with ‘everything’ we mean that you can predict the output
for any signal input. As a matter of fact, systems are characterized by the |H ()|
diagram (which we will call the amplification diagram or gain diagram) and there
are, in general, six different types of systems: Lowpass, highpass, bandpass, stop-
band, resonance, and notch systems. Their characteristic amplification diagrams are
illustrated in Fig. 7.22 on the next page.

Most systems are ‘by nature’ lowpass, like amplifiers, instruments, and transmis-
sion lines (they are typically also first-order systems). In general, to get anything else
than a first-order lowpass system, you need to design a ‘“filter’ (see Chaps. 9 and 10).
For that reason, we will take a closer look at the amplification diagram of a lowpass
system, see Fig. 7.23.

First, in most diagrams, both axes are logarithmic. Second, the system’s bandwidth
is defined as the frequency wg where the amplification has decreased by —3 dB

2 Look for textbooks about ‘Non-linear systems’ or ‘Adaptive systems if you want to go beyond
the LTI restriction.
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A H(o) A H(o)|
Lowpass Highpass
[} (O]
> »
A H(o) A H(o)|
Bandpass Bandstop
[} (O]
» >
A Ho), A H)
Resonance Notch
[} (O]
» »
Fig. 7.22 Six different types of systems
A [H(w)| Slope = ’roll-off” = —n-20 dB/decade
0dB
-3dB
log ®
)
B

Fig. 7.23 A lowpass system

(compared to the amplification at @ = 0). Third, in the stopband (@ > wg), the
amplification drops as n-20 dB/decade, where 7 is the system order. Hence, you can
figure out the system order by looking at the stopband roll-off.

7.3.1 Distortion-Free Systems

Consider the signal x(¢) = sint 4 0.33sin3¢. This signal is passed through the
lowpass system in Fig. 7.24 with the amplification diagram in Fig. 7.25. x(¢) has
frequencies 1 and 3 rad/s and according to the amplification diagram, neither of the
amplitudes are affected by the system (since the amplification = 1 for both signals.)
Does that mean that y(¢) = x(¢)?
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X(t) ———— | H(w) ——» (1)

Fig. 7.24 x(t) is passed through the system H(w).

A Ho)
1

1 rad/s 3 rad/s

Fig. 7.25 The amplification diagram of the system

The right answer to that question is: We don’t know! To answer that question, we
also need to know the phase diagram. Figure 7.26 illustrates the phase diagram of
the system.

Now we can answer the question: The answer is ‘No, y(¢) will not equal x(z)’.
Here is the reason.

Figure 7.27 illustrates the signal x(¢) and its two components and Fig. 7.28 illus-
trates what happens to the two components and the sum of them (which is y(¢)) after
they have been phase shifted —90° and —120°, respectively.

A o(o)
1 rad/s 3 rad/s log ®

-90°
—120°.

Fig. 7.26 The phase diagram

[—sin(t) —sin(3t) —x(t)]

Fig. 7.27 x(t) and its components.
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T T T

‘f‘sin(t-QO)‘ sin(3t-‘120) —;/(t)L

c 1 1 1 1 -

Fig. 7.28 y(¢) and its components.

\;sin(t-QO)‘ sin(31-270) —;]/(t)\

1 1 1 1

Fig. 7.29 y(¢) and its components.

From Fig. 7.28, we can see that even though the amplitudes are not affected, we
still have distortion because of the phase diagram. So, what is wrong with the phase
diagram in Fig. 7.267 To have a distortions-free passage, the phase diagram must
be linear, i.e., p(®) = k-w, and we can see immediately that the phase diagram in
Fig. 7.26 is not linear and distortion is expected.

For a distortion-free passage of x(z), the phase shift for @ = 3 rad/s must be three
times higher than the phase shift for @ = 1 rad/s. Figure 7.29 illustrates the system
output when sin3t is phase shifted —270° (=3 x (—90°) =3 x ¢(1)).

So, distortion-free systems are characterized by linear phase diagrams; however,
remember that it only needs to be linear in the passband (@ < wg); we don’t care
what happens in the stopband since these signals are attenuated anyway.

7.4 Complex Frequencies

Now that we know something about systems, and how to describe them, we will take
a new look at our frequency variables. From experience, I know that wrapping your
head around all the frequency variables in transform theory is the hardest part. So far,
we have introduced f, w, and k, but I'm sorry to say, we are only half-way through.
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The Fourier transform expressions in Eqs. (7.3), (7.10), and (7.18) are really
scalar products, where x is the vector we ‘analyze’ and e 3 is the ‘base vector’
(base function). Compare with what you learned in linear algebra; to find the vector
component along the x-axis, you take the scalar product of the vector and the x base
vector: vy = (Vley) = (vx, vy) - (1,0) = v,. Well, that is exactly what we do when
we use the Fourier transform (signals are vectors!). We do it to find the size of the
signal in the different ‘cosine directions’ in Eq. (7.1).

You could argue against that, saying: ‘But if the cosines are the base vectors, how
come we don’t have cosines in the Fourier transform expressions?” Well, we do! We
have just used Euler’s formula for cosine:

Ael”" = A cos wt(+jA sin wr) (7.24)

(And remember that the scalar product between two functions is (f, g) = f f -
g*dt.) When we substitute cosine for an exponential expression, something else
happens at the same time: The frequency goes from being a real number (w) to an
imaginary number (jw). Is that important? Maybe not, but it becomes important if we
take it one step further: If the frequency can be an imaginary number, could it also
be a complex number? The answer is actually ‘Yes’! We know what the imaginary
part (w) represents (the signal’s harmonic oscillation frequency), but what would the
real part of the frequency represent? We will assign the letter s to our new complex
frequency variable:

s =0 +jw (7.25)

We will later come back to what physical property the real part (o) represents.
First, let’s update our transform expression with our new frequency. We only need
to adjust Expression (7.10) (it will become clear later why we don’t worry about
Eq. (7.3)). In Eq. (7.10), we substitute jo for s:

X (@) = X(0 +jo) = [x(1)e” NV dr = [x(t)e ™' dt = X(s) (7.26)

X(s)is the Laplace transform (and notice that the Fourier transform is just a special
case of the Laplace transform, when o = 0 and s = jw).

Now, let’s first figure out what the real part of the new frequency variable
represents. First, we substitute jo for s in Eq. (7.24):

A 5 Ae’ = AeTTHO = A . & = Ae”! coswt (7.27)
Amplitude!

Look at Eq. (7.27). By introducing a real part in the frequency, we can also
represent harmonic functions with exponentially decaying/increasing amplitudes!
(With the Fourier transform we can only process harmonic signals with constant
amplitudes.) From Eq. (7.27), we can also see that if o > 0, we have a harmonic
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signal with exponentially growing amplitude! We never want that!* It would drive
our signal output to the power supply limit (and we would suddenly have a non-linear,
malfunctioning system). Hence, we (almost) always want to make sure that we have
signals where the real part of the frequency is < 0.

However, our main concern here is not signals; it is systems.

7.4.1 Laplace Representation of Systems

We previously derived the expression H (w) = 1/(1 4+ jRCw) for the transfer func-
tion of the system in Fig. 7.20. We can, and usually do, express the transfer function
using the complex frequency s, just substitute jw for s:

1

In Chap. 9, we will investigate the details of filters and how to describe and design
them, but Eq. (7.28) is a typical filter equation; in general, a filter transfer function
is a quotient between two polynomials of s, and the filter ‘order’ is determined by
the highest polynomial order. Right now, we are trying to understand the Laplace
transform, and to have something to work with we will use the following second-order
filter:

4s

H(s) = ——
) s2 42542

(7.29)

First, let’s find the Bode plot to see what kind of filter we are dealing with.
Substitute s for jw to get the Fourier transform:

Hw) 4jw 4wel®”
w) = - = =
_a)z + 2_](,() —+ 2 /(2 _ (1)2)2 + 46()2 . ejtan" 2(4)/(27(4)2)
(7.30)

— 4w L (00—~ 20/(2=0")) — | (@) - ¥

(2- w2)2 + 4w?

Figure 7.30 illustrates the Bode diagram of this system. From Fig. 7.30, we can
see that we are dealing with a bandpass system with a peak amplification around
1 rad/s. Also, the discontinuity in the phase diagram is a not real; it is because the
MATLAB arctan function returns values in the range —m/2 ... 1/2 only.

Speaking of MATLAB, there is a faster way to get the Bode plot of a given
system. If we define the numerator and denominator as b = [4,0] and a = [1,2,2],

3 Unless you are designing an oscillator.
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Fig. 7.30 The Bode plot
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the freqs(b,a) command will immediately plot the Bode diagram (with logarithmic

axes and no arctan folding), see Fig. 7.31.
Next, we substitute s for o + jw, in Eq. (7.29):

4(0 4 jw)

H(o,w) =

Let’s look at the magnitude function of this expression.

WTT R

(0 +jw)? +2(c +jw) +2

|H (0, w)| =

\/(02 — @+ 20 +2)° + 40?0 + 1)

(7.31)

(7.32)

Since this is a function of two variables, the amplification diagram of a system
represented by the Laplace transform will be a 3D graph, see Fig. 7.32. In Fig. 7.32,
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Fig. 7.31 Using the freqs command in MATLAB
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10 <
8
6 -
4 This edge is the
Fourier transform

Fig. 7.32 The amplification diagram of the system in Eq. (7.29) is a 3D graph

‘Real’ is the o-axis and ‘Imag’ is the jw-axis. Notice most of all in Fig. 7.32 that we
have ‘cut’ the graph along o = 0; the edge line in the cut corresponds to the Fourier
transform’s amplification diagram. Compare the edge line with the top diagram in
Fig. 7.30.

We will comment more on this 3D graph in a minute, but first we must introduce
the concept of a system’s ‘poles’ and ‘zeros’.

The roots of the numerator are the ‘zeros’ and the roots of the denominator are
the ‘poles’. Our system in Eq. (7.29) has one zero only; s = 0. The poles are

P25 42=542s4+14+1=(@+1)2>+1=0=>s=—1+] (7.33)

In Fig. 7.33, we have marked the poles (‘X’) and zeros (‘O’) in the s plane
(using the pzplot command in MATLAB). Compare Figs. 7.32 and 7.33; the poles
in Fig. 7.33 coincide with the ‘poles’ in Fig. 7.32 and the zero in Fig. 7.33 coincides
with the (0,0)-coordinate where the amplification diagram touches the zero plane.
Now we understand the names ‘poles’ and ‘zeros’. When you get used to this kind
of representation of systems, you will be able to immediately identify the pole-zero
diagram in Fig. 7.33 as a bandpass system.

So far, we have presented three different ways to represent a system: the transfer
function, the Bode plot, and the pole-zero diagram. They all say the same thing and it
is important that you learn to transfer smoothly between the different representations.
In Chap. 9, we will introduce a few more ways to represent systems, but this is all
we need for now.



148 7 Transform Theory

Fig. 7.33 Poles and zeros in Pole-Zero Map
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Hopefully, you can also see the benefit of introducing the complex frequency
variable s; it provides so much more information about the system than when we
only use the ‘one-dimensional’ frequency variable jow.

It is time to update our transform map, see Table 7.5.

From Table 7.5, it is obvious where we must go next; we have a void in our
transform map. We need to introduce a complex frequency variable for the sampled
case and find a discrete-time correspondence to the Laplace transform.

But before we do that, we should look at one more aspect of systems and their
pole-zero diagram. We do that in the following example.

Example 7.8 A system’s impulse response h(t) is the system’s output when the input
is an impulse, see Fig. 7.34. By ‘impulse’ we mean a Dirac impulse:

0ifr #£0
se)y=4 % 7.34
) S sdt =1 ( )
—0Q
Table 7.5 The transform map
Non-complex frequency Complex frequency
. o A o
Analog Periodic X(k) = %fx(z‘)e_Jk“’U’dt X(s) = gx(t)e*”dt
0
. P _
Transient X)) = [ x(t)eids
—00
Sampled N-1 o 2n
P Xk = 3 xge k7
n=0
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3(t) h(t)

Impulse Impulse response

Fig. 7.34 The impulse response

The impulse response is a very important characteristic of a system; the Laplace
transform of the impulse response is the transfer function:

H(s) = [ h(t)e"'dt = h(t) = H™\(s) (7.35)
0

Suppose that the impulse response for some system is a(f) = e~*. What is the
domain of a that guarantees a stable system? What does that imply for the system’s
poles?

Solution Obviously, we must have a > 0 to have a stable system; if a <0, just a short
impulse input would generate an output that would never ‘die’. A ‘healthy’ system
is characterized by ‘limited input’ must generate a ‘limited output’. To see what that
implies for the system’s poles, we need to find the poles. And to find the poles we
need the transfer function:

[ef([th)t]oo

H(s)= [h(t)e™dt = [e e dt = [ “TVdt = ———— o
0 0 0

a—+s
= O-1= !
T a+s s+4a
(7.36)
The system has no zeros, just one pole in s, = —a. Since we already restricted a

to be > 0, obviously this pole can only be in the ‘negative’ half of the s plane (the
left half), see Fig. 7.35.

The conclusion in the previous example is true in general; a system’s poles must
be in the left half of the s plane to be stable. (There is no such restriction for the
Zeros.)

7.4.2 The z Transform

The objective here is to find the Laplace transform correspondence in discrete-time
space (for a sampled signal). Before we do that, let’s talk about what properties we
would expect to find in such a transform.
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Fig. 7.35 Poles must be in A pole in this area would
the left half of the s plane Imis)=o A make the system unstable
X » Re(s)=oc
Sp=-a
%

In the Laplace transform, we find the Fourier transform by setting o = 0, i.e., the
Fourier transform is along the jw-axis in the s plane. We already know that that can’t
be true for the discrete-time ‘Laplace transform’, since we have already concluded
that the discrete Fourier transform of a sampled signal is periodic! Then it can’t be
on a straight line, because that would require an infinite number of poles and zeros.
The only thing that would account for the periodicity of the discrete-time Fourier
transform is if the Fourier transform is on a circle! When we transfer from the s plane
to the corresponding space for sampled signals, we must make sure that the jw-axis is
transferred to a circle. How do we do that? That’s easy. We use the following transfer
trick:

z=¢eT (7.37)
(T's is the sampling interval time.) We call the new space the ‘z space’ and the

‘Laplace transform’ for sampled signals is called the z transform. Let’s take a closer
look at Eq. (7.37):

z =T = e HOTs — oTs . gJols — |7]. &9 (7.38)

where
|z| =5 (7.392)
Q = wTy (7.39b)

z is illustrated in Fig. 7.36: €°T5 is the ‘length’ of z and wTs is the ‘angle’.
To find the Fourier transform in this new space, we set 0 = 0, and from Eq. (7.39a)
we conclude that the Fourier transform is on the unit circle in z space (|z| = 1). This
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Fig. 7.36 The z frequency Imz) A

will make it periodic with period £2 = 2. That corresponds to a period in frequency
equal to f's:

2
Q= ols =0l =20 — ol (7.40)
ws ws fs

(£2 is the ‘normalized’ frequency.) Hence, the z frequency variable reflects the
periodicity of the Fourier transform in sampled signals. Let’s find the transforms
that correspond to the Laplace and Fourier transforms for sampled signals. First, we
discretize the time in the Laplace transform, and then we substitute e*”s for z:

X :oo —std — Ts — . —snTs — . sTs\ ™"
(s) {x(t)e t={t > nT,} Zx e Zx (™)

n=0 n=0
o (7.41)
=Y i =X@
n=0

This is the z transform and corresponds to the Laplace transform in continuous
time. We will take a closer look at it in a minute, but let’s first also derive the Fourier
transform. Setting o = 0 and substituting s for jw in Eq. (7.41) give us:

o0 o0
aneﬂw”s = aneﬂﬂ" = X(Q) (7.42)
n=0 n=0

Equation (7.42) is the Fourier transform for discrete-time signals. (Not to be
confused with the discrete Fourier transform, the DFT! We’ll talk more about that
later.) We have requested that it should be periodic with period §£2 = 2m. Let’s check
that:
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X(Q+ 2]_[) — ane—j(ﬂ+2n)n Zx e —iQn —JZnn Zx e —iQn __ = X(Q)

So, the Fourier transform is periodic with a period £2 = 2m, which according to
Eq. (7.40) corresponds to a frequency of f = fs. Figure 7.37 illustrates the relation
between the s space and the z space. (Notice that w = 0 and w = ws ends up in the
same place in z space.)

You might be a little confused right now. We just derived the Fourier transform
for sampled signals, but didn’t we do that already in Sect. 7.2.3, Eq. (7.18)? No, we
didn’t actually! Eq. (7.18) is the discrete Fourier transform. It is a very common
misunderstanding that the word ‘discrete’ in ‘discrete Fourier transform’ refers to
discrete time, i.e., to the fact that we have sampled the signal. It does not! Expression
(7.42) is the discrete-time Fourier transform.

Expression (7.18) is the discrete Fourier transform, i.e., it is a discrete version
of Eq. (7.42), where ‘discrete’ means that we only calculate Eq. (7.42) for certain
§2-values (you could say that we sample X(§2)). The DFT is an adaption to the ‘real-
world’ situation if you like. Look at Eq. (7.42); the domain of £2 is R; all £2-values
are allowed, and we don’t have time to calculate X(£2) for that many £2-values. As
if that was not enough; the Fourier transform in Eq. (7.42) sums forever! In a ‘real-
world’ application, we must stop sampling at some point (after N samples) and due
to real-time constraints, we want to calculate X(£2) for just enough £2-values; no
more and no less than necessary. So how many X(£2)-values are ‘enough’? Well, by
definition, it is enough when we have enough X (£2)-values to be able to reproduce x,,
by an inverse Fourier transform, i.e., when X —1(£2) = x,. And, if we take N samples
of a signal, we must have (at least) N X(£2)-values to get the signal back when we
do an inverse transform.

If we have N samples and calculate Eq. (7.42) for exactly N §2-values, the distance
between £2-values must be 2nt/N and

m(S)A T R Im(z)A
os @ T N
LT T T T T S~ N
Joslhdy 7 VIR
0s/2 75 ™ NN
// \\\ \\\\ l" \\\ \\
os/d @\ N NN
i <« KU
G > bt P >
N Re(s) § i Re(z)
N N \ /
NN s
\\\ \\\ ~~~~~~ N’ /
U /;}

Fig. 7.37 From s space to z space
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Fig. 7.38 Poles must be A pole in this area would
within the unit circle Im(z) make the system unstable

2n
Q=k-—— (7.43)
N
Inserting that into Eq. (7.42) gives us
X =x(k-2Z) = x(0) = Zx e ki (7.44)
N

which is exactly the DFT expression in Eq. (7.18). The DFT is a discrete (sampled)
version of the Fourier transform in Eq. (7.42). That’s why it is ‘discrete’, not because
it processes discrete signals.

Finally, let’s also see what happens to our ‘poles restraint’ in Fig. 7.35. For a
continuous-time system to be stable, all poles must be in the left half of the s plane,
i.e., 0 <0. How does that translate to discrete time? Well, inserting o <0in Eq. (7.39a)
implies that |z| < 1, i.e., in the z plane, all poles must be within the unit circle for
the system to be stable, see Fig. 7.38.

Time to update (to complete!) our transform map, see Table 7.6.

Admittedly, there are a lot of transforms, but hopefully, after reading this chapter
you can see how they fit together and Table 7.6 may help you to ‘organize’ them. We
will have plenty of reasons to use transforms later in this book. In Fig. 7.39, we have
summarized the three different transforms for sampled signals and their relationship.

7.5 Solved Problems

Problem 7.1 Plot the amplitude spectrum of the signal x(¢) in Fig. 7.40.

Solution First we need to find the Fourier transform. The signal is periodic with
period 7 = 0.1 s. In the time interval O ... 0.1 s, the signal equation is x(t) = 1 — 10¢
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Table 7.6 The complete transform map

Non-complex frequency Complex frequency
Analo Periodic T : et s
J X (k) =+ [x(pye ooty X(s) = [ x(0e Stdt
0
. o ]
Transient X() = | x(t)eids
—00
Sampled DFT N—1 . o0 B
P Xk)y=3Y xpe K X@) =Y xuz™"
n=0 n=0
. o ]
Fourier X(@Q) = 3 xpein
n=0
Discrete-time Fourier transform domain
O Discrete Fourier transform domain (DFT)
Im(z)
A
AQ = 27/N j

~__—Increasing frequency.

P Re(z)

A

\ The z transform domain is
the entire z plane.

Fig. 7.39 Transform domains for sampled signals

Ax(t)
1

0,1

Fig. 7.40 A sawtooth signal

=1 —1¢t/T. The Fourier transform is
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17 1 )
Xty =—f(1—-=1) e ar

T
— l _L 1 — ll‘ . g ikaot _ 1 }e_jkwotdt
T jkw() T 0 jka)()T 0

=l L ! [—jkwut]T _1 1 _ 1 e k2T _q
T Jka)O Jzkza)(z)T 0 T ]ka)() ka(Z)T _\fl—’
=0 if k0
_ ! k#0
- jk2m

We need to treat the case k = 0, separately. Since k = 0 represents the DC
component in the signal, we can easily see in Fig. 7.40 that X(0) must be = 0.5. But
let’s calculate it anyway:

17 1 1 1,10 1 T 1
XO==/(1—-=t)dt==|t——=*| ==(T-=)==
T T T 27 |, T 2 2

Hence:

3 k=0
|X(K)| =
1
o k#0
Figure 7.41 illustrates the amplitude spectrum.

Problem 7.2 Prove that the signal x(¢ — #o) has the same amplitude spectrum as the
signal x(t).

Solution To prove this, we do a substitution: T = ¢ — (. The Fourier transform of

x(t —tg) is
0.6 b
b
0.4} E
0.2 4
0 T ? 9 ? (] o} o} o) oy oy
0 1 2 3 4 5 6 7 8 9 10

Fig. 7.41 Amplitude spectrum of sawtooth
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[x(t —to)e ' dt = [x(1)e T dr = [ x(r)e T . eINdt
=e 1 [x(1)e T dT = e " X () = e 0| X ()| - e

= |X(w)] . eTi@(@)+oi)

A time shift only adds a phase angle wf( to the phase diagram. The amplitude
spectrum is unaffected by time shifts in the signal.

Problem 7.3 How does the bandwidth of the signal in Example 7.2 depend on the
pulse width?

Solution We set the pulse width to a (instead of 1). According to the previous
example, we can shift the pulse anywhere we want to, it doesn’t affect the amplitude
spectrum. Hence, we assume it is between —a/2 and a/2:

“}2 eIt gp — _i[e—jwt]a/z _ _2a l(e—jwa/Z — eloal2)
—a/2 ja) —a/2 wa 2J
sin wa /2

. wa = X ()| ’ ) a)a’
=a - sinc— w)| =a - [sinc—
wa/?2 2 2

This expression is plotted in Fig. 7.42 and it is obvious that the bandwidth increases
when the pulse width decreases. This is true in general; ‘short in time, wide in
frequency’ (and vice versa).

Problem 7.4 Some FFT software produced the following output for a 16-sample
input:

240 0 —542j 0 30+18 0 0 0 0 0 30—18 0 —-5-25 0 O
The 16 samples were sampled at 100 kS/s. Write down an expression for the analog
signal that was sampled. (No aliasing occurred.)

Solution We have X(0) = 24, hence ap = 24/16 = 1.5. X(3) = =5 + 2j and X(5) =
30 + 18j. Use Eq. (7.7) to find the corresponding amplitudes and phase angles (and
divide the amplitudes by N = 16):

----- a=0.5H
--------- a=0.8

a=1
—a=2 [|

0 0.5 1 1.5 2 25 3 35 4 4.5 5

Fig. 7.42 The bandwidth increases when the pulse width decreases
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- 1
X(3) = —5+2j =538 = 43 =2.5.38. 6 =067 = 158.2°
. 1
X(5) =30+ 18] = 35.98e"1"" = 45 =2-35.98 - = 450 @5 =31.0°

Frequencies are

100
-%:k-1—6kHZ:k~6.25kHZ = f3=3-6.25=18.75kHz, fs =31.25kHz

k

x(f) = 1.50 + 0.67 cos(218750¢ + 158.2°) + 4.50 cos(2n31250¢ + 31°) V

Problem 7.5 If you sample the signal x(r) = 10sin(27200000¢f — 45°), with a
sampling rate of 75 kS/s, what frequency would you see?

Solution Signal frequency is 200 kHz which is > fs/2 = 37.5 kHz, and there will
be aliasing. We need to find the aliasing frequency that ends up in the ‘observa-
tion’ interval O ... 37.5 kHz, because that is the frequency we will ‘see’. First, we
subtract 75 from 200 repeatedly: 200, 125, 50, —25, —100... None of these falls
into the observation area. Next, add 75 repeatedly to —200: —125, —50, 25, 100, ....
Obviously, 25 kHz is the aliasing frequency that ends up in our observation interval.
Answer: We will see a frequency of 25 kHz.

Problem 7.6 If x() has the Laplace transform X(s), what is the Laplace transform
of x’(2)?

Solution Integrating by parts:
Jx e dt = [x(0)e™™ | +s [ x()e™dt =0 — x(0) + sX(s)
0 0
=s5X(s) —x(0)

Problem 7.7 If x(¢) has the Laplace transform X(s), what is the Laplace transform
of the primitive function of x(¢)?

t
Solution Setting y(t) = [x(t)dt, then y’(t) = x(¢) and y(0) = 0. According to

0
Example 7.6, we have that the Laplace transform of y’(¢) is

LMW _ LED)
N

N

L(yn) =sY(s) —y(0) =sY(s) = Y(s) =

_X0) _1
= _SX(s)

N

Problem 7.8 What is the Laplace transform of a ‘step function’, see Fig. 7.43.

s

. e —st 1[—st]® 1 1
Solution [ 1-e™*dt = —1[e™] =—-1(0—1)=1.
0
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Fig. 7.43 A ‘step function’ A x(t)
(sometimes called a
‘Heaviside’ function)

Problem 7.9 What is the Laplace transform of x(¢) = e™*? (x(z) = 0 for t < 0.)
Solution fgoe—az ce St = fgoe—(s-&-a)tdt — _ﬁ[e—(s-&-a)t]go — ﬁ.

Problem 7.10 If the z transform of x(n) is X(z), then what is the z transform of x(n
— I’lo)q

Solution Inserting x(n — ng) into Eq. (7.41) gives us
oo
“n m=n—ng
Zx”—"uz = { } =
= n=m-+4+ng

o0
Z Xz ™" = {assuming x, = 0ifn < 0}

m=—ng

o0
=Y s = X @)
m=0

Problem 7.11 If x(¢) has the Laplace transform X(s), what is the Laplace transform
of the delayed signal x(z — ty)?

Solution Substituting t for ¢ — ty and that x(#) = 0 for < O:

T=1t—1
o0 o0
Lx(t—1t) =[xt —t)e™dt=1{ dr=dt } = [ x(r)e* Tz
0 —t
t=1+1

o0
=e™" [x(1)e”TdTr = e X (s)
0

If x(¢) has the Laplace transform X(s), then x(t — () has the Laplace transform
e X (s).
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Chapter 8 ®)
Spectrum Analyzers ez

Abstract Spectrum analyzers are one of the most common instruments used in a
measurement laboratory (often integrated into the oscilloscope) and it is an imperative
skill of a scientist to be able to handle a spectrum analyzer and to interpret its output.
A spectrum analyzer is the most basic application of transform theory, and this
chapter relies heavily on the previous chapter. Spectrum analyzers can be analog (non-
sampling) or digital (sampling). Both kinds of analyzers are treated in this chapter, but
the focus is on sampling systems based on the fast Fourier transform. Fundamental
spectrum concepts like spectral leakage and windows, resolution bandwidth, and
heterodyne analyzers are highlighted and illustrated by examples.

8.1 Introduction

In general, a ‘spectrum analyzer’ produces the Fourier transform of a signal. However,
in most situations, it is understood that only the magnitude (| X (w)|) of the Fourier
transform is of interest. Some spectrum analyzers produce the phase diagram too,
but here we will consider spectrum analyzers that produce the magnitude diagram
only.

A spectrum analyzer can be ‘digital’ or ‘analog’. We will treat ‘analog’ spectrum
analyzers in Sect. 8.4. Digital spectrum analyzers sample the signal and calculate
the discrete Fourier transform (Expression (7.18)), but of course, they use the FFT
algorithm to speed up the math (see Sect. 7.2). We know from the previous chapter
that Fourier transform spectra can be corrupted by aliasing, so here we will assume
that the signal is sampled with respect to the sampling theorem. Instead, we will
concentrate on other aspects of the Fourier transform spectrum.

Our starting point is Expression (7.20), that specifies the resolution of the FFT
spectrum:

f:k-%:k-Af (8.1)

where Af is the resolution of the FFT spectrum (| X (k)]).
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Consider the analog signal in Fig. 8.1. To produce the FFT, we must sample it,
and we must stop sampling it at some point; we take N samples of the signal at a rate
of fs. If we would sample the signal in the interval indicated in Fig. 8.1, the signal’s
period would fit exactly five times in this interval, and that would correspond to a
‘frequency’ of k = 5 in Eq. (8.1). The FFT spectrum would produce a single peak
for k = 5, see Fig. 8.2; k represents the number of periods of the signal that fits in
the sampling interval.

The spectrum in Fig. 8.2 looks nice and clean, but if you think about it, we were
quite lucky in our sampling; we sampled exactly five periods of the signal! What are
the odds of that in a ‘real’ situation? In a real situation, we would not know the signal
frequency and it is more likely to look as in Fig. 8.3.

In Fig. 8.3, the sampling interval is not an exact multiple of the signal’s frequency;
it corresponds to k =~ 4.8. But the FFT only outputs frequencies for integer values
of k. So, in what FFT channel will we see this signal? Well, the answer is that in
this case, which is the most common case, the signal will be smeared out over all
frequencies (over all k values), see Fig. 8.4. However, the k frequency closest to 4.8

Sarlnpling interval |

00000 -000000000000000000000000000000000000000000000
0 5 10 15 20 25 30 35 40 45 50

k

Fig. 8.2 The FFT spectrum
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Sarﬁpling irllterval = 4.8 pelriods

time [s]

Fig. 8.3 ‘Real’ case: The sampling interval is not an exact multiple of the signal’s period

mag(FFT)

m_m_dMQ—Q—Q—D—O—O—O—O—O—O—o—@—o—Q—O—O—@—e—Q—e—e—Q

0 34567 10 15 20 25 30

Fig. 8.4 Spectral leakage

(=5) will have the largest value and the other frequencies’ magnitudes will drop off
with the distance to 4.8, see Fig. 8.4.

This phenomenon, the ‘smearing out’ of the signal’s energy over a wide range of
frequencies in the FFT spectrum, is called ‘spectral leakage’. If we only learn that
the k frequency represents a signal period that fits k times in the sampling interval,
then we could (erroneously) conclude from the spectrum in Fig. 8.4 that the original
signal consists of many sinusoidal signals with a wide range of frequencies, so it is
important to understand that multiple peaks in an FFT spectrum can be (and often
are) caused by spectral leakage.

Apart from introducing an uncertainty in the signal’s frequency, the biggest disad-
vantage of leakage is that the frequency peak is ‘broadened’, which reduces our ability
to resolve signals with close frequencies in the spectrum. If that is the problem, then
we need to reduce the leakage.
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8.2 Windows

The reason for the spectral leakage is obvious from Fig. 8.3; we don’t sample an
exact multiple of the signal’s period. Remember from Chap. 7, the DFT expression
assumes that we have sampled exactly one period of a periodic signal. If we take
the sampled interval in Fig. 8.3 and repeat it, we get the signal that the DFT really
represents, see Fig. 8.5.

The periodic signal will have singularities, and then it is no wonder that the
FFT spectrum will be ‘broadened’. The reason for the spectrum broadening is the
discontinuities in the periodic signal in Fig. 8.5; if we want to remedy the spectral
broadening, we must remedy the discontinuities.

We remedy the discontinuities by applying a ‘window’ to the sampled data. A
window is a function that is zero (or almost) at both ends. There are a lot of window
functions and we have plotted four of the most common ones in Fig. 8.6.

That means that if we multiply our sampled data with a window function, it will
be forced to zero at both ends and that will cancel the discontinuities. In Fig. 8.7, we
have multiplied our samples with a Hanning window function, and it is obvious that
the resulting periodic function is now a continuous function with no singularities.

Admittedly, the window distorts the signal, but our main concern here was spectral
resolution, not amplitude accuracy. In Fig. 8.8, we have plotted the new FFT spectrum
after the windowing.

T
Notice the singularity!

time [s]

Fig. 8.5 The periodic signal has a singularity

T T T T I

=-=-=Hamming
~Hanning

Blackman

- Triangel

§

Fig. 8.6 Some window functions
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Fig. 8.7 Applying a Hanning window: The periodic signal has no discontinuities
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Fig. 8.8 The FFT spectrum after a Hanning window has been applied to the signal

If we compare the spectrum in Fig. 8.8 with the spectrum in Fig. 8.4, we can see
that the spectrum has been narrowed, it is spread out over three k-numbers only (in
Fig. 8.4 it is spread over 8—10 k-numbers).

Modern oscilloscopes that have an FFT analyzer also have a set of window func-
tions that you can choose from. Different windows work best for different situations,
so you just try them all and see which one works best for your signal. Windows are
particularly useful when you need to resolve spectrum peaks where a ‘small’ peak
is drowned in the leakage from a ‘big’ peak. This is illustrated in the next example.

Example 8.1 Figure 8.9 illustrates the amplitude spectrum of the signal x(¢) =
10sin 100z 4 0.5 sin 104¢. ( fs = 100 S/s, N = 501.)

As we can see in Fig. 8.9, the 104 rad/s signal is hard to discern; it drowns in the
leakage from the 100 rad/s signal. Try resolving the peaks by applying a window to
the sampled data.

Solution Fig. 8.10 illustrates what the spectrum looks like after a Bartlett window
has been applied to the data. Comparing it with Fig. 8.9, we can see that it is now
easier to discern the small peak.
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Fig. 8.9 The ‘small’ peak drowns in the ‘big’ peak’s leakage
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Fig. 8.10 Spectral resolution has been improved by a Bartlett window
8.3 Resolution Bandwidth

8.3.1 Quantifying the Leakage

It is possible to quantify (and predict) the leakage exactly, and it is not that hard
either. To explain how to do that, we need some numbers to work with. Let’s assume
that we take 128 samples of a sine signal with frequency 336 Hz at a rate of 10 kS/s.
The total sampling time is N-Ts = 128/10 k = 12.8 ms. The signal period is 1/336
= 2.97 ms, and hence we expect a peak in the DFT spectrum at

12.8
k — —

=— =43 8.2
2.97 8-2)

Since the DFT spectrum only provides values for integer numbers of k, there will
be leakage; the biggest peak will be at k = 4, the second biggest will be at k = 5,
etc., see Fig. 8.11.
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Fig. 8.11 Estimated spectrum: We will figure out the relative sizes of the peaks in the leakage

Our objective here is to calculate the relative heights of the peaks in Fig. 8.11.
It is not that hard once you understand how to model each ‘channel’ (= each k).
Admittedly, we have not covered filters yet, so you might need to read this section
again after you have read Chapter 9, but we think this is understandable even without
the filter theory in Chapter 9.

First, we will refer to each k frequency in the DFT spectrum as a ‘channel’, and
we model each channel as a narrow resonance filter with center frequency Af =
k-f's. However, this resonance filter is not infinitely narrow; the frequency response
function for each channel is a sinc function, see Fig. 8.12.

Notice in Fig. 8.12 that the period of the sinc function is 2; the sinc function’s
zeros coincide exactly with all the other channels’ center frequencies. If the signal
frequency had been exactly k = 4, the channel 4 peak would have had height 1
(normalized), but since it is 0.3 to the right of channel 4, the channel 4 height will
be

Channel 4: 2937 _ ¢ g6
0.3®

T T T
1
0.86
06 P pi t')‘?bpq .
0.4} 5
0.2
D 1
] 1 2 3 443 5 6 7 8 9 10

Fig. 8.12 The relative peak height in channel 4 will be 0.86
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Figure 8.13 illustrates the resonance filter over channel 5, and since the frequency
k = 4.3 1s 0.7m away from the center of channel 5, the peak height in channel 5 will
be

in 0.7
Channel 5: s =0.37
0.71

We center a sinc function over each channel and calculate the peak height from
the ‘real’ signal’s distance to the channel center.

And once you accept the ‘sinc resonance filter’ model for each DFT channel, there
is an easier way to do this; if you center a sinc function over the ‘real’ frequency,
you can read the relative height in each channel from the sinc function’s value over
the channel, see Fig. 8.14. Compare Fig. 8.14 with Fig. 8.15 where the real DFT
spectrum has been plotted.

09 x
0.8 .
0.7 .
06 ‘____pi i
0.5 .

037 .
03 0.7pi i
0.2
0.1 1

0.86

0.7
0.6
0.5

0.37

Fig. 8.14 Center the sinc function over k = 4.3
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Fig. 8.15 The real DFT spectrum (compare with Fig. 8.14)

8.3.2 Resolution Bandwidth

Equation (8.1) defines the resolution Af in the FFT spectrum. However, Af is not
the most common number used to describe the resolution in FFT spectra; the most
common number is the resolution bandwidth, RBW. The RBW is almost the same
as Af but there is a subtle difference that we think is important to understand, and
the RBW has an advantage over Af; RBW is adjusted for different windows.

In Chap. 9, we will learn that a filter’s bandwidth is defined as the ‘3 dB’ limit, i.e.,
the frequency where the gain has decreased by —3 dB (= 1/+/2 & 0.707). Translated
to our sinc resonance filters in the FFT spectrum, the bandwidth will be the distance
between the upper and lower limits where the gain has decreased by -3 dB, see
Fig. 8.16.

To find the exact bandwidth, we must solve the equation sin x /x = 1/+4/2 which
has the solutions x = +0.44 7, which means that the bandwidth is 2 - 0.447t ~ 0.9t
or 0.9 - Af (since the distance between each channel is 7 in terms of ‘sinc angle’
and Af in terms of ‘Hz’).

T T T T T T T T
1r A
l -3dB
0.707 |- o=y !
06 il
04 =)
021
0 ' . 1 1 1 v L .
0 1 2 3 356 4 444 5 6 7 8 9 10

Fig. 8.16 Defining the resolution bandwidth
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So, RBW = 0.9 - Af which indicates that RBW and Af are almost the same
and it shouldn’t really matter which one we use, but it does, because RBW can be
compensated for the use of different windows. The ‘frequency space’ consequence
of applying a window is that we change the resolution bandwidth in each channel.
The general expression for the resolution bandwidth is

RBW = w - Af (8.3)

where w is a constant that depends on what window we use. If we have no window (=
‘rectangular’ window), then w = 0.9, but if we have a Hamming window, for example,
then w = 1.30 and for a Hanning window w = 1.44. That means that applying a
window increases the RBW which would indicate an impairment in resolution, but
because the leakage is reduced, the overall resolution could still improve. However,
if you don’t suffer from leakage, you should not use a window because it deteriorates
the resolution bandwidth.

8.4 Heterodyne Analyzers

It is not necessary to sample the signal to find it’s amplitude spectrum, it is quite
possible to design analog (non-sampling) hardware that produces |X(w)|. That
hardware is based on the following trigonometric identity:

Acosa - BcosfB = ATB(cos(oz + B) + cos( — B)) (8.4)

If we multiply two trigonometric functions, we get two new ones: One with
the ‘sum-of-angles’ and one with the ‘difference-of-angles’. That implies that if
we multiply two sinusoidal signals with different frequencies, we will get two new
sinusoidal signals, one with the sum frequency and one with the difference frequency,
see Fig. 8.17.

Multiplying two signals is sometimes called ‘mixing’, and there are ready-made
components that do that, for example, the AD633 circuit from Analog Devices. As a
matter of fact, we only have to add a very narrow resonance filter and an AC voltage
meter to the circuit in Fig. 8.17 to get a spectrum analyzer.

Acosmit — > % cos(mz + ®1)t + cos(mz2 — 1)t

Bcoswmat

Fig. 8.17 ‘Mixing’ two signals produces the sum and difference frequencies
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X(t) = Acosoxt—— Y > J\_ L
o

Narrow
resonance filter

Xio(t) = 2coswiot

Fig. 8.18 An analog spectrum analyzer (a ‘heterodyne’ analyzer)

In Fig. 8.18, x(t) is the signal we want to analyze (i.e., find the magnitude of its
Fourier transform) and ‘lo’ is short for ‘local oscillator’. In Fig. 8.18, the signal y(¢)
is

y() = (cos(wio + W)t + cos(wio — wx)1) =

A cos(wyo + wx)t + A cos(wyy — wy)t

(8.5)

Next, we sweep the local oscillator’s frequency; we start on wg and sweep contin-
uously up to wy + wpy. (‘bw’ is short for ‘bandwidth’.) Also remember that the
narrow resonance filter only allows signals with the exact frequency wy to pass. That
means that u(#) # 0 only if wj, + wx = wy, or if wj, — wx = wy, 1., if

Sum term: wy, + Wy = Wy = Wi = Wy — Wy (8.6a)

Difference term: wj, — wx = Wy = Wy, = Wy + Wy (8.6b)

Since the local oscillator’s frequency starts on wg (and sweeps upward), the condi-
tion wy, = wy — wx Will never happen; the resonance filter will always cancel the
sum signal in Eq. (8.5).

The difference term, however, will pass the resonance filter if only wj, = wy
+ wx < Wy + Wpy, 1.€., if Wx < Wyy; the signal x(r) must be within the analyzer’s
bandwidth. When w;, = wg + wy, then u(t) = Acoswyt, and the ACV meter will
register its amplitude (or rms value). For all other frequencies, the ACV will read
oVv.

So, we sweep the local oscillator’s frequency from wg to wy + wpy, and read the
ACV. Figure 8.19 illustrates the ACV reading as a function of the local oscillator’s
frequency.

All we need to do is to rescale the frequency axis and we have the magnitude of the
Fourier transform of x(¢). (Even better since we don’t have the %2 factor on the vertical
scale as the Fourier transform does.) This kind of frequency analyzers are called
heterodyne analyzers and more expensive oscilloscopes have built-in heterodyne
analyzers.
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Fig. 8.19 The ACV reading as a function of the local oscillator frequency

The advantage of heterodyne analyzers is that they don’t sample, so they are not
limited by the sampling theorem (no aliasing); heterodyne analyzers typically have
much higher bandwidths than FFT analyzers.

8.5 Solved Problems

Problem 8.1a A 500 Hz sine signal is sampled 256 times at a sampling rate of 5 kS/
s. Find the relative sizes of the six largest peaks in the FFT spectrum (for k < 128).

Problem 8.1b How would the spectrum change if the sampling rate is changed to
5.12 kS/s?

Solution The frequency resolution is Af = 5000/256 = 19.53 Hz, and the 500 Hz
sine corresponds to a frequency k = 500/19.53 = 25.6.

That means that the ‘biggest’ peaks will be 26, 25, 27, 24, 28, and 23, in that
order. The ‘26 peak’ is only 0.4 from the sinc maximum, so its relative size will be

sin 0.47

Channel 26: =0.76

Channel 25 is 0.6 from the sinc maximum, and for the following channels we
add one 7 for each channel:

in 0. inl1.4
Channel 25: 5890 _ 050 Channel 27: S214™ _ 0.0
0.67 147
sin 1.67 sin 2.41
Channel 24: =0.19 Channel 28: =0.13
1.6m 247

Channel 23:
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In Fig. 8.20, we have plotted these six peaks together with the sinc function and
in Fig. 8.21, we have plotted the real FFT spectrum for the sampled 500 Hz signal.
If we compare Figs. 8.20 and 8.21, we can see that our prediction in Fig. 8.20 is
correct.

If we change the sampling rate to 5.12 kS/s, then Af = 5120/256 = 20 Hz exactly,

and the 500 Hz sine corresponds to k = 500/20 = 25. That would give a single peak
at k = 25 in the FFT spectrum, see Fig. 8.22.

Problem 8.2 Figure 8.23 illustrates the FFT spectrum of some unknown signal that

was sampled at 10 kS/s and 100 samples were taken. What can you say about the
signal?

Solution The spectrum is perfectly symmetric around k = 20.5; the signal that was

sampled was a sinusoidal signal with frequency f = 20.5-Af = 20.5-10,000/100 =
2050 Hz.

0.76 /

Rel. mag(FFT)
© o
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| : '
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Fig. 8.20 Predicting the six biggest peaks in the FFT spectrum
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Fig. 8.21 The real spectrum (using the fff command in MATLAB)
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Fig. 8.22 FFT spectrum if the sampling rate is changed to 5.12 kS/s
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Fig. 8.23 FFT spectrum of unknown signal

Problem 8.3 What is the resolution bandwidth of the FFT analyzer in Problem 8.2?7

What would the resolution bandwidth be if we applied a Hamming window to the
data?

Solution Af = 10,000/100 = 100 Hz, so RBW = 0.9-100 = 90 Hz. If we apply a
Hamming window, RBW is increased by a factor of 1.30: RBW =90-1.30 =117 Hz.
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Analog Filters i

Abstract A filter is used to discriminate unwanted signals in a complex measure-
ment signal. This chapter first introduces passive filters (RCL filters) of first and
second order. Next, biquad filters, switched capacitor filters, and state-variable
filters are introduced. The quality factor is defined (the Q factor) and different filter
characteristics and filter models (Butterworth, Chebyshev, and elliptic models) are
illustrated. Analog filters can be implemented using so-called Sallen—Key links.
Section 9.6 demonstrates how a given filter characteristic can be transformed into
any other filter characteristic. To process the signal in time space, it is necessary to
introduce a mathematical operation called convolution (Sect. 9.7). Like transforms,
convolution is usually considered to be hard to grasp by students, but this chapter
emphasizes the understanding of convolution by using graphical examples.

9.1 Introduction

By ‘analog’ filters we mean filters that can be implemented in hardware, using analog
electronics. (We will treat ‘digital’ filters in Chap. 10.) Filter theory depends heavily
on the transform theory that we presented in Chap. 7, like Bode plots (Sect. 7.3) and
pole-zero diagrams.

9.2 First-Order Filters

9.2.1 Passive Filters

A first-order passive filter is a simple voltage division between two impedances, see
Fig. 9.1.

The impedances are either real or imaginary (they could be complex, but we limit
the presentation here to non-complex impedances). The transfer function is simple
enough:
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= H(w) =

9 Analog Filters

In Example 7.7, we illustrated the case where Z; = R and Z, = 1/jwC:

H(w)

=—Q— =
1 +jwRC

7
X0 = V(@) = 22X @)
Y(w) - Z: 9.1)
X  Zi+2 '
1
Hs) = 1+ sRC ©-2)

This is a lowpass system with a pole in s = —1/RC. By replacing Z; and Z, in
Eq. (9.1) with other combinations of R, jwL or 1/jwC, we can get highpass filters too.

The filter in Fig. 9.1 has a disadvantage; if it is cascaded with a second filter
module, its output impedance will be connected in parallel with the next stage’s
input impedance and that might change the characteristics of the filter. This is easily
avoided by inserting an op amp as a voltage follower, see Fig. 9.2, and once we
have an op amp, we might as well take advantage of it and use it as a non-inverting
amplifier to add an arbitrary amplification, see Fig. 9.3. Filters with op amps are

called ‘active’ filters.

Fig. 9.1 First-order filter

Fig. 9.2 First-order filter
with voltage follower

Fig. 9.3 First-order filter
with amplification (1 + Ry/
Ry)

4
x(t) y()

]
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() Z> y(t)
J:_ R1 Rz
o>
z
"2 y(t)

x(t)
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9.3 Second-Order Filters

9.3.1 ‘Biquad’

The general expression for a second-order filter is

N (s) _ b2S2 + bis + by
T D) s2+ais+ao

(9.3)

We know from Sect. 7.4 that the roots of the denominator polynomial represent
the system’s singular points (the ‘poles’) and they determine the system’s resonance
frequencies. If the filter in Eq. (9.3) has the poles s = —o, & jw, (remember that the
poles must be in the left half-plane in s space), then the denominator polynomial is

D(s) = (s = sp1)(s = 5p2) = (s + 0 — jwp) (s + 0, + jv)
= 5"+ 20,5 +0, + o 94

/01,2 + a)[% = wy is of course the poles’ distance to the origin, and we define the

system’s ‘quality factor’ as

“o = oy | = =2 9.5)

=1 20

Hence, Q is the poles’ distance from the origin divided by their distance from the
jow-axis, see Fig. 9.4.
This means that we can write the denominator polynomial in (9.3) as

D(s) = 5> + %s + w2 (9.6)

Inserting that into Eq. (9.3) gives us

_ N(s) _ bys> +bis+ by
D(s) 2+ %s—}—w%

9.7)

In Eq. (9.7), we have a second-order polynomial in both the numerator and
the denominator. Since we have rwo quadratic polynomials, the filter is sometimes
referred to as ‘biquadratic’ or just ‘biquad’. It is the denominator polynomial (the
poles) that determines the filter’s resonance frequency (wy), but it is the numerator
polynomial that determines the filter type (lowpass, highpass, bandpass, etc.). That
gives us three important special cases.
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Fig. 9.4 Defining Q and wq
b A jo
o
(e}
‘ Gp | = %
X
9.3.2 Lowpass:by =b; =0
With b, = b; = 0 we get the transfer function
bo Dol
H(s) = = |H(w)| = 9.8)

s2+%s+wé

J(0) + 0 -0

In Fig. 9.5, we have plotted |H (w)| for by = wo = 1 for different quality factors.
Notice first the lowpass characteristics; the amplification is =1 for low frequencies
and =0 for high frequencies. Another thing to notice is the ‘resonance’ at w = 1
(= wp) and that the peak gets higher and sharper with increasing Q. This is easy

~---Q=05——Q=0707 --- Q=1 —Q=2--- Q=4 —Q=8| |

8.
‘I?.
§°
85
=
a4
E
< 3|
2.
1
D. o - I e
0 0.5 1 1.5 2 25 3 3.5 4
[rad/s]

Fig. 9.5 Amplification versus frequency for different quality factors
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0
0
Fig. 9.6 Amplification diagram for bandpass filter

to understand from Fig. 9.4; when Q increases, the pole’s distance to the jw-axis
decreases and the closer the pole is to the jw-axis, the higher and sharper is the
resonance peak (see also Fig. 7.32). The special case where Q = 0.707 (1/+/2)
generates no ‘overshoot’ and the system response is ‘flat’ (in the ‘passband’; we will
later refer to this case as the ‘Butterworth filter’). For Q > 0.707, we have overshoots
(the system is ‘underdamped’), for O < 0.707 the system is ‘overdamped’ and the
system is ‘critically damped’ if Q = 0.707. (See also Sect. 18.5.2 about step response
of second-order systems.)

9.3.3 Bandpass: b, =by =0

With b, = by = 0 we get the transfer function

bis bio]
S = H )| = 1 9.9)
sc+ st

J(0) + -y

In Fig. 9.6, we have plotted |H (w)| for by = wy = 1. Notice the bandpass char-
acteristics; the amplification diagram goes to zero at both ends. The resonance peak
is still at @ = wp = 1 and the peak gets higher and sharper with increasing Q. In a
lowpass filter, you try to keep the peak as low as possible, but in a resonance filter,
the sharpness of the peak is intentional; the sharper the resonance peak is, the more
selective is the filter.

H(s) =
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Fig. 9.7 Amplification diagram for a second-order highpass filter
9.3.4 Highpass: by =by =0

With b; = by = 0 we get the transfer function

b2 S2

- 9.10a
s2 + %s—}—a)g ( )

= |H(w)| =

H(s) =

In Fig. 9.7, we have plotted |H (w)| for b, = wy = 1.
This is a highpass filter since amplification =0 for low frequencies and =1 for

high frequencies.

9.4 Implementations

There are several different ways to implement analog filters in hardware and we will
present the most common ones here.

9.4.1 The Double Integral Method

If we have a highpass filter as in Eq. (9.10a), then (see Fig. 9.8)

Fig. 9.8 Second-order
highpass filter X({t) —»  H(s) ——» y(1)
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bys? Y
s+ %s+w(2) X (s)

H(s) = (9.10b)

and s2Y (s) + DY (s) + wZY (s) = bys>X (s). Next, we rearrange this expression as
follows:

Y T, Lo2Y(s) = boX
(S)+;§ (S)+S—2wo () = DX (s)

2
= Y(s) = X (s) — %éy(s) - %Y(s) 9.11)

In Problem 7.7, we learned that if the function f(¢) has the Laplace transform F(s),
then the Laplace transform of the integral of f(¢) is F(s)/s. Hence, if we integrate
the function y(#) using an integrator with time constant 1/wg (see Problem 9.1), the
output is woY (s)/s and if we integrate it again, the output will be a)(z)Y (s)/s*. That
means that we can represent the system in Eq. (9.11) with the block model in Fig. 9.9.

Next, we rearrange the blocks in Fig. 9.9 as illustrated in Fig. 9.10. The highpass
output signal is the signal right after the summator in Fig. 9.10. However, since an
integration corresponds to a division by s in frequency space, the output after the first
integrator is a bandpass filter (Eq. (9.9)) and the output after the second integrator is
a lowpass filter (Eq. (9.8)); with a single design we can get three different filters!

The derivatives of a signal are called the ‘state variables’ of the signal and for that
reason the filter(s) in Fig. 9.10 is called a ‘state-variable’ filter. Figure 9.11 illustrates
how it is implemented with only three op amps.

This implementation is usually referred to as the ‘KHN biquad’ (from Kerwin—
Huelsman—Newcomb) and you only need two design equations:

L& 201 9.12)
w=— — = — .
""RC R
(The R, resistors’ value doesn’t matter; they are only part of the summation
circuit.) Another usual name for this filter is ‘UAF’, which stands for Universal
Active Filter. The UAF42 circuit from Burr-Brown is an example of such a circuit.

Y(s) > mo_[ > moj —)%

4
Y(s) > oo | » -1/Q >@7> Y(s)
X(s) »| by

Fig. 9.9 Block diagram of Eq. (9.11)
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» oo |
y \J \J
Yhp(s) Ybp(s) Yip(s)
s? > S 1
Fig. 9.10 Rearranging the blocks; a ‘state-variable’ filter
C
}_.
R2 R
x(t) —} yip(t)
P
Yop(t)

Fig. 9.11 A state-variable filter can be implemented with only three op amps

Some final comments about the quality factor Q. For a lowpass or a highpass filter,
the Q number determines the ‘steepness’ of the filter, i.e., the width of the transition
area from the passband to the stopband. For a bandpass filter, Q determines the
‘selectiveness’, i.e., how narrow it is:

Q=2 (9.13)

wy —

where w, and w; are the ‘3 dB’ frequencies (‘upper’ and ‘lower’, respectively), i.e.,
where the amplification has decreased by 3 dB on either side of the resonance peak.

9.4.2 The Sallen-Key Link

The first-order lowpass RC filter is the most basic of all filters (see Example 7.7). By
adding a voltage follower, it doesn’t impose any load on the next step, and if we are
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adding a voltage follower, we might as well turn that into a non-inverting amplifier;
that turns our filter into a first-order ‘Sallen—Key’ link, see Fig. 9.12.

The transfer function is still 1/(1 + jowRC), see Example 7.7, and the cutoff
frequency (where the amplification is down by 3 dB) is

|H(w)| = w. = 1/RC (9.14)

1 1
—_—_—
V14 (wRC? V2
and the DC amplification can be adjusted arbitrarily with the R; and R; resistors (1
+ R»/R;). We can easily change it into a highpass filter by changing places with R
and C.

Figure 9.13 illustrates a second-order lowpass Sallen—Key link.
The transfer function is (see Problem 9.3):

1/Ri1R,C1Cy
H() = =t 9.15)
5° 4+ RRCS + 1/RiR,C,C,
or, if we set R; = R, = R, then
1/R*C,C
H(s) = 2/ L2 (9.16)
s2 4+ re S+ 1/R2C,C,
Comparing with Eq. (9.7), we can see that
2 wo
— - 9.17)
RC, 0
Fig. 9.12 First-order R4 R2
Sallen—Key link J__| I —
R i y(t)

Fig. 9.13 Second-order C1 I
Sallen—Key link i

R
x(t) —
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and

1
2
= 9.18
“ = Re G ©-18)
Using Egs. (9.17) and (9.18), we can implement any wq and Q values we want to,
by selecting the right R, C| and C; values. Also, by changing places with resistors
and capacitors in Fig. 9.13, we get a highpass filter.

9.4.3 Switched Capacitors

As we have seen above, both the biquad and the Sallen—Key filters depend on passive
components like resistors and capacitors. When implemented in integrated circuits,
silicon area saving is paramount; capacitors don’t require much area, but resistors do.
For that reason, a technique to implement resistors using a capacitor has been devel-
oped. This technique is called the ‘switched capacitor’ technique and it replaces a
resistor with a capacitor and two switches (the switches are of course two transistors).
Figure 9.14 illustrates the switched capacitor resistor.

The switches are controlled by two clock signals that are 180° out of phase; when
one switch is closed, the other one is open. The clock signal’s period is T = 1/f, and
the duty cycle is 50%. When switch S is closed, the capacitor is charged by U, and
when S is closed, the capacitor is charged (or discharged) by U,. Figures 9.15 and
9.16 illustrate the two situations.

Hence, over one clock period 7, the change in charge over the capacitor is AQ =
C(U, - U,). By definition, current is the change of charge per time unit; the average
current between the end points during one period is

Fig. 9.14 A switched
capacitor resistor S1 S2

A O I

TUUUL >oi—1nnns

Fig. 9.15 S| is closed S1 ﬁy
Uje———v— — ol

\ j— Q:CU1

|C During T/2
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Fig. 9.16 S is closed S1 82
U4 o—/o—o—/’o—o U2
Q= CU2 j— V/
During T/2 _|C
A0 _CU W) |, Uizl
i= T = I = R = ; = h (9.19)

From Eq. (9.19), we can see that this circuit corresponds to a resistance between
the end points that depends on the capacitor and the clock frequency. By using
a switched capacitor as the resistance in a filter design, we can control the filter
parameters with the clock frequency. MAX7400 is an example of an integrated filter
that uses switched capacitors.

9.4.4 More About Passive Filters

InFig. 9.1, we only have two impedances, and that limits our range of filters to lowpass
and highpass filters. If we introduce a third impedance, we can also design bandpass
and bandstop filters (since they need to be second-order filters), see Fig. 9.17.

For example, Fig. 9.18 illustrates a bandpass filter. The transfer function is

sL-1/sC

H(s) = Xi//Xe _ s sL-1/sC
R+X1//Xc R+ sSLL-;-ll//Ss% SLR+ R/sC + sL-1/sC
sL s/RC

(9.20)

~ @LRC+sL+R _ s> +s/RC+1/LC

And according to Eq. (9.9), this is a bandpass filter with wy = 1/+/LC and
0 = R/C/L. By changing places with R and the LC network in Fig. 9.18, we get a
bandstop filter.

Z4

Z4
— 1

x(t) Z> Z3 y(t) x(t) Z2 y(t)

Fig. 9.17 With three impedances, we can create bandpass and bandstop filters
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Fig. 9.18 A bandpass filter R

9.4.5 Special Cases

A special case of bandstop filters is the ‘notch’ filter, see Fig. 7.22, that is designed
to block just one single frequency. For example, in a physics lab, the power line
frequency, 50 or 60 Hz, is omnipresent in measurements and it can be blocked with
a passive second-order filter called the ‘Twin-T’ notch filter, see Fig. 9.19. This filter
has a zero on the imaginary axis at @ = 1/RC.

9.5 Filter Models

Equation (9.3) is the general expression for a second-order filter, and it can certainly
be extended to an arbitrary order filter. The filter coefficients (the a; and b; polynomial
coefficients) are optimized for certain conditions:

In a ‘Butterworth’ filter, the amplification diagram (in the Bode plot) is as ‘flat’ as possible
in the passband (no ‘ripple’).

Chebyshev and Cauer filters are more selective (the transition area from passband to stopband
is narrower) at the expense of some passband ripple.

The Bessel filter is not that selective but has the advantage of a very linear phase diagram
(which is what we need to minimize the signal distortion, see Sect. 7.3.1).

We will give a brief presentation of the Butterworth, Chebyshev, and Cauer filters
here. In the following presentation, we will only treat the lowpass filter types; in
Sect. 9.6, we will show you how to transform a lowpass filter to any other filter type.

Fig. 9.19 The Twin-T notch 2R 2R
filer p—
2C
x(t) ——| 1 — y(t)
C - C
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9.5.1 Butterworth

A Butterworth filter is an ‘all-pole’ filter, i.e., no zeros, and all the poles are on a
perfect circle (semi-circle) in the s plane, see Fig. 9.20. If the filter order is odd, there
is a pole on the negative o-axis and the angle between the poles is 1t/n, where n is the
filter order. In a Butterworth filter, the numerator polynomial N(s) = 1. Comparing
Fig. 9.20 with Fig. 9.4, we can see that |ap| = wycosT/4 = wy/~/2. Equation (9.5)
gives us Butterworth filter’s quality factor:

0= _ L ~0707 (9.21)
C2-w/V2 V2 . .

Comparing this with Fig. 9.5, we can see that this represents an amplification
diagram with no overshoot (“critically’ damped); the amplification diagram is ‘maxi-
mally flat’ in the passband, which is the hallmark of all Butterworth filters. This is a
consequence of the fact that the poles are on a circle and the circle radius determines
the resonance frequency wy.

In Table 9.1, you can see the denominator polynomials for all Butterworth filters
up to the seventh order for wy = 1. (In Sect. 9.6 we will show you how to transfer
them to other wgs.)

Figure 9.21 illustrates the amplification diagram for Butterworth filters of different
orders; the higher the order, the more selective is the filter. Notice in Fig. 9.21 that
the amplification diagrams have no ‘ripple’; it declines monotonically.

Notice in Table 9.1 that higher order filters are written as a product of first- and
second-order filters; they are typically implemented by cascading first- and second-
order filters.

(a) Ajo (b)

\ &

/5

.
N
\&

Fig. 9.20 a Second-order Butterworth filter. b Fifth-order Butterworth
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Table 9.1 Butterworth filter polynomials

Order Polynomial

s+1

s2+ L4ls+ 1

(s+ 1)(s2 + 54+ 1)

(s> +0.765s + 1) (s> + 1.8485 + 1)

(s+ 1)(s* +0.6185 4+ 1)(s* + 1.6185 + 1)

(s> +0.518s 4+ 1) (s* + 1.414s + 1) (s> + 1.9325 + 1)

(s + 1)(s* + 0.444s + 1) (s> + 1.2465 + 1) (s> + 1.8025 + 1)

N NN AW N =

n=1|
1 — n:zé'
n=3|
08 —n=4[]
= n=5|
[1+] -
OO.B n=g|
0.4 1
0.2
0

10" [rad/s] 10° 10’

Fig. 9.21 Amplification diagram for Butterworth filters

To see exactly how that works, let’s take a fourth-order filter as an example:

1 1
s2 407655+ 1 2+ 1.8485+ 1

H(s) = (9.22)

Since wg = 1 for both filters, the filters’ quality factors are 1/0.765 = 1.307 and
1/1.848 = 0.541. If we compare these Q numbers with Fig. 9.5, we can see that
the first filter is underdamped (Q > 0.707) and the other one is overdamped (Q <
0.707), but if we combine them, the overall gain diagram is perfectly flat. In Fig. 9.22,
we have plotted both systems’ gain diagrams together with the combined diagram.
(Combined Q = 1.307-0.541 = 0.707.)

9.5.2 Chebyshev

A Chebyshev filter is more selective (steeper roll-off) than a Butterworth filter of the
same order. It is still an ‘all-pole’ filter, and the greater selectiveness is achieved by
placing the poles on an ellipse instead of a circle, see Fig. 9.23. The elliptic shape of
the poles’ location is the reason for the greater selectiveness, but it creates a ‘ripple’ in
the passband. In Fig. 9.24, we have plotted the gain diagram of the filter in Fig. 9.23.



9.5 Filter Models

1.5

189

0.5

——Total response

) S — S ik e T ——— e i L
4 5 6 8 9 10
Fig. 9.22 A fourth-order filter = two cascaded second-order filters
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Fig. 9.23 A Chebyshev filter has all poles on an ellipse

1 —— 5th order Chebyshev 1]
0.8 .
0.6 .
0.4 8
0.2 .
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0 0.5 1 1.5 2 25 3 35 4

Fig. 9.24 Gain response of fifth-order Chebyshev 1 filter

The filter in Figs. 9.23 and 9.24 is a ‘Chebyshev 1’ filter and is characterized by
its passband ripple. In Fig. 9.24, the ripple is 3 dB, but that is a design parameter that

can be selected arbitrarily.



190 9 Analog Filters

Pole-Zero Map
2 T
O
15|
@ 05
3 0 X
&
£ 05
o
£ 4 X X o
15
O
- ! i 1
15 -1 05 0 0.5

Real Axis (seconds™')

Fig. 9.25 Chebyshev 2 filters have zeros
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Fig. 9.26 Gain response of fifth-order Chebyshev 2 filter

There is also a ‘Chebyshev 2’ filter, which does not ripple in the passband; instead,
it ripples in the stopband. This is achieved by adding some zeros, see Figs. 9.25 and
9.26.

The passband (or stopband) ripple is not the only ‘cost’ for the greater selec-
tiveness; Chebyshev filters’ phase diagram is less linear than the phase diagram of
Butterworth filters, i.e., they are more prone to distort the signal.

9.5.3 Cauer

Chebyshev 1 filters ripple in the passband and Chebyshev 2 filters ripple in the
stopband. What if we allowed ripple in both the passband and the stopband? Wouldn’t
that improve selectiveness even more? Yes, it would, and filters that ripple in both
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Fig. 9.27 Poles and zeros of a sixth-order Cauer filter

1!
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02}

0 0.5 1 1.5 2 25 3 35 4 4.5 5

Fig. 9.28 Gain diagram of sixth-order Cauer filter (3 dB passband ripple, 20 dB stopband ripple)

passband and stopband are called ‘Cauer’ filters (or sometimes ‘elliptic’ filters).
Figure 9.27 illustrates the poles’/zeros’ location in the s plane for a sixth-order
Cauer filter, and Fig. 9.28 illustrates the corresponding gain diagram.

InFig. 9.29, we have plotted the gain diagram for all four filter models (third-order
filters). Comparing them, we can clearly see that the Cauer filter is the most selective
one but keep in mind that the ‘cost’ is ripple in both passband and stopband and that
the phase diagram is less linear (higher degree of distortion).

9.6 Filter Transformations

So far, we have mostly treated lowpass filters (with cutoff frequency wy = 1). The
reason is that that is what you start with and then you just ‘transform’ your filter to
whatever type and frequency you want in your application. We will present these
transformation equations here.
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1 e —Butterworth |-
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Fig. 9.29 Comparing filter models (passband ripple = 3 dB, stopband ripple = 20 dB)

9.6.1 Lowpass to Lowpass

If you have a lowpass filter with cutoff frequency wy and want a lowpass filter with
cutoff frequency ', you do the following substitution:

§—> — -8 (9.23)

Example 9.1 What is the transfer function of a first-order lowpass filter with cutoff
frequency 8 rad/s?

Solution The transfer function of a first-order lowpass filter with cutoff frequency
= 11is 1/(1 + s). Substituting s/8 for s gives us the new transfer function:

8

Hi)=—— =
1+5/8 s+8

The amplification diagram is plotted in Fig. 9.30.

1
08
0.6
0.4

02+

0
107! 10°

Fig. 9.30 A lowpass filter with cutoff frequency 8 rad/s
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Fig. 9.31 A highpass filter with cutoff frequency 8 rad/s

9.6.2 Lowpass to Highpass

If you want to transform a lowpass filter with cutoff frequency wy to a highpass filter
with cutoff frequency ), you do the substitution

wow,
s —

(9.24)

s
Example 9.2 What is the transfer function of a first-order highpass filter with cutoff

frequency 8 rad/s?

Solution Substituting 8/s for s: H(s) =
amplification diagram.

ﬁ = 5. Figure 9.31 illustrates the

9.6.3 Lowpass to Bandpass

To transfer a lowpass filter with cutoff frequency wg to a bandpass filter with the
upper and lower cutoff frequencies w, and w;, you do the substitution:

§2 + wyw,
s —

Sy (9.25)

Example 9.3 What is the transfer function of a second-order bandpass filter with
upper and lower cutoff frequencies 25 and 20 rad/s, respectively?

Solution w,w; = 25-20 = 500 and w, — w; = 5. The substitution we need to do is

_)sZ—I—SOO:H() 1 5s
—_— S) = =
5s S0 4 52+ 55+ 500

Figure 9.32 illustrates the amplification diagram.
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Fig. 9.32 A bandpass filter

9.6.4 Lowpass to Bandstop

You transform a lowpass filter with cutoff frequency wy to a bandstop filter with
upper and lower cutoff frequencies w, and wy, respectively, with the substitution

s - (w, — )
_ 9.26
T o wo (9.26)

Example 9.4 What is the transfer function of a second-order bandstop filter with
upper and lower cutoff frequencies 55 and 45 rad/s, respectively?

Solution w,w; = 55-45 = 2475 and w, — w; = 10. The substitution we need to do is

10s 1 5% 42475

Y L H(s) = =
212475 () ST S+ 10s + 2475

The amplification diagram of this transfer function is plotted in Fig. 9.33.

|
I
|
I
|
|
|
|
|
I
I
D. 1 | L 1 ] | | L

0 10 20 30 40 45 50 55 60 70 80 a0 100

Fig. 9.33 A bandstop filter
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9.7 Time Domain

In the frequency domain, we find the system’s output by multiplying the input signal’s
Laplace transform (or the Fourier transform) with the system’s transfer function, see
Fig. 9.34. In the time domain, the system is represented by the system’s impulse
response (see Example 7.8), which is the inverse Laplace transform of the transfer
function (h(r) = H(s)™ ).

It is a common misunderstanding that you should also multiply A(¢) by x(¢) to
get the output y(¢); that is not the case! In time space, you must convolve the input
signal with the impulse response. This is illustrated in Fig. 9.35 where the symbol
® represents ‘convolution’. Since this is a widely misunderstood concept, we will
elucidate it in detail here.

9.7.1 Convolution

First, convolution is an integral:

[e¢]

y(t) = h(t) @ x(1) = / h(t)x(t — t)dt (9.27)

—0Q

This integral causes most students a lot of problems, so take a minute to really look
at it. First, we have the temporal variable t that we only use inside the integral; the
integral output is still a function of ¢! Second, most people have trouble visualizing
the function x(# — ) and we will discuss that in detail in a minute, and third we
integrate over all ts, where the two functions overlap. The output is the area of
the ‘product function’ at each time ¢. The key to understanding convolution is to
understand exactly where (in T space) the function x(¢ — 7) is for every time ¢ and
exactly what the integral limits are (expressed in 7).

So, before we do any convolution, let’s look at the function x(# — ) and what it
looks like in T space. First, in T space, t is a constant! Let’s consider the straight line
x(t) = 2t — 1. This signal is plotted in Fig. 9.36. The signal x(—7) is the ‘mirror’ of
x(t) around T = 0, see Fig. 9.37.

Fig. 9.34 Frequency space: X(s) Y(s) = H(s)-X(s)
Multiplication ——>» H(s) ———>»
Fig. 9.35 Time space: x(t) y(t) = h(t) ® x(t)
Convolution — h(t) —>»
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Fig. 9.36 x(r) =2t -1 A X(7)

Fig. 9.37 x(-1) =27 -1 A X(-7)
—21-1

Next, we consider the function x(t — t); remember that T is our time variable here
and ¢ is a constant. In that case, x(t —t) is a delayed copy of x(t) (delayed by ). For
example, if r = 1, thenx(t — 1) =2(t - 1) - 1 =27 -3, and if t = 2, then x(7 - 2)
=2(r -2)-1=2t -5, see Fig. 9.38.

And that brings us to the key question; what does x(¢ — 7) look like? Well, x(¢ — )
= x(—(t — 1)), i.e., it is the ‘mirror’ of x(t — t) around 7 = ¢. For example, if t = 1,
thenx(1-7)=2(1-1)-1=-2t + l,andifr =2, thenx2-7)=2Q2-17)-1=
-2t + 3, see Fig. 9.39.

In Figs. 9.40 and 9.41, we compare x(t — t) and x (¢ — 7) for the same ¢ values,
and we can see that x(¢ — 1) is just the mirror image of x(t — ) around T = r. We
can draw two conclusions from this; first, as ¢ increases, x(¢ — T) moves to the right
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Fig. 9.38 x(r —1) fort =0,
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along the 7-axis, and second, if # < 0, x (f — T) moves to the left. t = —o0 is to the

far left and r = + oo is to the far right. Hence, when ¢ goes from —oco to + oo, the
function x(¢ — t) ‘slides’ from left to right along the t-axis, see Fig. 9.42.

Now, let’s go back to Eq. (9.27). h(tr) doesn’t move with ¢ (independent of ¢);
for each time ¢, we must figure out where x(¢ — t) is, multiply it with 4(t) and then
integrate over all 7, i.e., over all s where the two functions overlap. If you understand
Fig.9.42, you will know where x(f — 7) is, but that is only half the problem; the second
part is what the integration limits are. We illustrate that with an example.

Example 9.5 Figure 9.43 illustrates A(¢) and Fig. 9.44 illustrates x(¢). What is the
convolution of A(?) and x(¢); find y(¢) = h(t) ® x(2).
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Fig. 9.40 x(1—1)is x(t AT 1
— 1) mirroredinz =1

"'f?\/)

ch

+
/‘__z
<

Fig. 9.41 x(2-1)isx(t —2) mirrored in 7 = 2

Solution First, we plot x(¢ — t) for some different 7 values to make sure we understand
what goes on, see Fig. 9.45. In Fig. 9.45, we can see that as x(¢ — ) slides from left
to right, there is no overlap between x(t — t) and A(t) until right after + = 0; hence
the convolution /(7) ® x(¢) = 0 for ¢ < 0. Figure 9.46 illustrates the situation for 0
<t < 1. From Fig. 9.46, we can see that the integration limits are T = -1 and t =
—(1—t)=t-1.Inthisinterval, x(t — ) = 1 and A(t) = T + 1. Now we can calculate
the convolution expression (9.27) for ¢ € [0, 1]:
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t<0
X(t—1)

tincreases
t =—o0 »

199

Fig. 9.42 x(z — 7) ‘slides’ from left to right as ¢ increases

Fig. 9.43  h(t)

A ()

Fig. 9.44 x(t)
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t—1

1, 1P ) 1
/(r+1)~1dr=|:§r +‘L’i|71 =§(t—l) +l—1—<§—1)
1

1<t2 2t+1)—|—t Lol o<y <1
= (" — - = or <
2 272" =

Figure 9.47 illustrates the signals for 1 < < 2.
From Fig. 9.47, we can see that we need to integrate T + 1 between t = ¢—2 and
0,and 7 — 1, between O and ¢ — 1:

_ h(t)=t+1
t increases
t=-2 t=3 =5
X o] XEm Ny Xt Xty
i i i i i { i
i — | i i i i
1 1 1 1 1 1 1 T
_J v, 1 [ | [ »
T | T | T | | | I T | Ll
-3 -2 1 2 3
- h(t)=t-1
Fig. 9.45 x(t — 7) for different times ¢
h(t) =1+ 1
0<t<t: A
X(t—7
e\,
1 1
1 1
i ¢ T T
| | | | L L | | | | | | | | -
[ [ [ | | l | [ | | | [ [ [ Ll
-3 -2 1 1 2 3
o ) / LThis distance is 1 -t
This distance is t 777.
/s
ity .
57
St
~7

Fig.946 0<r<1
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1<t<2: h(t) =1+ 1

201

T
| | | | L | | | | | | | -
I I I | | | | | I I I Ll
-3 2 /1 2 3
S~ h(r) =t -1
This positionis t =t - ;
This distance is t/ \JThis positionist=t-1
Fig. 947 1<t<2
0 -1 | 0 . 1
/(r+1)-1dr+/(r—1).1dr= 41| +|=t*-1
) 0 2 =2 2 0
1 2 1 2
=—§(t—2) —t+2+§(t—l) —t+1=--.=—=t4+15 forl <tr<?2
Figure 9.48 illustrates the signals for 2 < 7 < 3.
2<t<3: A
X(t-1)
- === 1
1 1
1 1
T 1 1
/ ! ! T
| | | | | | 1 | I | | | | | »
I I I I I | I Hill I I I I I I gl
-3 -2 -1 i 1 2 3
| / ——h(x) =11
| T
This positionis t=t- 2"

This distance is t —

Fig. 948 2<1<3
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0.4
02

02+
-0.4

Fig. 9.49 The convolution /(f) ® x(t) of the signals in Figs. 9.43 and 9.44

From Fig. 9.48, it is clear that we should integrate T — 1 over the interval 1 — 2 <
T<l:

] 1 ! 1 1
_ . — | _+2 _ — 12t "2 _ (s _ —
/(r -1dt = |:2‘L' ri|t_2— > 1 (2(t 2) (t 2)) =
-2

1
...=_§z2+3z—4.5 for2<t<3

t

In Fig. 9.49, we have plotted the convolution expressions for all 7s.

Convolution can really challenge your patience, but remember, there are two keys;
understanding how x(¢ — t) moves in 7 space and figuring out what the integration
limits are. You need to do a couple of convolution integrals on your own before the
penny drops.

9.8 Solved Problems

Problem 9.1 Prove thatthe simple RC filterin Fig. 9.50, under certain circumstances,
is an integrator, i.e., that u, ~ [ u.dr.

Solution The output voltage u, equals the voltage over the capacitor which is the

charge Q divided by the capacitance and the charge is the integral of the current

i uy = uc = % = ¢ [idt. If R >> Xc = l/wC, then the current i ~ u,/R and

Fig. 9.50 First-order RC filter



9.8 Solved Problems 203

uy = & [ %dt = = [u.dt. Hence, the first-order lowpass filter in Fig. 9.50 is an
integrator if R >> 1/wC, i.e.,if RC =17 > i = %

Conclusion: The lowpass filter acts as an integrator if the filter time constant is
much greater than the signal period.

Problem 9.2 Consider the filter H (s) = opri2—=. @ What kind of filter is this?
b What is wy? ¢ What is Q? d What is the maximum amplification? e Plot the

amplification diagram.

Solution First, H(s) = 0 for s = 0 and s = 00, so it is a bandpass filter. Second, we

i i — 125 — _ 1250
can rewrite the transfer function as H (s) = o T = H(w) = 50125 o7 =
|H(w)| = — 2%l and hence wy = 25 rad/s and O = 2. We can also see

J12.5%024 (252 —0?)”

that |H (w)| has its maximum value when w = 25 rad/s and |H (w = 25)| = 1. The
amplification diagram is plotted in Fig. 9.51.

Problem 9.3 Derive the transfer function of the Sallen—Key link in Fig. 9.13
(Eq. (9.15)).

Solution Referring to Fig. 9.52, the potential at point B is

1/5C5 Uy

Up = Uy = Up(1 + sR, () (9.28)

TR0 T 1+ 5RG

0 L L 4 i L i 1 L i
0 202530 40 60 80 100 120 140 160 180 200

Fig. 9.51 Bandpass filter

S
24 I
1 R4 R> ls B
X(t) —— |—<A'—| > y(t)
Co ——

Fig. 9.52 The Sallen—Key link (second order)
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Atpoint A, i} =iy + i3:

X()—Ux  Ux—Y(s)  Us—Us
R] 1/SC1 R2

1
=sC(Ua = Y () + o~ (Us = Us)
2
= X () = Up +sR1C1(Us = Y (5)) + %(UA — Us) 9.29)
2

Next, we insert Eq. (9.28) into Eq. (9.29):

R
X(s) = Up(l + sRpC2) + sR1 C1(Up(1 + sRyC2) — Y (s)) + FI(UB(l +sRyC2) — Up)
2

Since the op amp has negative feedback, the potential at point B follows y(¢) and
Up =Y(s):

R
X(s) =Y(s) <(1 + sRyC) + sR1Ci (1 4+ sR,Cr) — 1) + R—]((l + SR, C;) — 1))
2
= Y(5)(1 + sRC2 + S°RiR,C1 C; + sR, C,)
The transfer function is H(s) = Y(s)/X(s):

1 1/R1Ry,C1Cy

H(s) = =
S2RIRyC1Cy +s(Ry + R))Cy +1 52 + s(R| + Rp)/R1RyC1 + 1/R1R,C1C

And we have Expression (9.15).

Problem 9.4 Design a second-order bandstop filter, Chebyshev 1 type, with lower
and upper cutoff frequencies 100 and 200 rad/s, respectively.

Solution From Table 9.2, we get the transfer function of a first-order lowpass filter
with cutoff frequency 1 rad/s:

1.024

H(s) = —
= 104

(9.30)

To transform this into a bandstop filter, we use the substitution in Eq. (9.26):

5(200 — 100) 100s
—_— =
s24200-100  s% 4+ 20000

Table 9.2 Chebyshev 1 filter

polynomials (passband ripple Order Polynomial
=3dB) 1 1.024/(s + 1.024)
2 0.5012/(s2 + 0.6449s + 0.7079)
3 0.2506/(s3 +0.59725% 4 0.9283s + 0.2506)
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Inserted into Eq. (9.30):

1.024 1.024(s* 4 20000) s 420000
H(s) = =

1005+ 1.024 1005 + 1.024(s +20000) 5% + 97.7s + 20000

The amplification diagram of this filter is illustrated in Fig. 9.53.

Problem 9.5 A filter has an impulse response as illustrated in Fig. 9.54. What is the
output y(¢) if Fig. 9.55 represents the input signal x(7)?

0 100 200 300 400 500 600

Fig. 9.53 Bandstop filter

A ()

Fig. 9.54 Impulse response

 Aad

Fig. 9.55 Input signal x()
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T
—t—t— —t—t+—+— >
Fig. 9.56 x(t - ) for different ¢
0 0<t<i T<t<2 0
1 1
I\ ° [ \
I E AN | L ——+— 1 —>
1 1 1 1 T 1 = 1
”E 1 Tt-1
— — 1
i N
a h(f) and x(t — 7) at times 0 <z <1 b Ah(f) and x(¢ — 7) at times 1 <¢<2

Fig. 9.57 a h(t) and x(t — 7) at times O < ¢ < 1. b h(¢) and x(¢ — 7) at times 1 <t < 2.

Solution Fig. 9.56 illustrates the function x(# — 7) at some times ¢, and Fig. 9.57a
illustrates h(t) and x(z — t) for times 0 < 7 < 1. Since x(#) = ¢ (in Fig. 9.55), x(t — 7)
=t— 1. Hence:

! 1 ! 1 1
1-t—vdr=|tt—=7t*| = — = ==¢
/o (t—71)drt [T 2r:|0 > >

Figure 9.57b illustrates the signals for 1 < ¢ < 2:
1

, 1,7 1,7
f1~(z—r)dr+/(—1)-(r—t)dr:|:tr—fr2:| —[n—fﬁ]
/ 2 L4 20

—1
1 1 ) , 1, 1 5 1
=t———(tt=D—z¢=-D? )= (P -=P—t+=-)=-=—P 42— =
2 <( )3 )) ( 2 +2> )
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2<t<3

Y-

A

Fig. 9.58 h(r) and x(¢ — 7) at times 2 <t <3

0.4
0.2
0

207

0.2

-0.4

06 1 1 L L ! 1
-2

-1 0 1 2 3 4 5

Fig. 9.59 The convolution A(t) ® x(t)

Figure 9.58 illustrates the signals for 2 < < 3:

2 2 5
/ (=D —r1)dt = / (t—t)dt = [%12 — t‘L’]
-1 -1 .
3

=2—2t—<%(t—1)2—t(t—1))=---=1t2—2t+—

2 2

The convolution signal is illustrated in Fig. 9.59.



Chapter 10 ®)
Digital Filters i

Abstract In this chapter digital filters are introduced. While an analog filter is
implemented in hardware, a digital filter is implemented in software; it is a computer
algorithm. Hence, this chapter works with sampled signals and the objective is to
do the same thing with sampled signals as we did with analog signals (non-sampled
signals) in Chap. 9, but instead of using hardware, software algorithms are presented
that do the filtering. First, discrete-time convolution is defined, but the focus is on
the FIR and IIR filters, which are the two most common digital filter algorithms for
sampled signals. The reader will learn two design techniques for digital filters; the
inverse Fourier transform method and the bilinear transformation method.

10.1 Introduction

In the previous chapter we looked at analog filters which are implemented in hard-
ware. In this chapter, we will demonstrate how we can achieve the same signal
processing results using computer algorithms. These computer algorithms are based
on samples (from an ADC, see Chap. 11) and are called ‘digital filters’. Compared
to analog filters, digital filters have some advantages but certainly also some disad-
vantages and we will carefully point out the pros and cons of digital filters in this
chapter. The objective here is to be able to design any (?) filter specified from an
amplification diagram.

This chapter will depend heavily on our results from the z transform Sect. 7.4.2
and we will also refer to solved Problem 7.10.

Figure 10.1 illustrates our general model of an analog filter.

In Sect. 9.8 we learned that in the time domain, the output from this filter is the
convolution between /() and x(¢), Eq. (9.27):

y(t) = /oo h(t)x(t —t)dt  (9.27) (10.1)

To get a digital filter, we need to sample the signal, i.e., t — nTg:

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 209
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X(t) ——>»  h(t) ——>y()

Fig. 10.1 Signal model

A 8n
1
n
1
Fig. 10.2 The discrete-time Dirac impulse
Fig. 10.3 Impulse and
impulse response On — P hn ——» Yn=hn
+00
Y() = y(nTs) = y(n) = yo = Y hix, i (10.2)

i=—00

In Eq. (10.2), A, is still the impulse response; the system’s output when the input
is an impulse. Figures 10.2 and 10.3 illustrate the Dirac impulse in discrete time.

First, we will assume that all our filters are ‘causal’. That means that there can’t
be any output signal before there is an input signal. In Fig. 10.2, the impulse appears
at time n = 0. If the system is casual, then A, must = 0 if n < 0. (We could have
non-causal digital filters, just not in real time. However, we limit the scope here to
include only the causal filters.) That means that the summation in Eq. (10.2) should
start at i = 0:

oo
Ya = hixni (10.3)
i=0

Second, if we write out Eq. (10.3) explicitly, then
Yn = hoxy, + hix,—1 + hoxy_o + hax, 3. .. (10.4)

Xy, 1s the ‘latest’ sample and x,, _ is the second last sample, etc. Notice that we ‘time
reverse’ the samples, just like we did in analog convolution (see Fig. 9.45). Table 10.1
illustrates the case where we have a time series of five samples x = {xg, x1, X2, X3, X4}
and four impulse response coefficients.
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Table 10.1 Convolution in discrete time

x =[x0 x1 x2 x3 x4] ho hi h> h3 Yn
X4 X3 X2 X1 ho xo0 y0 = ho x0
X4 X3 X2 ho x1 h1 xo y1=hoxt + h1xo
X4 X3 ho x2 hixt | h2xo y2 = hox2 + h1 x1 + h2 xo
X4 ho x3 hix2 |h2xi | h3xo| y3=hox3+hix2+h2xi+h3xo
ho x4 hix3 |hax2 | h3x v4 =ho x4 + h1 x3 + h2 x2+ h3 x1
hixa |h2x3 |h3x2| ys= h1 x4+ h2 x3+ h3 x2
hax4  |h3x3 Y6 = h2 x4+ h3 x3
h3 x4 y1 = h3 x4
y8=0

In general, there are two kinds of digital filters. They all use input samples to
calculate the next output sample, but some filters also use previous output samples in
the algorithm to produce the next output sample. Just like analog filters, digital filters
are represented by a transfer function that is a quotient between two polynomials; of
course, for a digital filter it is a polynomial in z:

B(z) bo+biz7' +bz P+

= 10.5
AQ  dtaz ' +taz2+.. (10.5)

H(z) =

The filters that don’t use previous output samples in the next output sample algo-
rithm are characterized by having A(z) = 1, and these are the filters we will start
with.

10.2 FIR Filters

If A(z) = 1, then
H@ =bo+biz '+ bz ?+... (10.6)

Also, remember that the transfer function is by definition the quotient between
the output and input signals’ transforms (the z transforms in this case):

Y
H) = %

Y(@) =X@)(bo+biz +bz?+...) =
=bpX(2) + b1 X(@)z ' +bhX@z 7+ ... (10.7)

=by+tbiz ' +bz 4 =
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Fig. 10.4 The block
diagram of a FIR filter bo >@7> Yn
A

If we take the inverse z transform of both sides of Eq. (10.7) we get, remembering
from Problem 7.10 that the z transform of x,,_,, is X (z)z7":

Yn = boxy +b1x,—1 +boxp 2+ ... (10.8)

Comparing with Eq. (10.4), we can see that in this case, the filter coefficients b;
are also the impulse response coefficients. This means that the number of impulse
response coefficients is limited by the number of filter coefficients, which is a finite
number; this kind of filters are called ‘FIR’ filters; Finite Impulse Response filters.
Figure 10.4 illustrates the block diagram of an FIR filter.

Notice in Fig. 10.4 that each sample must be ‘saved’ and pushed downwards in the
delay chain. Notice also that each ‘delay box’ is represented by ‘z~!"; this represents
the delay of one sample (in frequency space). (In time space it would be T's.)

Also, each ‘branch’ in the delay chain is called a ‘tap’ and filters are sometimes
characterized by the number of taps used: An n-tap filter has n delay taps.

Example 10.1 Plot the frequency response of the following FIR filter:
yp = 0.25x, + 0.25x,,_1 + 0.25x,_ + 0.25x,,_3

Solution This filter produces the average of four samples; we expect a lowpass
behavior. To find the transfer function, we must first take the z transform of both
sides:

Y(2) = %(X(Z) +X@7 '+ X@zT+ X(@)z270) =

1
= Z(l +z7'+277+ 277X (@) =

Y(2) 1 -1 -2 -3 1 1.5 0.5 -0.5 -1.5 -1.5
H = —— = (14 + + =—(z"+z7"+ <P+ 7). :
(2) @) 4( 4 4 Z ) 4(z 4 4 Z ) 4
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’ \
;
I : 1 A 1

- -2 0 1572 314 4 6 8

Fig. 10.5 The frequency response of the averaging filter

We get the Fourier transform by setting z = el®:

1/ . . . . .
H(Q) = H),_gn = Z<ejl.5sz 4 &J0-5Q 4 —j0.58 +e—]l.59) LemilsQ

1 . 1
= § 2(c0s0.5Q + cos 1.59) LTI Q) = 5 +1c0s0.52 + cos 1.59

The amplification diagram is plotted in Fig. 10.5, and as we expected, it has a
lowpass characteristic.

In Sect. 7.4 we learned about poles and zeros of a system; the roots of the numerator
polynomial in Eq. (10.5) are the ‘zeros’, and the roots of the denominator polynomial
are the ‘poles’. Obviously, a FIR filter doesn’t have any poles; that makes it inherently
stable. The averaging FIR filter in Example 10.1 has three zeros:

3

1+Z—l+z_2+z_‘:0 :>Zl:_1 Z2'3::tj

These zeros are illustrated in Fig. 10.6. Compare this diagram to the frequency
response in Fig. 10.5 and remember that the Fourier transform is on the unit circle in
the z plane. Figure 10.6 indicates that we should have a zero response for ‘frequencies’
Q = /2 and &, which is confirmed by the amplification diagram in Fig. 10.5.

10.3 IIR Filters

Let’s see what happens if the denominator polynomial in Eq. (10.5) is # 1. For
example, if B(z) = 1 and A(z) = 1 + a2 then

1 _Y(@©@
l+az7! X(x)
Y@ +a Y@z =Xk = Vo = —A1Yn_1 + X

H(z) = =Y@(l+aiz") =X

Let’s see what the impulse response is: x, = 6, = y, = h,
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Fig. 10.6 Zeros of FIR filter A Im(z)
in Example 10.1

Yo=—a1yp-1+8=0+1=1=hg
]’l] :—a1h0+81 =—a11+0=—a1
hz:—alhlza%

hy = —aihy = (—a1)’ = h, = (—a)"

From this simple example we can see that the number of impulse response coef-
ficients is infinite; when A(z) # 1, we have an Infinite Impulse Response filter, an
‘IR’ filter. Since the n™ impulse response coefficient is (—a;)”, we conclude that
the filter is unstable if |a;| > 0. The filter pole is

1+611Z_1 =O=>zp=—a1

Figure 10.7 illustrates the pole’s location for the case where |a;| > 1 and |a;| < 1.

From Fig. 10.7 we can see that the filter is unstable if the pole is outside the unit
circle; for digital filters all poles must be within the unit circle. This conclusion is
general and consistent with our results in Sect. 7.4.2 (Fig. 7.38).

Equation (10.5) represents the general expression for a second-order IIR filter:

bo+biz ' +bz? Y(2)
H(z) = -1 2 =
l4+a1z7' +axz X(2)

(10.9)

Taking the inverse z transform of Eq. (10.9) gives us the difference equation for
the output sample:

Yn = —Q1Yn—1 — Q2Yn—2 + bO-xn + blxnfl + b2xn72 (1010)

Figure 10.8 illustrates the block diagram.
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Fig. 10.7 Stable if poles are A Im(z)
inside the unit circle
las] > 1 j
Unstable JUPTELS RRDIY
/ 'R
N } e(f)
/N T )
-1 i1
lagl <1 "o
Stable -

Fig. 10.8 Block diagram of
second-order IIR filter bo P@ » Yn
AAR
}J an Yn-1
b2 —az Yn-2

Example 10.2 Consider the filter (z) = 5&—.

a Where are the poles and the zeros? b What is the Fourier transform? ¢ Find and
plot the amplification diagram. d What is the difference equation? e Draw the block
diagram. f What is the impulse response? g What is the output if the input is x = [2,
—1,0.5]?

Solution We can re-write the transfer function as follows:

-1 @+ DE-D

H(z) = _
@)= 2081 = C109)E=09)

and it is obvious that we have two zeros (+1) and two poles (£0.9j). To find the
Fourier transform, we replace z with ei%:

-1 (-9 2jsin Q- e/

) e +0.81  cos2Q+jsin22+0.81  (0.81 + cos 2€2) + jsin 22
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12

0 1 1.57 2 3

Fig. 10.9 The amplification diagram

_ 2 - |sin Q| el§2t+m/2)
/(081 1 cos2Q)® + (sin2Q)? el (in22/O81+cos29)
=|H(Q)|

IH(€2)l is plotted in Fig. 10.9. (Remember that we have a pole in z = 4-0.9j, i.e.,
at Q = 7/2.)
The difference equation:

Y@ 11—z
X(z) 14081z
Yn = _O-Slyn72 + Xp — Xp—2

;= Y@ +081Y ()7 = X(2) - X(2)z > =

Figure 10.10 illustrates the block diagram.
We get the impulse response by setting x,, = §,:

hp=%860=1 hi =0 h,=—-081-1—-6 =—-181 h3=0
hy =—081-(—1.81) =147 hs=0 he=-081-147=-1.19 h;=0....

The impulse response is plotted in Fig. 10.11.

Fig. 10.10 The block
diagram
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2

]

|—© Impulse response
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Fig. 10.11 The impulse response

To find the output for the input x = [2, —1, 0.5], we could use a convolution
table as in table 10.1, but here we take the opportunity to illustrate discrete-time
convolution graphically, see Fig. 10.12.

In Fig. 10.12, we have plotted the signal x,,_;, for n = —1, see Eq. (10.3), and as
time (n) increases, x,_; slides right, and at each time (n) we stop and multiply all
overlaps between x,_; and /; and then we sum all the products. Compare Fig. 10.12
to Fig. 9.42 in Chap. 9. Figure 10.13 illustrates the resulting output from the filter.

2l nincrease —6 Impulse response
— |—© x(ni).n=-1

0 5 10 15 20

Fig. 10.12 Discrete time convolution
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—© Filter output+

0 5 10 15 20 25

Fig. 10.13 Filter output

10.4 Designing Digital Filters

10.4.1 FIR Filters: The Inverse Fourier Transform Method

Now that we understand how IIR and FIR filters work, we need to learn how to design
them. There are several methods to design digital filters, but here we will only learn
one method for FIR filters and one method for IIR filters. We start with FIR filter
design.

We use the inverse Fourier transform method to design FIR filters. This method
starts from the amplification diagram |H (2)| of the desired filter’s frequency
response. We get the FIR filter coefficients by taking the inverse Fourier transform
of|[H (2)|:

bl

1 .
by = — | |H(Q)|- ¥ (10.11)
27 J_;

Example 10.3 Design an FIR filter with a frequency response as illustrated in
Fig. 10.14.

Solution The filter coefficients are

A [H©O)

‘ \ ‘ \
- -n/2 -nl4 /4 /2 T

\ Je)

Fig. 10.14 Desired frequency response
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1 /4 ) 1 ) x
b= [ 1.6 =[]
270 J s 27jk /

— i . l(ejk% _eijk%) — Lsinlﬂ

nk 2j nk 4

Table 10.2 contains the filter coefficient values for the first eleven coefficients.

Notice two things in Table 10.2. First, we have truncated the table since we must
limit the number of coefficients. Second, there are ‘negative-time’ filter coefficients.
That means that we must ‘shift’ the coefficients right (delay) to get a causal filter.
Below are the difference equations for the 3-, 9- and 11-‘tap’ filters (b4 = 0):

v, = 0.225x, + 0.250x,_1 + 0.225x,_»

o = 0.075x,, + 0.159x,,_; + 0.225x,_» + 0.250x,_3 + 0.225x,,_4+
+0.159x, 5 + 0.075x, ¢

o = —0.045x, + 0.075x,_ + 0.159x,,_3 + 0.225x, 4 + 0.250x,,_5+
+ 0.225x,_¢ + 0.159x,,_7 4+ 0.075x,_g — 0.045x,,_10

Figure 10.15 illustrates the frequency response of these three filters (and a 21-tap
filter).

From Fig. 10.15 it is obvious that the more taps we implement, the closer is the
frequency response to the ideal response.

In general, IIR filters are more ‘computational efficient’ than FIR filters; they get
the job done with less taps (less ‘multiply-and-add’ operations). So why use FIR
filters at all? Well, we have already seen one reason; the lack of poles makes them
inherently stable. But that is not the most important reason. The most important
reason is stated in the following theorem:

Table 10.2 Filter coefficients
b_s b_y4 b_3 b, b_ by by b b3 by bs
—0.045 |0.000 [0.075 |0.159 |0.225 |0.250 |0.225 |0.159 |0.075 |0.000 |—0.045

-21-tap 11-tap —— 9-tap 3-tap = = -spec
\
\
1
[
0.2 oy
| =
1 A ™ - e — .
L 1 1 \ A \\,*:{;‘-—”"1. P S == Sl
0 0.5 0.785 1 1.5 2 25 3

Fig. 10.15 The frequency response of the three FIR filters
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Theorem FIR filters with a symmetric set of filter coefficients have linear phase
diagrams.

Proof We will not give general proof here, only a ‘convincing’ example. ‘Symmetric’
filter coefficients means that if we have an n-tap filter, then by = b,_1, by = b,_»,
etc. Let’s take a symmetric 3-tap filter:

Yn = box, + b1xp,_1 + bax,—2 = box, + b1X,-1 + box,_2 =
Y(z) = X@)(bo+ b1z +boz7?) = Hz) = (boz' +bi+boz ') -z =

H(Q) = (boe!? + by + bpe 1) - e71% = (b) + 2bycos Q) - e

(Remember that filters with linear phase diagrams don’t distort the signal.) And
we can see that the phase function is ¢(2) = —€2, i.e., it is a linear function in £2.
This will hold true for any number of taps as long as the coefficients are ‘symmetric’,
and it is not restricted to odd numbers of taps. See Example 10.1, where we had n =
4 and symmetric taps. The phase function was ¢(2) = —1.59.

10.4.2 IIR Filters: The Bilinear Transformation Method

When we design IIR filters, we start from an analog filter and then we try to mimic
its frequency response in discrete time. Let’s take the simple first-order RC filter in
Fig. 10.16 as an example.

The transfer function is

H(s) = (10.12)

— =
1+ sRC

1 1
HQ) = ——F—— HQ)| = ——— 10.1
(€2) T+ jwRC = [H(Q)] (L1 @R (10.13)

Fig. 10.16 First order RC |
filter
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Fig. 10.17 The w axis must be squeezed in between —7 and 47

a

This is a lowpass filter and its amplification diagram is illustrated in the top

diagram in Fig. 10.17.

To mimic this behavior in discrete time, we must shoehorn the entire w axis into

the range =7 on the 2 axis, see Fig. 10.17.

We are looking for a transformation that transforms —oo to —m, 0 to 0 and +
oo to +m. Do we know any such function? Yes, we do! The tan~'w has the range
£7/2, hence, if we just multiply it by 2, we will have our transformation formula.
However, for reasons that we will explain later, we will multiply @ by k (tan™'ke

has the same range):

Q=2 tan ko

(10.14)

Equation (10.14) is a transformation between the Fourier transforms in continuous
and discrete time. Since we prefer working in the z and s spaces, we need to translate
this expression into a transformation from s space to z space. We solve for kw and

multiply both sides by j:

Q  jsinQ/2

%(ejsz/z _ e—jQ/Z)

jko = jtan— = =
2 cos 2/2

dU2(1 =) | e 9

T 092 (14 e9)  14ei®

%(ejQ/Z + e—jQ/Z) -
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Now we substitute s for jw on the left-hand side and z for e/ on the right-hand
side:

1—z7! 1 1-—z71

k = = =
S

k 147!

All we need now is to determine the constant k. If we look at Fig. 10.17, we realize
that there will be some distortion of the frequency response in the transformation
from s to z space. In most digital applications we try to ‘oversample’, i.e., we stay as
far away from fg as possible. That means that we are more concerned about having
the right frequency response for ‘low’ frequencies. This is what we use the constant
k for; in the transformation we prioritize a correct representation of the low end of
the w axis. For ‘low’ frequencies, tan /2 &~ /2, and then

Q Q Ts T 21—z

— 10.15
2w 2w 2 Tg 14771 ( )

Equation (10.15) is the bilinear transformation that we use to ‘convert’ an analog
transfer function into a corresponding digital IIR filter.

Example 10.4 Assuming in Eq. (10.12) that RC = 0.01, use bilinear transformation
to design a corresponding digital IIR filter. The sampling rate of the digital filter is
1 kS/s. Plot the frequency response for both the analog and the digital filters and
compare their cutoff frequencies.

Solution e 1 142!
Z = | = — 2RC — =
I+ 2 - 5RC 1+ 4+ 38 (1-271)
3 147! 14zt 0.04840.04827" Y (2)
- 2RC 2RC),-1 21 —19z71 1-0.905;-! X
(1 + T_s) + (1 — T_3>Z ! < < (@)

= Y(2) — 0.905Y (z)z " = 0.048X (2) + 0.048X (z)z "

Yu = 0.905y,_; + 0.048x, + 0.048x,_;

The Fourier transform is H(2) = %. In Fig. 10.18, we have plotted

the amplification diagram of this filter with absolute frequencies on the x-axis, and
in Fig. 10.19, we have plotted the frequency response of the original analog filter.
Notice in Figs. 10.18 and 10.19 that the cutoff frequency is the same (100 rad/s).
This is expected; from Eq. (10.14) we predict the ‘analog’ frequency of 100 rad/s to
be transformed to

T 0.001 1000
Q= 2tan_175w = 2tan™! =100 = 0.1rad = 0.1—— = 15.9Hz = 100 rads
T
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Fig. 10.18 Digital filter from bilinear transformation

0.707 |
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0 L L L I
0 100 200 400 600

Fig. 10.19 Analog ‘model’ filter
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[—analog filter|
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Notice also how well the shape of the analog filter transfers to the digital filter’s

frequency response.

10.5 Solved Problems

Problem 10.1 Design a FIR filter with a frequency response as in Fig. 10.20.
Use only the first nine non-zero filter coefficients. Plot the frequency response of

the resulting filter.

»

 |H(Q)

/4

Fig. 10.20 A bandpass filter

oV

|
1
3n/4 b3
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Table 10.3 FIR filter coefficients
k 0 +1 +2 +3 +4 +5
by 0.250 0.093 -0.159 —0.181 0 0.109

Solution Remember that we need to integrate from — to +7 and that the Fourier
transform is symmetric:

1 /-4 w2 UL (T aul ™ T oawl™?
bk=—(/ 1.elkwdw+/ IAeJk‘”dw)z—~,—([eJk‘”] " +[eﬂ“ﬂ]n ):
27w —n/2 /4 21 ]k -m/2 /4

- 1 l.(e_j’”‘/4 — e Ikn/2 4 gikm/2 ejk"/4) = L(sin kX _ sin kE)
nk  2j Tk 2 4

Table 10.3 lists the first eleven coefficients. Since b.4 = 0 and since we need “the
first nine non-zero coefficients” we must also use b.s. Hence, the difference equation
is

yn = 0.109x, — 0.181x,_» — 0.159x,,_3 + 0.093x,—4 + 0.25x,_5 + 0.093x,,_¢—

—0.159x,—7 — 0.181x,_g + 0.109x,_1¢

The frequency response is plotted in Fig. 10.21.

Problem 10.2 First, plot the frequency response of the analog filter H(s) =
s/(s + 10). What type of filter is it and what is the cutoff frequency? Next, use
bilinear transformation to design the corresponding IIR filter using a sampling rate
of 100 S/s. Plot the frequency response of this filter. What is the cutoff frequency of
the IIR filter?

Solution The Fourier transform is

0 05 0785 1 1.571 2 2.5 3

Fig. 10.21 The frequency response
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Fig. 10.22 Frequency response of analog filter

Hw) = o _ |l O~ 0/10) _ | B ()] - @l#@

jo+10 /g2 4102

The frequency response is plotted in Fig. 10.22; it is a highpass filter with a cutoff
frequency of 10 rad/s.

Since 2/Ts = 2/(1/100) = 200, the bilinear transformation to z space is

200 - 1= -z I
H(Z)z 1+Z] _ Z Z _

200- =5 410 1-21+0.05(1+271)  105-095:"

1 1

~0.952-0952z7"  Y(»)
©1-0905z7 T X(2)

= Y(z) —0.905Y(2)z ' = 0.952X(z) — 0.952X(2)z' =

= yn = 0.905y,—1 + 0.952x, — 0.952x,_;
The frequency response is plotted in Fig. 10.23.

The cutoff frequency of 10 rad/s in analog space has been transformed to 0.1 rad
in z space. This is expected since

1t

0.8
0.707 |
06

0.4

02] — IR filter

001 0.5 1 1.5 2 25 3
Fig. 10.23 Frequency response of the IIR filter
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Xn —»D\@ I(:» Yn
€

T 10
Q= 2tan_1—sw =2tan"'— = 0.1rad
2 200

Fig. 10.24 IIR filter

This corresponds to a frequency of % 100 = 1.6 Hz = 10rad/s.

Problem 10.3 Look at the IIR filter in Fig. 10.24. What does this filter do? What is
the application of such a filter?

Solution The difference equation is y, = 0.2y,_100 + X, and the transfer function
is

1 . —100 100
H(z) = Tw Poles: 1 — 0.2z =0 =z =02 =

(A-&%)'" = 0.2. O30 4= 0210 =098 ¢=ctn-3.6°

The poles’ location in z space is illustrated in Fig. 10.25; there are 100 poles and
only the first 10 poles are marked in Fig. 10.25. The frequency response is illustrated
in Fig. 10.26.

From the look of the frequency response, this kind of filter is sometimes called
a ‘comb’ filter. What does it do? It adds an attenuated delayed output sample to the
present output sample; that will generate an ‘echo’ effect. This has obvious audio
applications where the input is the microphone, and the output is the loudspeaker.
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Fig. 10.25 Pole chart; first ten poles (of 100)
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Fig. 10.26 Frequency response of ‘comb’ filter



Chapter 11 ®)
ADCs and Sampling ez

Abstract Almost all real signals are analog by nature and almost all measurement
systems are digital. That means that in most measurement systems, the signal must
be converted from the analog world to the digital world and a basic understanding of
this process is paramount. First, quantization and quantization noise are discussed in
general and then a few different analog-to-digital converter techniques (ADCs) are
presented. The first one is the successive approximation ADC (SAR) followed by the
flash ADC, the pipeline ADC, and the dual slope ADC. Level-crossing ADCs and
the sigma-delta ADCs are also presented (but they are less common in the physics
lab). The theory also includes the concept of an equivalent number of bits (ENOB)
and ‘dithering’. This chapter also digs a little deeper into the sampling process; the
benefit of oversampling and how to achieve extreme sampling rates (time-interleaved
sampling and equivalent-time sampling).

11.1 Introduction

We have previously ‘sampled’ to ‘discretize’ an analog signal, but we never got into
the details of how this is implemented in hardware. The sampling unit is a central
component in any measurement system, but the sampling itself is only part of the
secret. The ‘sample’ value of an analog signal can have any value; its range is all real
numbers (€ R). Since the ‘end station’ of most samples is ‘some kind of computer’
(digital device), the sample must also be ‘digitized’ (we will call it ‘quantized’). The
quantization is done by an analog-to-digital converter (ADC) and there are only a
handful techniques to implement an ADC in electronics. Finally, we will discuss
some ‘advanced’ aspects on sampling and quantization theory.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 229
L. Bengtsson, Electrical Measurement Techniques,
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[Vl & x(t) i

—— Analog in v
O Sampling -

______ Sample & hold out i

Fig. 11.1 Sampling
11.2 Sampling

For the quantization process to work (the analog-to-digital conversion), the sample
value must be constant during the entire conversion process. This is illustrated in
Fig. 11.1; the dotted line represents the input value to the ADC. It is the responsibility
of the sample and hold unit to take a sample and hold it constant until the quantization
is completed.

Figure 11.2 illustrates a sample and hold unit. The S&H unit consists of three
components: A voltage follower, a capacitor, and a switch. The switch is controlled
by the sampling clock signal. Itis ‘closed’ during the ‘positive’ period of the sampling
clock and during this time the capacitor is charged to the input signal level. The high
input impedance of the op-amp ensures that it doesn’t discharge during the ‘negative’
period. Hence, the output of the voltage follower will be the dotted line in Fig. 11.1.

11.3 Quantization and Quantization Noise

An ADC takes an analog voltage (the sample) and converts it into an integer (a
binary integer) that is proportional to the sample voltage. An ADC is characterized
by two parameters. The most important parameter is the number of bits, #n, in the
digital (binary) output integer. The second parameter is the reference voltage U.y.
Figure 11.3 illustrates an n-bit ADC.

The ADC divides the reference voltage into 2" equidistant levels (usually). If, for
example, Ues = 3.3 V and n = 8, we will have 256 levels, and the distance between
each level is

U, 33
AU = == — 22 _ 12.89mV (11.1)
2n 28
AU is the resolution of the ADC.! Figure 11.4 illustrates how the reference voltage
is divided into 256 levels (2" levels in the general case).

! Sometimes just the number of bits (n) is used for the resolution: “The ADC has a resolution of 12
bits.”
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» Discretizing /

\
\

S&H ADC [—

Fig. 11.2 Sample and hold unit

Uref
x(n) = 2.397338662... V = Ann o
’ n-bit : Integer Dout
> ADC | ¢ (n-bit binary)
0
1
'’Analog’ in

'Digital’ out
Fig. 11.3 Analog-to-digital conversion

Notice that there are 256 levels, numbered from 0 to 255; there is no level 256.
The last voltage level is Uyt — AU. The sample Aj, from the sample and hold unit is
simply assigned the integer level number that is closest to the sample value:

Ain
Dy, = round (11.2)
AU
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Voltage Level
3.30000 V 256 This level doesn't exist:
3.28711V ——— 255 256 is not in the ADC's range
3.27422V ——— 254
2.39766 V 186 Level 186 is closest to the
238477V ——— 185 sample value 2.397338662
237187V ——— 184
005156V — 4
0.03867V ——F——— 3

[

|
b TTTTTo TA All samples in this
i i —interval will produce
1 ] AU P
| I Dout = 1.
[V — Y
Yy g5 |
w 1
|

Fig. 11.4 The reference voltage is divided into 2" levels

Our sample of 2.397338662 in Fig. 11.3 will be converted to

2.397338662

Dow = round( 0.01289

) = round(185.984) = 186

Of course, the ADC will produce it in binary format:
Doy = 10111010, = 18649

This is the number that is sampled by the data acquisition computer, and it will
be re-converted to a voltage:

Ain = Doy x AU = 186 x 0.01289 = 2.39765625 V (11.3)

Notice a few details in Fig. 11.4. The digital output value changes in the middle of
the two AU levels. A consequence of that is that the width of the first interval is only
AU/2 and the last interval is 3AU/2. Figure 11.5 illustrates the in—out characteristics
of an 8-bit ADC.

We can see in Eq. (11.3) that there is a small discrepancy between our estimate
Xin and the ‘true’ A;, sample, an uncertainty, because of the rounding in Eq. (11.2).
The ‘true’ value Aj, can be anywhere in the interval

(Dot — 0.5) x AU < Ay, < (Dow + 0.5) x AU (11.4)
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Fig. 11.5 In—out characteristics of 8-bit ADC

Fig. 11.6 The quantization qe U(0,0.5AU)
adds noise to the signal

Ain > —»An

The discrepancy between Xin and Ay, is called the quantization noise (or the
‘residual’) and is a stochastic variable with a uniform distribution between =AU /2.
We can model this as noise that is added to the sample, see Fig. 11.6.

In Fig. 11.7 we have sampled a sinusoidal signal and plotted the quantization
noise in the same graph (x20); the quantization noise will set a limit to how small
signal changes we can detect with the ADC.

We will have more to say about quantization noise later.

11.4 Digital-to-Analog Converters

A Digital-to-Analog converter (DAC) does exactly the opposite of an ADC; the input
is an integer (the ‘digital’) and the output is an analog voltage, see Fig. 11.8. The
analog output voltage is
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Fig. 11.7 The quantization noise in sampling (Urr = 5.0 V, 8-bit ADC)

Din
Aout = ? X Uref (115)

We will not go into the details of DACs here. They are much easier to implement
in hardware than ADCs; the two dominating techniques are (a) an ‘R-2R ladder’
circuit and (b) lowpass filtering of a PWM signal. (You can easily google that if

you are interested.) The only reason we mention them here is because some ADCs
depend on a DAC to do an analog-to-digital conversion.

11.5 SAR ADCs

The successive approximation register (SAR) ADC is one of the most common
and popular ADCs since it is a good compromise between speed and resolution.
Figure 11.9 illustrates the SAR architecture.

The DAC generates an analog voltage that is compared with the analog input
sample in a comparator. The comparator output is fed back to the ‘SAR logic’ which
changes the DAC input value until it equals Aj,. The ‘cleverness’ in the circuit is
the order in which the SAR logic changes the input values to the DAC to minimize
the conversion time. In the first input value to the DAC, only the most significant

Fig. 11.8 Digital-to-analog Uref
converter
1—|
0—|
Din : n-bit L Aout
1~ | DAC
0—|
1—|
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Fig. 119 SAR ADC T — Comparator
architecture in TN
Uref —— 1 n-bit DAC
~———> Dout
n-bit reg
SAR logic [

bit is set: 10000 ... 00 (binary). This corresponds to a DAC output value of U s/
2. If the comparator output is ‘1°, we know that Aj, > U/2, and the only way to
get a larger analog output from the DAC is if we keep the most significant bit = 1.
If the comparator output is ‘0’, we know that A;, < Ue/2, and the most significant
bit must be = 0; in a single comparison, we have determined the value of the most
significant bit. In the next comparison, we set the second most significant bit to ‘1°,
and the comparator output determines if we should keep it or not. We continue until
all bits have been compared and the digital output value is the output from the n-bit
register used as the DAC input. An n-bit SAR ADC needs n comparisons to do an
analog-to-digital conversion. The comparison process for an 8-bit SAR is illustrated
in Fig. 11.10.

The SAR algorithm is by no means a contemporary invention. It was first suggested
by an Italian mathematician, Tartaglia, in 1556. However, he was not concerned with
SAR ADCs, he suggested the SAR algorithm to optimize the weighting on balance
scales: Start with the heaviest counterweight and keep it if the weight is too small.
Next, take the second heaviest counterweight, etc.

SAR ADC
2.6 T T T T T T T
DAC ¢
24 Comparator outputs --- Ay m
22 - 0 0 0 0 0 |
=

2+ ;
1.8 + ;

1.6 L L L L 1 I I
0 1 2 3 4 5 6 7 8

Fig. 11.10 A;, = 1.87 V = Doy = 1001 00012 = 145 (Urer =3.3 V)



236 11 ADCs and Sampling

11.6 Flash ADCs

When it comes to conversion speed, there is no design that can beat the flash ADC.
The flash technique is illustrated in Fig. 11.11. In a flash ADC, the input sample
is fed to the minus input of many comparators and the plus inputs are provided a
successively higher potential from a resistor network; if the input sample voltage is
higher than the potential on the comparator’s plus input, the output will be ‘0’. In
general, the comparators at the bottom will have a ‘0’ output, and the comparators at
the top will have an output = ‘1°. The number of Os at the bottom will be proportional
to the input sample voltage and the ‘decoder’s’ job is simply to count the number of Os
and produce this number on the output (a 2" — to — n decoder). Since all comparisons
are performed simultaneously, it is sometimes called a parallel ADC.

Itis easy to see why this technique is so fast; all comparisons take place at the same
time and the only delay is caused by the signal propagation delays in the comparators
and the decoder. It is also easy to see the disadvantage; an n-bit flash ADC requires
2" comparators (minus 1); a 16-bit flash ADC would need 65,535 comparators. This
is not possible to implement in silicon and for that reason, you will only find flash
ADCs with ‘low’ resolution (8—10 bits). In the next section we will see how to remedy
this.

11.7 Pipeline ADCs

To solve the problem with the large number of comparators in a flash ADC, pipeline
ADCs are used. We will present the pipeline ADC with an example. First, a sample
voltage of A;, = 2.65 V would be converted to

2.65
round<W> = 4342 = 10F6,5 = 1 0000 1111 0110, (11.6)

in a 13-bit ADC with a +5.00-V reference voltage. (We keep this in mind to verify
our result later.) If the ADC is the flash ADC in Fig. 11.11, we would need 213 _q
= 8191 comparators. With the pipeline ADC, we only need 36! (At the cost of some
minor additional delay.) Figure 11.12 illustrates the pipeline ADC. The secret of the
pipeline ADC is the electronics in the ‘stages’. Figure 11.13 illustrates the contents
of stage 1.

In stage 1, Ay, is first converted by a 3-bit (flash) ADC and the ADC output is then
DA converted back to an analog voltage. This analog voltage is subtracted from Aj,
to get the ‘residual’ of the 3-bit AD conversion. This residual could be anywhere in
the range £AU /2; if it is negative, our circuit would add it to Aj,. For that reason,
we will assume that we have a truncating ADC (which is only a modification of
the resistor network in Fig. 11.11) and then the residual will always be positive in
the range 0 to AU = U,r/2?. This residual is multiplied by 4 (2?) before it is fed
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Fig. 11.11 Flash ADC

forward to the next stage. Hence, the maximum voltage fed forward to the next stage
is
Uref

Uref 2
X2 == (11.7)

(Which means that the reference voltage of the ADC in the next stage should be
half of the reference voltage in the previous stage.) Our 3-bit ADC in Fig. 11.13 has
a resolution of 5/2% = 0.625 V. The ADC output is |2.65/0.625| = 4 = 100,. This
is also the input to the DAC and the DAC output will be 4 x 0.625 =2.50 V and the
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Ain—»| Stage 1 | Stage 2 | »| Stage 3 > 4-bit

Flash ADC
3 3 3 4
Latches and registers
D12D11 D10 D9 DgD7 Dg D5 D4 D3 D2D1Do

Fig. 11.12 A pipeline ADC

0.15V
. + 0.60 V
Ain »(+ ) — —»
=265V —Q To stage 2

5.0V 5.0V
| |
. —
3-bit | o 3-bit
> ',:Algs(? 0 T DAC 2.50V
100

Fig. 11.13 Stage 1

residual is 2.65 — 2.50 = 0.15 V. The voltage fed forward to stage 2 is 4 x 0.15 =
0.60 V.

Stage 2 is identical to stage 1, except that the reference voltages have been divided
by 2, see Fig. 11.14.

In stage 2, the ADC resolution is 2.5/8 = 0.3125 and the ADC output is
|0.6/0.3125] = 1 = 001,. The DAC output is 1 x 0.3125 = 0.3125 V, and the
residual is 0.6000 — 0.3125 = 0.2875 V. The voltage fed forward to stage 3 is 4 x
0.2875 = 1.15 V. Stage 3 is identical to stage 2, except that the reference voltages
have again been divided by 2, see Fig. 11.15.

The ADC resolution its now 1.25/8 = 0.15625 V and the ADC output is
[1.15/0.15625| = 7 = 111,. The DAC output is 7 x 0.15625 = 1.09375 V, and
the residual is 1.15 —1.09375 = 0.05625 V. The voltage fed forward to the final stage
is4 x 0.05625 = 0.225 V.

Stage 4 is a 4-bit flash ADC (rounding, not truncating) with a reference voltage
that has again been divided by 2, see Fig. 11.16.
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Fig. 11.14 Stage 2; reference voltages have been divided by 2
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Fig. 11.16 Stage 4 0.625V

0.225V
»  4-bit Flash ADC

From Stage 3

The resolution of this ADC is 0.625/2* and with an input voltage of 0.225, the
output is round(0.225 / (0.625 / 24)) = 6 = 0110,. Putting all the digital outputs in
Figs. 11.13, 11.14, 11.15 and 11.16 together, we see that the 13-bit output is
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10000 1111 0110, = 4342 (11.8)

Which agrees exactly with our prediction in Eq. (11.6).

Notice first, that stages 1-3 used a 3-bit flash ADC, i.e., a total of 3 x -1
= 21 comparators. Stage 4 used a 4-bit flash which needs 2* — 1 = 15 comparators
and hence the entire pipeline ADC design in Fig. 11.12 only needs a total of 36
comparators (compared to the 8191 comparators that would be required in a ‘real’
13-bit flash ADC).

The disadvantage of the design is that it will take a little longer to complete the
conversion compared to a ‘real’ flash ADC. However, the extra delay is very small
since it only depends on gate delays in the circuits (there is no clock involved). And
second, we can make up for this delay; if the result from the first stage is ‘latched’
in a register, then we can start the conversion of the next sample as soon as the first
stage is completed (samples are ‘pipelined’). Hence, the effective conversion time is
Y4 of the total conversion time of the ADC.

11.8 Dual Slope ADCs

The dual slope ADC is the dominating ADC technique used in DMMs. The dual slope
ADC is also called the ‘integrating’ ADC. The reason is that it uses an integrator as
part of the design.

11.8.1 The Integrator

Figure 11.17 illustrates an integrator.

The op-amp in Fig. 11.17 has negative feedback, indicating that the inverting input
is at virtual ground, and hence the current I must be Uj,/R. By definition, current is
‘charge variation per time unit’:

I R C T Uout t
Uin g

- Uout Gradient pro-
portional to Uin

Fig. 11.17 Integrator
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Uin dQ Uin
l=—=— dQ = Idt = —dt 11.9
R a4 e R (119)

1
= Q:/Idtz E/Umdt (11.10)
The voltage across the capacitor is
1
Uczgz—/Uindt (11.11)
C RC

The op-amp output Ugyy = —U.:

1
Uout = ———= [ Uindt (11.12)
RC

We conclude that the output of the circuit in Fig. 11.17 is the integral of the
input signal and if the input signal is constant (positive), the output will be a linearly
decreasing signal:

1
Uout=_R’Uin‘t (11.13)

That is what we need to explain the dual slope ADC.

11.8.2 The Dual Slope Circuit

The dual slope ADC is illustrated in Fig. 11.18.

We can see an integrator (with output signal Uy), a comparator, and a binary
counter. There are two input voltages to the integrator: The input sample A;, and the
reference voltage U,.s. The switches S| and S, decide which voltage is fed to the
integrator. For the design to work, Ues < 0, and |Aiy| < |Usetl- Ain s assumed to be
>0 V.

Attime ¢ = 0, the controller closes switch S; and opens switch S5; Aj, is the input
signal to the integrator and hence the integrator outputis —Aj, - t/RC (see Eq. (11.13));
Uy decreases linearly with time at a rate that depends on the input sample A;,. Since
the integrator output is < 0, the comparator output will be ‘0’. Also, at t = 0, the
binary counter is reset, and the clock starts to increase the binary counter value (from
0). The integrator output decreases until the binary counter reaches its maximum
count value and ‘overflows’ (after 2" clock pulses). This happens after time #; and
Fig. 11.19 illustrates the integrator’s and the comparator’s output and the counter
value at t = ;.

When the control logic senses the overflow signal from the binary counter, it opens
switch S and closes switch S»; the (negative) reference voltage will now discharge
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Fig. 11.19 Phase 1: charging

the capacitor, and the voltage on the integrator output will ‘turn upwards’. It is still <
0 though, so the comparator output is still ‘0’. The binary counter just starts over
from 0. Figure 11.20 illustrates the signals sometime after ¢;.

When the integrator output crosses the ‘zero line’ (after time #,) the comparator
output goes high and when the control logic senses this, the clock to the binary
counter is immediately stopped and the binary counter output stops on Doy, see
Fig. 11.21.

We will now prove that this an ADC; by definition, it is an ADC if the relationship
between the input sample A;, and the digital output Doy, is

Uref
2}1

Ain = Doyt X (11.14)
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»

Ay t4 A Counter A Comparator

\ Aas

Phase 1 | 1
t
Fig. 11.20 Phase 2: discharging
A Counter A Comparator
; | t
Phase 1 iPhase 2 ; »
t1
Fig. 11.21 Done!
After time ¢, the integrator output will stop on
1
UI,max = _R_C . Aintl (1115)
During time t,, Ut Will discharge the same voltage:
1 1 15 Ain
Umx = —— Upth = —— - Apt1 > — = — 11.16
I,max RC refl2 RC in*1 1 Uref ( )

We also know that the clock frequency is constant during phase 1 and phase 2.
The clock frequency f is

f _ 2" - Dout = 153 o Dout (11 17)
“ h - 1) h oo ’
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Fig. 11.22 Phase 1: charging fime is constant. Phase 2: discharging rate is constant

Combining Eqgs. (11.16) and (11.17) will give us Eq. (11.14) and we have proved
that the circuit in Fig. 11.18 is indeed an ADC.

Notice that the result above is independent of the R and C values which means
that the design is independent of variations of these components (due to aging,
temperature, etc.). We could have designed a much simpler solution, a single-slope
ADC, but then the result would depend on the component values. The cleverness of
the dual slope ADC is that it is independent of variations in R and C.

From the design we can draw two conclusions: (1) It is not very fast. Charging
and discharging of the integrator capacitor takes a ‘long’ time. (2) It is easy to design
a dual slope ADC with high resolution; binary counters with many bits are easy
to build. Hence, we have a slow ADC but with high-resolution potential. (Just the
opposite of flash ADCs.)

Figure 11.22 summarizes the dual slope function. During phase 1 the time is
always constant (the time it takes for the binary counter to overflow). During phase
2, the discharging rate is always constant (determined by the reference voltage).

Slow but ‘high-resolution’ is exactly what we need in a DMM and DMMs are
always based on dual slope ADCs.

11.9 Level-Crossing ADCs

Traditional sampling is based on a constant sampling time Ts = 1/fs; samples
are taken at regular intervals (see Fig. 11.1). This is sometimes referred to as
‘synchronous’ sampling. Synchronous ADCs are characterized by a periodicity in
time and equidistant quantization levels. Because of the fixed equidistant quantiza-
tion levels, each sample will have an uncertainty, an error, see Fig. 11.23, and the
size of the error is determined by the ADC’s resolution:

1 1 Uret
Max error = =— x AU = £— X
2 2 2N

(11.18)
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The ‘problem’ with synchronous ADCs is when ‘sparse’ or ‘burst-like’ signals
are analyzed. Sparse or burst-like signals are signals with long periods of no, or very
low, activity, resulting in a lot of identical samples (that really doesn’t carry any
net information). Sparse and burst-like signals are, for example, radar and speech
signals and electro cardiograms, see Figs. 11.24 and 11.25. For these situations, asyn-
chronous sampling is sometimes used. Asynchronous sampling is also sometimes
called level-crossing sampling.

The level-crossing ADC (LC-ADC) was first suggested by Inose et al. in 1966
[1] and in an LC-ADC the sampling is triggered by the signal activity rather than

SR K R T

1 Ts1 Time

Fig. 11.23 Synchronous sampling: uncertainty in voltage

Fig. 11.24 An ECG signal is ‘sparse’
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*oh

Fig. 11.25 A speech signal is ‘burst-like’

by a fixed time interval. Instead of sampling regularly, the time between predefined
level-crossings is registered.

Hence, the ‘sample’ is now a ‘time’ and not a ‘voltage’. Also, the sample must
indicate the ‘direction’ of the change (up or down). The sample is a ‘time with a sign’.
If the sample is —0.346 s, it means that the signal has decreased one level during
the last 0.346 s and if it is +0.346 s it has increased. Figure 11.26 illustrates the
signal from Fig. 11.23 sampled asynchronously.

Notice the irregular sampling intervals; the sample density follows the signal
derivative. But notice most of all, that there is now no uncertainty in the samples’
voltage levels! The voltage levels are predefined. The sampling problem has been
transferred from quantizing voltage to quantizing time. And, as we will see in the
next chapter, we can quantize time much more accurately than voltage. There are
other advantages with the LC-ADCs too. First, for sparse and burst-like signals we
take less samples and save memory. Second, since sampling is sparse, power-saving
is implied since the sampling computer can revert to an ‘idle’, low-power mode
between samples.

wiibEERRR R

e T T

Fig. 11.26 Asynchronous sampling (‘level-crossing’): uncertainty in time
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11.10 Equivalent Number of Bits

The uncertainty in a synchronous sampling ADC is =AU /2 (see Eq. (11.18)). We
consider this uncertainty as the ‘noise’ in the ADC output with a ‘uniform’ probability
distribution (see Sect. 13.5). The ‘power’ of this noise (produced in a 1-2 resistor)
is the variance of the corresponding stochastic variable, and it is (see Eq. (13.27))

(11.19)

AUN®  AU?
2 ) 12

1
Pnoisezazz_x<
3

The ADC range is 2" x AU; a maximum range sinusoidal would have an ampli-
tude of 2" x AU/2. The power of that signal (produced in a 1-2 resistor) would
be

P RMS? < A )2 l(lzmu)z 122”AU2 (11.20)
signal = = 7 =3\ 5 =35 .
2 2\2 8

The signal-to-noise ratio of the ADC output (of the signal in Fig. 11.7) is

Piion: 22"AU?/8 3
SNR=10-1og—g“‘“=10.1ogT/=10-1og Z.2) =
Pnoise AU /12 2

3
= 10~10g§+20n~10g2= 1.76 + 6.02n (11.21)

This is the ‘raw’ signal-to-noise ratio in the ADC’s output. Circumstances can
make this larger or smaller. External noise can make it smaller and signal processing
tricks can make it larger. It is common to express the signal-to-noise ratio as the
‘equivalent number of bits’ (ENOB); just solve for n in Eq. (11.21):

SNR — 1.76
ENOB = >~ 7 (11.22)
6.02

11.11 Oversampling

11.11.1 As a Means to Reduce Noise

According to the sampling theorem, a signal with bandwidth f}, must be sampled
at a rate higher than 2f},. Most systems sample faster than that and we define the
oversampling rate (OSR) as how many times faster than the Nyquist limit 2f}, we
sample:
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OSR = 5 (11.23)

2fv

The obvious reason for oversampling is to get a better resolution in the time—space
representation of the signal, but there are other advantages too. In Eq. (11.19), we
found that the noise in the ADC output, due to the quantization, is AU 2 /12. Due
to aliasing, this noise ends up in the frequency band 0...fs/2. Hence, the spectral
density of the quantization noise is

2 2
CAUY12 AU 2 [W} (1124

A I

The noise power in the frequency range of interest is the noise within the signal’s
bandwidth f:

AU? 2 AU 1
.ﬁz C— (11.25)
12 fs 12 OSR

po=p- fp=

From Eq. (11.25) we can see that the noise power within the signal’s bandwidth
decreases with the oversampling rate; oversampling improves the signal-to-noise
ratio. This is illustrated in Fig. 11.27. In the first case, the signal is sampled at the
Nyquist limit ( fs is just above 2f) and in the second case, the signal is oversampled
by a factor of K.

According to Hauser [2], the SNR expression in Eq. (11.21), for a full-scale
sinusoidal signal oversampled by a factor of K, is improved to

Noise in signal bandwidth when
A sampling at the Nyquist limit.

AU%12

\Same area.

Noise in signal bandwidth when
fs is K times higer than fp.
AU%12

/ [Hz]

fo Kfb
= fs/2 = Kfs/2

Fig. 11.27 The distribution of quantization noise
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SNR = 6.02n + 1.76 + 10log K (11.26)

Or, if we express the oversampling rate in octaves L (K = 2F), then
SNR = 6.02(n +0.5L) + 1.76dB (11.27)

Oversampling an n-bit ADC by a factor of K = 2 generates the same quantization
noise as an (n 4+ 0.5L)-bit ADC sampled at the Nyquist rate! For example, an 8-bit
ADC oversampling by a factor of 64 (= 2°) will only produce quantization noise
(in the signal bandwidth) corresponding to that of an 11-bit ADC sampling at the
Nyquist limit.

Another advantage of oversampling is that the anti-aliasing filter requirements
are relaxed. If we sample at the Nyquist limit, we need a very ‘steep’ (high order)
anti-aliasing filter, but if we oversample, we might even get away with a first-order
filter, see Figs. 11.28 and 11.29.

AXOI signal spectrum
Anti-aliasing filter

i ! >
fo fs 2fs
= fs/2
Fig. 11.28 Sampling at the Nyquist limit requires a high-order anti-aliasing filter
AXOI - signal spectrum
Anti-aliasing filter (first order)
. f
= >

I
fs/2

Fig. 11.29 Oversampling relaxes the anti-aliasing filter requirements
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11.11.2 As a Means to Improve Resolution

A 10-bit ADC with a reference voltage of +5 V has a resolution of 5/2!0 =
4.88 mV. However, suppose our application needs a resolution of 1.0 mV. That
would correspond to

5
o <1.0-107° = n > log, 5000 = 12.2877 .. . bits (11.28)

L.e., we would need a 13-bit ADC. According to our results in the previous section,
that corresponds to an oversampling rate of

104+05L=13=L=6= K =2%=064 (11.29)

Hence, if we oversample by a factor of 64, we get the same quantization noise
as a 13-bit ADC. However, the ADC itself still produces a 10-bit integer. The 13-bit
number must be derived in ‘software’.

If we add two n-bit numbers, the result is (in general) an (n + 1)-bit number. If
we add m n-bit numbers, we get a (n + logym)-bit number.

If we oversample by a factor of 64 (2°) we get 64 samples in the same time interval
as if we take one sample at the Nyquist limit. If we add all these 2° n-bit samples,’
we get a 10 4+ 6 = 16-bit number. If we divide this number by 2% (which is only a
binary right-shift by three), we get the 13-bit number (with the 1.0 mV resolution)
that we are looking for. This technique is called filtering and decimation and is used
to increase the resolution of low-resolution ADCs. (It is also called interpolation
sometimes because we read values between the original ADC’s levels.)

11.12 Dithering

The ‘filtering and decimation’ trick in Sect. 11.11.2 only works if there is enough
noise in the ADC output. If there is no noise, we will get the same output each time,
and filtering and decimation would not improve anything. In those cases, where the
noise level is smaller than the ADC resolution, we must add noise to improve the
resolution. This is called dithering.

It seems contradictory that adding noise can improve things, but this has been
known for a long time. During the second World War, airplane bombers were
controlled by mechanical ‘computers’, and engineers were puzzled by the fact that
the airplanes seemed to perform much better when flying than what was indicated by
simulations in the laboratory. They concluded that this was attributed to the vibrations
induced (by the engines) into the mechanical control system; the vibrations helped

2 We average them, but that includes adding them.
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overcome the friction in the mechanical parts. This is the first known example of
how noise injection can improve performance.

We can use the same trick to improve the performance of an ADC; the quantization
levels correspond to the mechanical system’s ‘friction’. By inserting noise, we can
help the ADC to overcome this ‘friction’ and read between the quantization levels.

An 8-bit ADC with a reference voltage of +5 V, has a resolution of 5/256 =
19.53 mV. An input signal of 1.12 V will generate round(1.12/0.01953) = 57 at the
ADC output. The quantization error is [1.12 — 57 - 0.01953| = 6.72 mV (an error
of 0.6%). If there is no noise in the signal, there is nothing we can do about this;
averaging samples won’t help, since we would get the same ADC output each time
(= 57), see Fig. 11.30.

However, by adding (Gaussian) noise to the signal, we force a variation of the
output sample values. By averaging theses samples, we will be able to read ‘in
between’ the quantization levels (interpolating) and get a more accurate estimate of
Ajn, see Figs. 11.31 and 11.32.

For example, adding Gaussian noise with a standard deviation equal to 2 x AU to
the 1.12-V signal in Fig. 11.30, and taking 64 samples, see Fig. 11.32, generated the
sample distribution illustrated by the histogram in Fig. 11.33. Averaging the samples
enables us to interpolate between the quantization levels. The sample average is 57.17
which corresponds to a residual error of only 0.3%.

Dout

60 T —

55 + ’7

I I I I I I »
>

[ [ [ [ [ [
1.074 1.094 1.113 1.133 1.152 1.172 [VI  Ain

112V

Fig. 11.30 If there is no noise, we get the same sample value every time
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Fig. 11.33 Sample distribution after dithering

11.13 Sigma-Delta ADCs

11.13.1 Background

The Sigma-Delta ADC (XA ADC) technology emerged from the A-modulation
technique developed for data transmission. In a A-modulator, the actual sample
value is not transmitted, but rather the difference between successive samples. If the
transmitted value is positive, a positive signal change has occurred since the last
sample and vice versa; a A-modulator tracks the signal’s derivative. (And hence, the
receiving end must integrate the signal to restore it.) In fact, true A-modulators only
transmit 1-bit values; 1s or Os indicating a positive or negative signal change, see
Fig. 11.34.

This is implemented by feeding back the quantized signal via an integrator, see
Fig. 11.35.

The ‘recovered’ signal in Fig. 11.34 corresponds to the demodulator signal before
the lowpass filter; the lowpass filter ‘smooths’ the edges of the recovered signal to
recover the original signal exactly.

The A-modulator was developed for the purpose of improving signal transmission
and had nothing to do with ADCs. The modulator was later improved by Inose et al.
[3] (still for the purpose of transmitting signals) and they also coined the term ‘¥ A
modulation’. Here is how they reasoned:

First, integration is a linear operation; [ a - x(¢)dt = a [ x(t)dt, which indicates
that it doesn’t matter if we integrate first and do ‘something else’ second, or vice
versa, see Fig. 11.36. In Fig. 11.35, that means that the integrator at the receiving
end can be moved to the front without changing the result, see Fig. 11.37.

Another consequence of the linearity of integration is that it doesn’t matter if we
integrate first and add second: [ x(t)dt + [ y(r)dt = [(x(t) + y(t))dt. Hence, in
Fig. 11.37, we can replace the two integrators with just one if we move it inside the
loop, after the summing circuit, see Fig. 11.38.

Inose et al. named it ‘XA modulator’ because ‘sigma’ refers to the summing
component and ‘delta’ refers to the differentiator. However, it wasn’t until 1969
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Fig. 11.38 Inose’s (et al.) modified A-modulator [3]

that it was suggested that this modulator could be used explicitly for the purpose of
analog-to-digital conversions [4].

It has been debated in the community whether the correct name is ‘XA ADC’
or ‘AY ADC’. In 1990, the editor of Analog Dialog addressed this problem in an
editor’s note and concluded that the correct name is indeed ‘X A ADC’ and urged
application engineers in the community to promote that name. That name is now
well-established in the community. That was the historical background of the ¥ A
ADC. Let’s look at why it has become such a popular ADC technology.

11.13.2 Theory

The £ A ADC differs significantly from the other ADC techniques; it produces
(primarily) a bitstream of 1s and Os and the density of 1s in the bitstream is propor-
tional to the sample voltage. A post-processing, digital averaging filter will convert
this bitstream to a conventional integer, but the primary output of a ¥ A ADC is
a bitstream whose density of 1s represents the sample voltage. The advantage of
¥ A ADCs is that it offers extreme resolution (number of bits), but at the expense of
speed. (It is a competitor to dual slope ADCs). But, as we will see later, it has another
unique property; it will shape the quantization noise, boosting the SNR beyond the
theoretical limit suggested in Eq. (11.21) and even beyond Eq. (11.27). Here we will
only describe the first-order ¥ A ADC and this description is mostly based on works
by Kester [5] and Hauser [2]. Figure 11.39 illustrates a first-order ¥ A ADC.

If we disregard the digital filter for now, the first-order ¥ A ADC has four compo-
nents: An analog summing circuit, an integrator, a comparator, and a 1-bit DAC. The

x(t) > > [ y(t) S
+ O g e |

~A

1-bit DAC ~«———

Fig. 11.39 First order A ADC
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output of the comparator will be a stream of logic 1s and Os that will be sampled by
the digital filter. The 1-bit DAC produces either +U s or —U,s depending on the
comparator’s output. Even though the DAC only has a two-level output, the conse-
quence of the negative feedback loop is that the average output of the DAC equals
the input voltage x. If the input x increases, so will the average output of the 1-bit
DAC which means that the stream of 1s from the comparator output increases; the
density of 1s at the comparator output will be proportional to x.

However, the cleverest feature of the ¥ A design is its inherent ability to ‘shape’
the quantization noise, pushing it towards higher frequencies. To understand the
noise-shaping, we re-draw Fig. 11.39; we idealize the 1-bit DAC and replace it
with a transfer function = 1. The transfer function of the integrator is 1/s and the
comparator is in fact a 1-bit ADC, which means that the comparator output is a
(rough) digitized estimate of the input. Since we have previously modeled an ADC
output as the input plus some quantization noise (see Fig. 11.6), we can re-write
Fig. 11.39 as in Fig. 11.40.

Figure 11.40 looks simple enough, but this is a very clever circuit! To see that we
need to figure out what it does both to the signal x and to the noise g. We start with
the signal; to see what happens to the signal, we temporarily cancel the noise; g(¢)
= 0. That gives us Fig. 11.41.

The system’s transfer function is easily calculated:

1
Y(s) = 2(X(5) =Y (5)) = s¥(5) = X(s) = ¥ (s)

1+ 9Y(s) = X(5) = His) = - = ] (11.30)
)Y (s) = X(s s) = = .
X(¢s) s+1
Fig. 11.40 A simplified a(t) | Q(s)
model of a first-order £ A
ADC Y
x(t) y(t)
» —» 1/s —— — >
X(s)t Y(s)
Fig. 11.41 To see what X(s) Y(S)
happens to the signal, we » —>» 1/s >
cancel the noise +
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Fig. 11.42 To see what Q(s)
happens to the noise, we

cancel the signal
4
0 Y(s)
7: —>» /s [—— — >

From Eq. (11.30), we can see that as far as the input signal is concerned, the
system is a first-order lowpass filter.

To see how the system treats the noise, we cancel the input signal, see Fig. 11.42.

The transfer function is now

1
Y(s)=0Q() — ;Y(S) = sY(s) =sQ(s) — Y (s)
Y(s) s

sQ@)=Y(s)-(s+1)= H(s) = o = 771

(11.31)

From Eq. (11.31), we can see that the system highpass filters the quantization
noise! The system lowpass filters the signal and highpass filters the noise. That means
that an even larger part of the quantization noise will be attenuated by a lowpass filter
and that even less noise ends up within the signal’s bandwidth. This is illustrated in
Fig. 11.43.

This means that the SNR (due to quantization noise) is increased beyond even
Eq. (11.27). According to Hauser (1991) the SNR of a first-order X A is

SNR = 6.02(n + 1.5L) — 3.41dB (11.32)

11.14 Extreme Sampling Rates

There are a few ways to ‘boost’ the sampling rate to ‘extreme’ rates without using
a flash ADC. The pipeline ADC is one solution, but it still contains too many
analog components to be a favorite among ASIC designers of oscilloscope chips.
Techniques have been developed that can take ‘traditional’ ADCs (such as SARs)
beyond the sampling rate of what is indicated by the limit of individual ADCs. We
will here describe the interleaved SARs technique and the equivalent-time sampling
techniques.
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Fig. 11.43 The noise is pushed to high frequencies by the XA ADC

11.14.1 Interleaved SARs

In an interleaved SAR (sometimes called time-interleaved), m SAR ADCs are
synchronized to achieve an effective sampling rate that is m times higher than the
sampling rate of each individual ADC. Figure 11.44 illustrates an interleaved SAR
with m = 4.

Each n-bit SAR ADC has a sample and hold circuit, and the ‘sample’ input signals
are phase-shifted 90° relative to each other (360°/m in the general case). The output
of each ADC is connected to a multiplexer that interleaves the ADCs’ outputs to the
common Dgy. Figure 11.45 illustrates the timing diagram of the clock signals and
Dout-

In Fig. 11.45 we can see that a new D, is produced at a speed four times higher
than the output of each individual ADC. This is the ADC technique used in advanced
high-speed digital oscilloscopes (such as Tektronix’s ‘Mixed Signal Oscilloscopes’).

11.14.2 Equivalent-Time Sampling

Another technique used to boost the sampling rate in oscilloscopes is equivalent-
time sampling (as opposed to real-time sampling). With equivalent-time sampling,
extreme sampling rates can be achieved, but the restriction is that it only works
for periodic signals (which is what we have in most cases anyway). Figure 11.46
illustrates the idea behind equivalent-time sampling.
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Fig. 11.46 Equivalent-time sampling

The top graph illustrates traditional, real-time sampling where the time between
samples is T's and that is exactly what you see on the oscilloscope screen (you see the
‘real signal’). The middle graph illustrates equivalent-time sampling. In equivalent-
time sampling, the scope takes a sample, the ADC converts it and then the scope
waits for the next trigger condition to occur. At the next triggering, it waits some
time At before it takes the next sample.

Each time the scope triggers, it adds another At delay before sampling. On the
scope display, samples are plotted only At apart, making At the equivalent-time
sampling period and fs = 1/At. The ADC will have plenty of time between samples
and the sampling rate is no longer limited by the ADC’s conversion time, but by how
small (and accurate) we can make At. Equivalent-time sampling oscilloscopes with
fs > 10 GS/s are available. But remember, the equivalent-time sampling trick only
works for periodic signals.

Equivalent-time sampling oscilloscopes are often called just sampling oscillo-
scopes.

11.15 Solved Problems

Problem 11.1 Consider Fig. 11.47. What is D ?

Solution The temperature sensor resistance is 100(1 +3.85-1073 ~50) =
119.25 Q. U_- = 1 -1000/(1000 4 119.25 +1000) = 0.47187 volt. Uy =
1-1119.25/2119.25 = 0.52813 = 0.47187 4 0.05626 (CM + NM) volt.
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Fig. 11.48 Thermocouple reading with an ADC

The common mode suppression of the instrumentation amplifier is Fomqy =
107108920 = 0.01. The ADC input signal is A;, = 10-0.05626 +0.01-0.47187 =
0.56732, and hence, the ADC output is Dy = r0und(0.56732/(5/216)) = 7436.

Problem 11.2 In Fig. 11.48, an ADC is used to read the temperature from a type T
thermocouple.

a What is the temperature range of this system? b How many bits resolution does
the ADC need, to resolve temperature changes of the order of 0.1 °C?

Solution a The maximum input to the ADC is +5.00 V which means that the
maximum thermocouple emf is 5.00 mV. First, we do a cold junction compensation;
a google search for a ‘thermocouple type T chart’ gives first that 20 °C corresponds
to an emf of 0.790 mV. Adding 5 mV to that gives us a maximum emf of 5.790 mV,
corresponding to 131 °C (see thermocouple table). Hence, the temperature range (for
the hot junction) is 20-131 °C.

b The thermocouple chart has a 1 °C resolution only, but the smallest emf change
between two adjacent temperatures is 39 V. This would indicate a 3.9 wV change in
the thermo emf for a 0.1 °C change in temperature (assuming a linear interpolation).
This would be amplified to 3.9 mV at the ADC input; the ADC needs to be able to
resolve input changes of 3.9 mV:

5V
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Problem 11.3 If we have an 8-bit ADC with reference voltage + 5.00 Vin Fig. 11.48,
and the digital output is 0xB3, in what temperature range is the temperature at the
hot junction?

Solution AU =5/256=0.01953 V.0xB3 =179 = A;, = (179 £ 0.5) x0.01953 V.

3486V < Aj, <3.506V

3.486 mV < emf < 3.506 mV

CJC (add 0.790 mV): 4276 mV < emf < 4.296 mV

The type T thermocouple emf table gives that this thermo emf corresponds to
approximately 100 °C. A linear interpolation between 99 and 101 °C gives that
T = 21.505 x emf + 7.991 °C. Hence, we can convert the emf values above to a
temperature range:

99.9°C < Thot < 100.4°C

Problem 11.4 In Fig. 11.49, an ADC is used to measure time. a Prove that At is
proportional to Dyy. b If Dy, = 0x3AC, what is At?

Solution First, 0x3AC = 940. The charge on the capacitoris Q = [ -At = U¢-C =
Ajn - C. Hence,

At =

C st = Cox Dy x Tt Z 100107 10 5 g
— X Ajp = — X Doyt X = . = T s
I n I out on 1- 10_3 212 =u

Problem 11.5 The signal x(r) = 2(cos(100t — 0.875) + 1) is sampled at a rate of
150 S/s.

a Is the sampling theorem met?

b If the sampling starts at t = 0, what are the exact values of the first three samples
(after the sample and hold unit, but before the ADC)?

¢ What are the values of these three samples after the ADC, if we use a 12-bit
ADC with a reference voltage of +5 V?

Fig. 11.49 Measuring time +5.00 V
with an ADC
1=1.00mA A Uel =
L in —
—>) i l ADC = Do
At 100 nF | 2Pt
—te T
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d If the ADC produces the integer 2075, in what range is then the input sample
voltage?

Solution a f = 100/21t = 15.9 Hz < 150/2 = 75 Hz. Yes, the sampling complies
with the sampling theorem.

b x(0) = 2(cos(0—0.875)+1) =3.282 V x(1) = 2(cos(100/150 — 0.875) +
1) =3.957 V. x(2) =2(cos(100-2/150 — 0.875) + 1) = 3.794 V.

c AU =5/2"2 = 1.22 mV = 3.282/0.00122 = 2689 3.957/0.00122 =
3242 3.794/0.00122 = 3108.

dx =AU " (Dgy £ 0.5) = 0.00122 - (2075 £ 0.5) = 2.5323 <x <2.5336 V.

Problem 11.6 A scientistuses instrumentsina ‘NIM’ rack and one of the instruments
is an ADC module. To use it, he/she needs to know what the sampling rate of this
ADC is. However, the module is old, and nobody knows where the manual is. The
scientist decides to figure out the sampling rate by performing a simple experiment.

He/she first connects a 10 kHz sinusoidal signal from a waveform generator to
the ADC input. The computer, reading the samples from the NIM module, correctly
recreates the 10 kHz sine signal.

Next, the scientist slowly increases the frequency of the sine signal and when the
sine wave frequency reaches 190 kS/s, the computer again displays a 10 kHz sine
signal.

a What is the sampling rate of the ADC module?

b If the frequency is increased even more, what would be the next sine frequency
that the computer would interpret as 10 kHz?

Solution a Since the frequency was increased slowly, 190 kHz, was the first
frequency that produced 10 kHz as an aliasing signal. For a signal with frequency
fo, sampled at f's, aliasing frequencies appear at nf's £ fo. Hence, the first one is 1 -
fs—10 =190 = fs = 200 kS/s.

b The second one is 1 - fs + 10 = 200 + 10 = 210 kHz.

Problem 11.7a In an experiment, a 10-bit AD converter was used to measure a
voltage X, see Fig. 11.50. In this measurement, D,,, was consistently = 852 (dec).
Find X and the quantization uncertainty: In what range is X?

Solution X = Doy - 55t £ 1 95t X =852 55 £ 1 5% X =4.1602 £ 0.0024 V

Problem 11.7b It was decided that the uncertainty was too high. Unfortunately, they
did not have an ADC with higher resolution. To overcome the problem, they added
some noise (zero mean, Gaussian) to X, see Fig. 11.51. By doing that, D, varied
from sample to sample. Instead of taking just one sample, they took 16 samples and
added them. The 16 samples were: 855, 850, 847, 855, 851, 851, 850, 850, 852, 854,
854, 853, 851, 854, 851, 851.

Make a new estimate of X from these samples.

Solution Adding 16 10-bit numbers gives us a 10 4 log, 16 = 14-bit number. The
14-bit sample is (= the sum of the samples) 855 + 850 4 847 4 ... 851 = 13,629.
Hence:
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Chapter 12 ®)
Time-to-Digital Converters e

Abstract Accurate time measurements are critical in many disciplines such as laser,
atomic, and nuclear physics and we need a way to convert time to a digital number
with extreme resolution and extreme accuracy. That is what a TDC does (Time-to-
Digital converter). This chapter presents the two dominating TDC techniques: the
Vernier principle and time stretching.

12.1 Introduction

A lot of experiments in a physics laboratory depend on accurate time measurements
(decay times, time-of-flight mass spectroscopy, reaction times, etc.). And, just as in
the ‘voltage problem’ addressed in the previous chapter, we prefer to measure time
in digital units. Since time is by nature an analog quantity, we will need a “Time-to-
Digital Converter’, a TDC. There are basically two situations we encounter; either
we need to measure the time between a start and a stop signal or, we need to measure
the duration of a pulse. Some TDCs are designed for the first case and others are
designed for the latter case, but that is not important; one case can easily be translated
to the other case with some simple digital electronics. For example, a ‘start’ and a
‘stop’ signal pair can be translated to a pulse with just an xor gate, see Fig. 12.1.

Similarly, a pulse signal can easily be translated to a start/stop pair with two D
flip-flops, see Fig. 12.2.

(Notice that in both Figs. 12.1 and 12.2, both signals suffer from the same gate
delay.) Even if we usually prefer digital TDCs, some are analog, or at least ‘semi-
analog’. A common semi-analog TDC technique is to integrate the pulse and then use
an ADC to digitize the time, see Fig. 12.3. (See Fig. 11.7 for an integrator circuit.)

The main disadvantage of the analog TDC is that it contains analog circuitry that
doesn’t scale very well; all-digital circuitry scales much better in VLSI designs than
mixed-signal circuitry. For that reason, TDCs are almost always counter based. That
means that they in principle, simply count the pulses from an oscillator during the
start and stop interval (or during the pulse duration).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 267
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Figure 12.4 looks simple enough but notice that the start and stop signals are
asynchronous (to each other and to the reference clock). Figure 12.5 illustrates a
typical timing diagram.

If we assume that we have a positive edge-triggered counter, we can see from
Fig. 12.5 that the start-stop interval T is

V
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—J 31’34—

Y
i
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counter

stop R |’) n-bit
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Fig. 12.4 Digital TDC
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Fig. 12.5 Timing diagram of asynchronous TDC
T = N . tc + Atslm - AtStOp (12.1)

(Where N = 4 in Fig. 12.5). Since both At and Aty € [0, ], the inherent
quantization error of counting TDCs is =+ f.. Hence, the quantization error scales
with the reference clock’s period. However, increasing the clock frequency raises
two other issues; first, the power consumption increases. Second, there is a limit to
the maximum oscillator frequency that can be implemented in CMOS technology.
Other tricks must be implemented to overcome the inherent quantization uncertainty.
For example, if the signal is repetitive, we could average several measurements; if
we average n measurements the uncertainty will decrease to z.//n (see Eq. (13.18)).
For non-repetitive transients, more advanced tricks are needed.

Most of the tricks improve the resolution by interpolating between the clock cycle
pulses (without increasing the clock frequency). These techniques are referred to as
Vernier time measurements. The name refers to the inventor of the metric caliper,
Pierre Vernier (1580-1637), which can indeed perform a mechanical interpolation
between the millimeter markers of a ruler; it has a ‘Nonie’ scale (Fig. 12.6).
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Fig. 12.6 A Vernier caliper
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So how can we implement a Nonie scale in our TDC in Fig. 12.47 In fact, the
Nonie scale is what characterizes, or even defines a TDC; the counter gives you the
‘coarse’ time only, but a TDC will also give you the ‘fine structure’ (interpolation).

12.2 The Vernier Principle

Even if all interpolation techniques could be referred to as ‘Vernier’ methods, the
one presented here is the one that is most often implied when we refer to the “Vernier
method’. In this method, interpolation between clock cycles is implemented by
engaging two oscillators with slightly different frequencies, f{ = 1/T and f, = 1/T>,
respectively, where f, > f (slightly larger). There are two different implementations
of the Vernier TDC principle: With or without a reference clock.

12.2.1 Vernier TDC with no Reference Clock

Figure 12.7 illustrates the timing diagram of the first method (not using a reference
clock) [1].

Oscillator 1, with frequency f; < f», starts on the positive edge of the start signal.
The second oscillator with frequency, f», is triggered by the positive edge of the stop
signal. Since f» > f1, the pulses from the f, oscillator will eventually ‘catch up’ with
the pulses from the f oscillator. When this happens, both oscillators are stopped
(‘moment of coincidence’) and at this point both oscillators have generated the same
number of pulses, i.e., Ny = N, = N. From Fig. 12.7, we can see that

At = N\T) — N, T, = N(T] — T2) =N AT (122)
At
start
stop
T4
clock 1 1 I; )I 3 |4 |5 6
T2
clock 2 1 |? )Is |4 |5 6
coincidence

Fig. 12.7 The Vernier TDC (no reference clock)
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From Eq. (12.2) we can see that the time resolution depends on the difference AT
in the clocks’ cycle periods; we can read values in between the clock pulses of the
individual clocks.

12.2.2 Vernier TDC with a Reference Clock

The alternative approach is to use a reference clock that runs asynchronously to the
Vernier clocks, see Fig. 12.8. The reference clock’s cycle period is T and we make
the Vernier clocks’ cycle period slightly longer; Tyern = Tref(1 + 1/N), where N is
an integer that determines the overall time resolution. The ‘start’ Vernier clock starts
on the positive edge of the pulse and the ‘stop’ Vernier clock starts on the negative
edge. tg.r is the time it takes for the start clock’s edges to align with the reference
clock’s edges and fp is the time it takes for the stop clock’s edges to align with the
reference clock’s edges.
From Fig. 12.8, we can see that

At + tstop = Istart T laiff
At = tgare + Laitr — Istop = 10 Tvern + 11 Tret — 12 Tvem (12.3)

where ng is the number of Tey-pulses counted during fg.., 71 is the number of
T rs-pulses counted during #4is, and n, is the number of T'yer,-pulses counted during

Start
coincidence
< tstah »<$)
— Tref (—
etaiooc L1111 il I Y I
)Tvern<_
HEE RN
)Tvern a
EENENEN
- at »
pulse
< tstop >
Stop
coincidence

Fig. 12.8 The Vernier TDC (with reference clock)
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tsiop- If we insert T'yery = Trer(1 + 1/N), we get that

1 1
At = Tref(n0<1 + N) +n; — nz(l + ﬁ)) =
1
= ref(nl + (}’lo —l’l2)<1 —+ N)) =

Tref
= Tret(ny +no — na) + W(”o —ny) (12.4)

and we can see from (12.4) that this design offers a time resolution of T.¢/N. We can
easily translate a specified time resolution into a difference in clock cycle periods:

1 1
Tyern = ref(1 + N) = AT = Tyern — Tret = Trer X N (125)

12.3 Delaylines

If youdesign a TDC in CMOS technology (VLSI designers) there are a few alternative
implementations to the Vernier techniques in Sect. 12.2. Figure 12.9 illustrates the
basic idea.

The start signal is connected to the first of an array of cascaded buffers. The
start signal’s high level will propagate through the chain of buffers at a speed corre-
sponding to each buffer’s gate delay 7 4e1ay. The output of each buffer is the data input
to an edge-triggered flip-flop. The flip-flops are latched by the stop signal arriving
sometime later. When the stop signal arrives and latches the flip-flops, some of them
will have a high (‘1) data input, and some will have a low (‘0”) data input, depending
on how far the start edge has propagated through the buffer chain when the stop edge
appears. This is illustrated in Fig. 12.10.

When the stop signal latches the flip-flops, the flip-flops’ output will be a ‘ther-
mometer’ bit code representing how far the start signal’s positive edge has propa-
gated. The resolution of this TDC is T ge1ay. Notice that it doesn’t involve a counter/

e ]

- G B R 6
\ \4 QY2 \4

Qo Q1

Fig. 12.9 Delayline for clock cycle subdivision
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Fig. 12.10 The stop signal latches the flip-flops

oscillator. This means that the range is limited to the number of buffers (=N); the
range is N - Tgelay. However, it is all-digital and therefore scalable. Since time-to-
digital conversion in this case is immediate, it is sometimes referred to as the ‘flash’
TDC.

Figure 12.9 represents the ‘basic’ tapped delayline; the resolution depends on
the buffers’ delay 7gelay. The ‘next-generation” TDCs take this technique one step
further; the resolution depends on the difference in buffers’ delay. This is illustrated
in Fig. 12.11.

The buffers in the top delayline have a delay of 7 that is slightly longer than
the delay 7, of the buffers in the bottom delayline; 7; > t,. Hence, when the start
and stop signals arrive, the stop signal will propagate faster through the delayline
than the start signal does. If the start signal is leading, 1s will be latched into each
flip-flop when the stop signal (= latch signal) arrives. At some point though, the stop
signal will catch up and pass the start signal (since it propagates faster) and from that
point on, Os will be latched into each flip-flop. The ‘temperature’ code formed by the
flip-flops’ outputs represents the time difference between the arrivals of the start and

e e e T —B

Fig. 12.11 A “Vernier’ delayline [2]
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stop signal and the resolution is now equal to the difference in the delay between the
buffers in the first delayline and the second delayline.

12.4 Time Stretching

Figure 12.12 illustrates the ‘basic’ digital time measurement system. We learned in
Sect. 12.1 that this system has an inherent uncertainty of +1 7., i.e.,

At=(No£ 1) x 1, (12.6)

if we count N pulses during Af; the resolution is ¢, and the uncertainty is + ¢.. Next,
suppose that we could stretch the time interval by a factor of k (Fig. 12.13).

If we measure the stretched time interval AT with the same instrument as in
Fig. 12.12, we get

AT = (Ny £ 1) xt. = Nyt, +1. (12.7)
(if we count N pulses during AT). But, since Ar = AT /k, then

7~ 1 — tC t(v
At_k T_le:I:k (12.8)
Hence, if the time interval is stretched by a factor of k, both the resolution and
the uncertainty improve by a factor of k. Figure 12.14 illustrates how a pulse can be
stretched.
In Fig. 12.14, i} >> i,. The time stretching is a two-step process. In step one,
the switch is closed during At and the capacitor is charged by a constant current i;

t
<>
_ 5
counter ——
—— No
& —
> <
tc
Fig. 12.12 A basic digital time measurement system
At AT = k-At
> Time =

,—\ — stretcher [ L

Fig. 12.13 A pulse stretcher
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AT=At+T
< t+Tg

>

Fig. 12.14 Time stretching [3]

— ip. The comparator’s output goes high immediately after the switch is closed. The
switch opens when the time interval Ar expires and at that time the voltage across
the capacitor is

C—E—E/(ll—lz)f—z(ll—lz)' t (12.9)

When the switch opens, the capacitor is discharged by the constant current i,. The
capacitor will be discharged after some time 7;:

1. | B i1 — i i
—lszZE(ll ) At=T; = CAt=|——1]- At (12.10)

C i i

The comparator’s output will be high for a time

At+Td=At+<l_—l—1>~At=l_—lAt (12.11)
15} 15}

Hence, if we compare the comparator’s output with the input pulse, we can see
that the time interval has been stretched by a factor of k = i, /i, see Fig. 12.15.

Time resolutions of <10 ps have been reported [4] with the time stretching tech-
nique and is used in, for example, pulsed time-of-flight laser radars with a 4.5 mm
precision over a range from 1.5 to 370 m [5].
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Fig. 12.16 ‘Basic’ TDC

12.5 Solved Problems

Problem 12.1 A ‘basic’ TDC has a reference clock of 100 MHz, see Fig. 12.16.

a If you want to detect/measure a pulse of a few hundred ns with a resolution
of 50 ps, how much would you have to stretch it if you are going to use the TDC in
Fig. 12.16?

b Suggest a Vernier solution for this problem, assuming the reference clock above
is one of the Vernier clocks.
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Solution a The resolution of the ‘basic’ TDC in Fig. 12.16 is 1/100 - 10° = 10 ns.
After stretching: 10 ns/k = 0.050 ns = k& = 200 times.
bAt=T,-T,=005=10ns-T, = T, =9.95ns = f, = 100.5 MHz.

Problem 12.2 In a physics lab, scientists are ionizing a graphite sample and they
want to know the distribution of carbon-12 and carbon-13 in the sample. They use a
1-m-long time-of-flight mass spectrometer where the ions are accelerated by 1 kV,
see Fig. 12.17. They have a TDC that measures the time between the ionization pulse
(= ‘start’) and the detector pulse (‘stop’).

In this experiment, they used the basic TDC in Fig. 12.16 to measure the flight
times. After how many ‘counts’ will the carbon-12 and carbon-13 ions show up on
the mass spectrum?

Solution The ions are accelerated by a voltage U = 1 kV, which means that they
enter the field-free flight area with a kinetic energy of gU. Hence,

1 2qU
qU:—mv2:>v=,/q—
2 m
K 1m i m
= —=—=0v — -
v v V 2qU

The flight times for the two carbon isotopes are

13-1.66 - 1077
3 = =8.207
. \/2- 1.602 - 107 . 103 W

The flight time is

1m
< >
3¢ 12¢c
8—» o—>
Y

+(T -
1kV

Fig. 12.17 Time-of-flight mass spectrometer
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12-1.66-10"%
f1y = — 7.885 s
= \/2- 1.602 - 10712 103 "

The basic TDC has a resolution of 10 ns, so the flight times correspond to 8.207/
0.01 = 820 counts and 7.885/0.01 = 788 counts, respectively.
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Chapter 13 ®)
Statistics ot

Abstract This chapter summarizes the basic concepts of statistics with the only
purpose of laying the ground for the next chapter (about measurement uncertainty).
Basic statistical concepts are defined, such as stochastic variables and the most
common probability distribution functions (normal, uniform). The expectation value,
the variance, and the standard deviation of a stochastic variable are defined, and the
difference between the population variance and the sample variance is stressed. This
leads to interval estimations, the Student-¢ distribution, and the central limit theorem.

13.1 Introduction

In any measurement, noise is omnipresent (see Chap. 2); it is only a matter of what
level of accuracy you are considering. Noise will cause a ‘flickering’ on the display
of a voltage meter; if there is no flickering, it only means that the noise is less than the
voltage represented by the least significant digit on the display. Figure 13.1 illustrates
our signal model of a DMM measurement.

Noise adds to the system in either normal or common mode; the DMM’s sample
value is in general:

Up=Uy+ Uxu(+Fey - Uen) (13.1)

However, in the following, we will disregard the CM residual in the output and
only focus on the normal mode noise. If we assume that the noise (Uny) is ‘white
Gaussian’ (variance o), then the voltage measured by the DMM is

Uxm € N(0,0) = U,, € N(Uyp, 0) (13.2)

Figure 13.2 illustrates the density function of the measured voltage.
Hence, the conclusion is that the voltage we measure with the DMM is a stochastic
variable. The density function expression is
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13.2 Expectation and Variance

Usually, we don’t need the density function expression; instead, we use three param-
eters that characterize the stochastic variable; the expectation value, the variance,
and the standard deviation:

The expectation value of a stochastic variable X is defined as

E(X) = /oc xf (X)dx = (13.4)

We will refer to w as the mean value. In our example in Fig. 13.2, E(Uy,) = U,.
The variance of the stochastic variable X is defined as

VX) =E{(x—w?’}= /OO (x — w)>f (0)dx = o2 (13.5)

—0Q

The variance is a number that tells us something about the ‘spread’ of the values
around the expectation value. However, the variance unit is ‘voltage squared’ [V?]
and when we talk about ‘spread’, it makes more sense to express spread in the same
unit as the stochastic variable. For that reason, we have the standard deviation as the
square root of the variance:

o =/VX) (13.6)

We also need to find expressions for the expectation and variance values of some
functions of X. First, we multiply X by a constant a:

Y =aX (13.7)

The expectation value of Y is E(aX), but since the expectation is an integral, which
is a ‘linear’ operation, E(aX) = aE(X) and hence:

E(Y) =aEX) = au (13.8)
‘We also need the variance of Y:

V() =E{(Y —E(Y))*} = E{(aX — an)*} = E{*(X — p)*} =

= a’E{(X — p)*} = a*V(X) = d’o? (13.9)

The next function of stochastic variables that we need to analyze is the sum of
two variables:

Y=X+X; (13.10)
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It is important for the following that the stochastic variables X; and X, in
Eq. (13.10) are iid, i.e., independent, and identically distributed. We justify that
assumption by remembering that X; and X, are two DMM samples and they are iid
because we assume that the first sample has no influence on the second sample, which
seems reasonable. Under what circumstances would they not be iid? Well, if we look
at the sample and hold circuit in Fig. 11.2, they could be dependent if the ‘holding’
capacitor is not allowed enough time to charge/discharge between samples, i.e., if we
sample too fast, but that would be a design flaw in the measurement system. Since
the samples come from the same ‘population’ in a measurement, they are always
identically distributed.

The expectation of Y is

E(Y)=EX, +X) =EX)) + E(X2) =u+u=2un (13.11)
We can easily see how this result can be generalized for a sum of N variables:
Y = Zivzlx,- = E(Y)=Nu (13.12)
The variance of Y is

V() = VX +X) = B{X) +X> —2w)°} = B{(X1 — ) + X2 — w)*} =
=E{X-w+X-w+2-X—w K-w}=
= B{(Xi — )’} +E{CL — w)?} + 2 B{X1 — (X — )} =

=V(X)) + V(X)) +2covX;, Xo) = 6> 4+ 0% +0 =20 (13.13)

where the last equal sign comes from the assumption that our samples are iid; the
covariance of iid variables is zero. Again, we can easily generalize this result:

N
Y = Zi:l X; = V() = No? (13.14)

13.3 Unbiased Estimators

In a typical measurement we try to estimate the value of some unknown parameter
and our estimation is usually based on sampled data (not always). The ‘estimator’ is
‘unbiased’ if its expectation value equals the mean. For example, the best unbiased
estimator of the mean is the average:
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— 1 N
Average: X = N Z X; (13.15)

i=1

This is an unbiased estimator of the mean because:

— 1 & 1 [ 1 &
E{X}:E{NZ;X,}:NE{Z;Xi}zﬁ;E{X,-}z

1 N 1
=ﬁzi:lu=ﬁNu=u (13.16)

(We can change places between the ‘sum’ and the ‘expectation’ operators since
integration is a linear operation). We also need the variance of the average:

2
VI =V(FELH) = gV (ELx) = et = 00

where we have used the results from Eqgs. (13.9) and (13.14). We now define the
standard error as the standard deviation of the mean:

oy = V@):% (13.18)

Hence, if our ‘raw’ samples have the distribution N(u, o), the average of N
samples has the distribution

X e N(i, 7/yN) (13.19)

Notice that the mean value p is ‘what we are looking for’, and the parameter
value that we try to estimate (by our samples); u is the ‘signal level’. o represents
the ‘noise’ in our samples. Hence, we can define the signal-to-noise ratio (for normal
mode coupled noise) as

SNR(Y) = X (13.20)
o

The signal-to-noise ratio for the averaged value is then:

"w

SNR(X) = v

— Jﬁg — /N x SNR(X) (13.21)

From Eq. (13.21) we conclude that averaging improves the SNR by a factor of
VN. Figure 13.3 illustrates a sinusoidal signal superimposed with white Gaussian
noise and what it looks like after 4 and 64 averages, respectively.

Equation (13.15) gives us the unbiased estimator for the mean. We also need an
unbiased estimator for the variance; in most cases we will not know the variance
and we need to estimate it. We refer to o2 as the population variance (the ‘true’
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variance), and we estimate it with the sample variance, §2:

2 1 N

2
= — Xi—X 13.22
S =y 2 XX (13.22)

(The reason we are using N—1 and not N in_the denominator in (13.22) is because
we lose one degree of freedom when we use X instead of w).

13.4 Interval Estimations

The estimator in Eq. (13.15) is ‘only’ a ‘point estimator’; it has some ‘uncertainty’.
In a typical measurement, you don’t report only the point estimation, you report an
‘interval estimation’. You report an interval xy = X & U, but remember that we are
dealing with stochastic variables here that in most cases are normally distributed, or
close to normally distributed. That implies that to be 100% sure of that x; is in the
interval xo = U, U would have to be infinitely large, and that information would be
useless (since xj is obviously in the interval +00). For that reason, we will have to
settle with a U value that does not guarantee 100% inclusion of x. This is expressed
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Fig. 13.4 The 68% confidence interval

as a confidence level: ‘1 am X % sure that x is in the interval xo == U’. The larger U is
the more ‘confident’ we are that x is within the interval (the ‘confidence interval’).
For example, if we take one sample from a normal distribution, we can be 68%
confident that the sample will be in the interval X,, = Uy£t o = n=£o, see Fig. 13.4.

However, we don’t really want to know the probability that our sample is in
a certain interval; our objective with the measurement is to estimate the unknown
parameter (; we want to find an interval for u , not for X,,,. Well, we can remedy
that with some simple probability juggling. The fact that X,, is in the interval u + o
with a probability of 68%, can be expressed as

Plu—0 <Xn <pn+o0)=0.68 (13.23)
(where ‘P’ is the ‘Probability’). Next, we subtract, X, and u from each value:
P(—X,—0 <—u<-X,+0)=0.68 (13.24)
We can change the ‘ <’ to * >’ if we also change all the signs:
PX,+o0>u>X,—0)=0.68 (13.25)

From Eq. (13.24) we conclude that if we take a sample X,,, we can say that y (the
parameter that we are trying to estimate) is in the interval X,,, & ¢ with a probability
of 68%; we are 68% confident that w is in this interval.

The interval +o corresponds to 68% probability. This is usually considered to
be ‘too uncertain’; there is a 32% probability that u is not in this interval! For that
reason, it is generally recommended that you use the interval +20 which represents
a95% probability of finding « within the interval. Actually, the probability is 95.4%;
you need to multiply by 1.96 if you want 95% exactly.



286 13 Statistics

Hence, if we take N samples and instead use the average as our estimator, the
95% confidence interval for ;t becomes

VN

(Notice how the confidence interval decreases with N; the more information we
collect, the less uncertainty we have).

The calculations above assumed that o is known. When you think about it, that is
usually not the case; in most measurements, we don’t know the standard deviation of
the population (We may not even know it is normal). In those cases, we must make
do with the sample variance in Eq. (13.22). The fact that we don’t know o adds to
the uncertainty; we replace ¢ in Eq. (13.26) with an estimation (s) and of course
that makes our estimation a little more precarious. The consequence is that we will
probably have to multiply by a larger number (a larger coverage factor) than 1.96 to
get a confidence level of 95%.

Even if that is true in general, we may keep the 1.96 if the circumstances are
‘right’. Here, we lean on the central limit theorem (CLT) which says that if you
average enough samples, the distribution is still normal even if the original samples
are not normal. ‘Enough’ samples are generally considered to be *30 or more’; if N
> 30, we will still use Eq. (13.26) and just replace o with s. Our problems appear
when N < 30; in these cases, we need to find a new value for the coverage factor
(a larger value) because the average value’s distribution is in general no longer an
exact normal distribution; it has a Student-t distribution.

The Student-¢ distribution looks like the normal distribution, but it is ‘wider’
(reflecting a larger spread of the samples). As a matter of fact, the Student-¢ distri-
bution is not just one distribution, it is a series of distributions: one for each degree
of freedom. (The degree of freedom v = N—1). When N — oo, the #-distribution
becomes the normal distribution. Figure 13.5 illustrates the ¢ density function for
different degrees of freedom.

If our average value has a #-distribution, then the 95% confidence interval is

nw=x=£1.96 (13.26)

L=X%t1,4 % (13.27)

s
VN
where @ = 1— confidence = 1 —0.95 = 0.05. For example, if N = 10 and we want a
95% confidence level, we must find the #y o o5 value. A quick googling for ‘two-tailed

t-table’ immediately gives us something like Table 13.1; the value we are looking
for is 19.0.05 = 2.262.
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Fig. 13.5 The t-distribution (plotted in MATLAB using the fpdf command)

Table 13.1 The two-tailed #-table

Significance level (o)
Degrees of freedom (df) 0.2 0.15 0.1 0.05 0.025
8 1.397 1.592 1.860 2.306 2.752
9 1.383 1.574 1.833 2.262 2.685
10 1.372 1.559 1.812 2.228 2.634

13.5 The Uniform Distribution

Finally, we will need the variance and standard deviation of a uniform probability
distribution, see Fig. 13.6. A uniformly distributed stochastic variable can take any
value between the upper and lower limits with equal probability (‘uniform’ proba-
bility). The variance of a (symmetric) uniform distribution as the one in Fig. 13.6 is
straightforward:

+00 +c
0’ =VX)=E{(X —w?’} =E{X*} = / X*f (x)dx = x2%dx =
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20 3 =5 5@ ) =3¢ (13:28)
Hence, the standard deviation of a uniformly distributed variable is
1

o=—-c¢ (13.29)

This is all we need to set up an ‘uncertainty budget’ to find the uncertainty of a
measurement.

13.6 Solved Problems

Problem 13.1 Using a 6 ¥2 DMM, N samples were taken of a DC voltage. The
average of the samples was 4.17698 V, and the sample standard deviation was s =
0.76 mV. Find the 95% confidence interval of this measurement if a N = 100, b N
=12.

Solution a The ‘standard error’ is s/+/N = 0.76/+/100 = 0.076 mV, and 1.96-0.076
=0.149 mV 2 0.15 mV. Hence, Uy, = 4.17698 & 0.00015 V (95%).

b 0.76/+/12 = 0.219 mV. Degrees of freedom = 12 — 1 = 11 = cover factor
2.201. 2.201-0.219 = 0.483 mV ~ 0.49 mV. Hence, Uy, = 4.17698 + 0.00049 V
(95%).

Problem 13.2 The quantization uncertainty of an ADC is :I:%AU (see Eq. (11.4)).
What is the standard deviation of the output from a 12-bit ADC with 4 5 V reference
voltage?
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Solution Eq. (13.29) gives that

1 1
0=—=X=X
2

V3

Problem 13.3 A noisy DC voltage is normally distributed with u =3.30 Vand o =
60 mV. If we measure this voltage once, what is the probability that we will measure
avoltage a < 3.35 Vand b >3.20 V?

Ut 1 1 o 5
on _ﬁ 2 212

=0.352 mV

Solution a First we ‘normalize’ the distribution by calculating the z value:

x—pu _335-330
o 0.06

=

Looking up this number in a normal z-table gives that this corresponds to a
probability

p(U < 3.35) = p(Z < 0.83) =0.7967

32-33
e= " oe = 1672 p(Z < —1.67) = 0.0475 = p(U < 3.20)

= p(U > 3.20) = 1 — p(U < 3.20) = 1 — 0.0475 = 0.9525

Problem 13.4 If we measure the voltage in problem 13.3, 15 times, what is the
probability that the average of these samples is > 3.33 V?

Solution Since the individual samples are normally distributed, the average will
also be normally distributed with a standard deviation of o/+/N = 0.06/+/15 =
0.0155 volts.

Hence,

~3.33-330
~0.0155

=194

p(U>333)=1—p(U <333)=1—p(z < 1.94) = 1 —0.9738 = 0.0262

Problem 13.5 In problem 13.4 we knew that the samples were normally distributed,
and we knew the mean and the standard deviation. That is usually not the case. What
do we do if we don’t know the distribution, the mean, and the standard deviation?

Solution Then we must use the t-table instead of the z-table (for N—1 degrees of
freedom).
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Abstract All measurement numbers have finite accuracy, and it is good practice to
always state the uncertainty in a measurement. The uncertainty is typically expressed
as an uncertainty interval & U around the measurement number and it is extremely
important to understand how to find U and what it represents. This should always
be done by setting up an uncertainty budget. This chapter introduces the uncertainty
budget and defines concepts like the coverage factor, the standard uncertainty, and
the effective degrees of freedom.

14.1 Introduction

All measurements should be reported as a confidence interval; a point estimation is
in general not enough. It is the responsibility (and privilege) of The International
Bureau of Weights and Measures (the BIPM') in Paris to provide guidelines for
the community of exactly how to report uncertainties. These guidelines have been
published in a document that the community refers to as the ‘GUM’ document [1].
However, this document is very extensive and could be overwhelming for the average
engineer. For that reason, local organizations have published ‘light versions’ of the
original GUM document with step-by-step instructions on how to conduct a proper
uncertainty analysis. In this chapter, we will follow the guidelines presented in the
European Accreditation’s publication Evaluation of the Uncertainty of Measurement
in calibration [2].

14.2 Signal Models

First, we need to update our signal model in Fig. 13.1; instead of separating the
signal and the (external) noise, we combine them and attribute the noise to the signal
source itself (which may very well be the case anyway). Hence, if the noise has a

I BIPM: Bureau International des Poids et Mesures.
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normal distribution, we model the measurand as a stochastic variable with a normal
distribution, an expectation value of X and a standard deviation of o, see Fig. 14.1.

Next, we also need a signal model for the DMM; the DMM is not perfect, it too
has some inherent ‘noise’. Figure 14.2 illustrates an excerpt from a DMM datasheet.

Notice in Fig. 14.2 how the instrument’s accuracy is specified as * & (% of
reading + % of range)’. This represents the uncertainty of the instrument display
value, and this implies that even if there is no noise in the input signal, there is still
an uncertainty in the measurement because of the limitations of the instrument itself.
We will take the instrument’s uncertainty into account by modeling that as an internal
noise source, see Fig. 14.3.

The £ accuracy number in Fig. 14.2 should be interpreted as the upper and lower
limits, £ ¢, in a uniform distribution, and according to Eq. (13.29), the standard
deviation of such a distribution is ¢/+/3. From Fig. 14.3, we have that

Xn= X1 + X (14.1)
— —
N(Xo0,0/vN)  U(0.¢//3)

Xnoise N(O,G)

Xo <~> = <~> X1 N(Xo,0)

Fig. 14.1 Signal model

Specifications 34460A e

« 34460A accuracy specifications: + (% of reading + % +0634 450 ===

of range) . - g -
« These specifications are compliant to ISO/IEC 17025 ST taTeT

forK=2

24 hours? 90 days 1year 2years Temperature

Rangs reqisacy Tew1°C Tew£5°C Tewt5°C Tewt5°C coefficient°C ¢
DC voltage
100 mv 00040+00060  00070+00065  0.0090 + 0.0065 0.0115 + 0.0085 0.0005 + 0.0005
v 00030+00009 000G0+00010  0.0080+0.0010 0.0105+ 0.0010 0.0005 + 0.0001
10V 00025+00004  00050+00005 00075+ 0.0005 0.0100 + 0.0005 0.0005 + 0.0001
100V 00030+00006 00065+00006  0.0085+0.0006 0.0110 + 0.0006 0.0005 + 0.0001

Fig. 14.2 Typical instrument specifications [3] (Published courtesy of Keysight Technologies, Inc.)
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X1 N(Xo,0)

Xm

1S

Fig. 14.3 Instrument model

where we have assumed that X is the average of a sample from a population with
known variance o 2. (If variance is unknown, we use s2.)

Our objective here is to present the measurement result as a 95% confidence
interval. In the publication reference EA4-02 M, this is expressed as follows:

onffivszik-u(f() (14.2)

where U is the expanded uncertainty of the measurement (and should represent a
95% confidence interval), k is the coverage factor (and should ‘almost always be

=2’, see Sect. 14.3.) and u ()A( ) is the standard uncertainty of the estimate output.

Hence, we need to find u(f( ) If all the contributions are uncorrelated (which we
will always assume), we can add the variances (according to Eq. (13.14)):

u2(x) =Y wkx) (14.3)

alli

Finally, if y = f(x), then

df
u(y) = c(x)u(x) where c(x) = ——

I (14.4)

x=x

where c(x) is the sensitivity coefficient (a number that represents the uncer-
tainty propagation). The GUM document recommends that an uncertainty analysis
is performed by using an uncertainty budget.
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14.3 Uncertainty Budgets

When you calculate the uncertainty of an output estimate there will inevitably be a
lot of numbers and just keeping track of all these numbers is a challenge. The use
of an uncertainty budget is a suggested remedy for this. But, as we will see later,
the uncertainty budget is more than just a way to organize all the numbers; it will
provide important information about the measurement. We will illustrate that later.

Table 14.1 illustrates an uncertainty budget template.

In Table 14.1, y is the output estimate and u(3) is the standard uncertainty of 3.
If all contributions are uncorrelated, we add the variances to get the total standard
uncertainty:

(14.5)

D (elxulx))?
i=1

The expanded uncertainty U (representing the 95% confidence interval) is the
coverage factor k times u(jz) When the conditions of the central limit theorem can
be assumed to be sufficiently fulfilled (‘enough data’), the coverage factor k = 2,
should be used. When the conditions of the central limit theorem are not met, we
must first find the effective degrees of freedom, v, and then find the proper k value.
The effective degrees of freedom are given by the Welch—Satterthwaite formula:

ut(9)
Veff = S etut) (14.6)

i=1 v
In Eq. (14.6), v; is the degrees of freedom for each individual contribution. For
contributions from fype A uncertainties (uncertainties based on data samples), the
degrees of freedom are N—1. If the uncertainty is not based on data samples (= fype
B uncertainties), we must estimate the degrees of freedom in each case. However,
according to the GUM document, when the uncertainty comes from a contribution
where it has been estimated with the upper and lower limits of a uniform distribution,
the degrees of freedom can be assumed to be infinite. Also, the effective degrees of

Table 14.1 An uncertainty budget

Quantity Estimate u(x;) c(x;) c(xi)-u(x;)
X *1 u(xy) c(x1) c(xp)-u(xy)
X2 X2 u(xz) c(x2) c(x2)-u(x2)
Xn Xn u(xp) c(xy) c(xp)-u(xn)
Y =f(x15e%n) y u(),\’)
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Table 14.2 Coverage factors k for 95% confidence (95.45%)

it | 1 2 3 4 5 6 7 8 9 10
k 13.97 453 331 (287 265 (252 |243 [237 (232 [228
it | 11 12 13 14 15 16 17 18 19 20
k 225  |223 |221 [220 218 |2.17 (216 (215 (214 |2.13
et |25 30 35 40 45 50 00

k 2.11 209 (207 [206 [206 [2.05 |2.00

freedom calculated from Eq. (14.6) will in general not be an integer, and the number
should then be truncated to the nearest lower integer.
Once we know the effective degrees of freedom, the coverage factor is given by
Table 14.2 (which is really the two-tailed 7-table for a 95.45% confidence interval).
The use of an uncertainty budget is best illustrated by examples.

14.3.1 Examples

Example 14.1 Figure 14.4 illustrates a DC voltage measurement where the DMM
range is 10 V and according to the DMM’s manual, the instrument’s uncertainty on
this range is &+ (0.04% of reading + 0.03% of range).

We took ten samples:

x(1) =9.0125 V
x(2) = 8.9763 V X =9.0068 V
x(3)=... s =0.01752 V
: 5/+4/10 = 0.00554 V
x(10) = ...

According to Eq. (14.1) we have that

$(= X)) = X1 + X, =%+ 0 =9.0068 V

Fig. 144 DCV
measurement
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Table 14.3 An uncertainty budget

14 Uncertainty Budgets

Quantity Estimate u(xp c(xi) c(xi)-u(x;)
X1 9.0068 V 5.54 mV 1 5.54 mV
X2 ov 3.81 mV 1 3.81 mV
y 9.0068 V 6.72 mV

The uncertainty of X, is s/+/N = 0.00554 V and the uncertainty of X, is (see
Eq. (14.1)):

1 1 1
—10.04—-9.0068 + 0.03— - 10 ) =3.81 mV
100 100

V3

and since all df/dx; = 1 in this case, we have the uncertainty budget in Table 14.3.
Equation (14.5) gives us the total uncertainty for the output estimate.

u(9) = v/5.54> +3.812 = 6.72 mV

Since we only took ten samples in this case, we cannot assume that the output
estimate has a normal distribution, hence we need to calculate the effective degrees
of freedom to find the proper coverage factor.

6.72*

Veff = 5548 | 381°
9 o)

=195 > vy =19 > k=2.14

Hence, the expanded uncertainty U is
U=214%x672mV=1438mV =0.015V

Since the uncertainty is of the order of 15 mV, it really doesn’t make sense to
report the output estimate with four decimals. This is how we would present the
result of our measurement in a ‘scientific’ report:

In order to estimate the accuracy in the measurement, an uncertainty analysis was conducted
according to the guidelines in reference [1, 2]. The uncertainty budget produced a standard
uncertainty of 6.72 mV, and a coverage factor of 2.14 was used to get the 95% confidence
interval:

y=9.007£0.015V

(Reference [1, 2] would be the GUM and the EA-4/02 documents.)
Notice a few details in this example:

e We made no ‘f compensation’ in the uncertainty budget for u(x;) even though
we had less than 30 samples; the ‘¢ compensation’ was only introduced at the
last stage with the use of the Welch—Satterthwaite formula to find the expanded
uncertainty. This makes sense; since the total uncertainty has more contributions
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(just one more in this case) the ‘¢ problem’ is mitigated; according to the central
limit theorem, the more things we add, the closer to a normal distribution we get.
For that reason, we should ‘¢ compensate’ the final uncertainty value only.

e The number of significant digits in the uncertainty is two; this is what is generally
recommended.

e The estimate and the uncertainty have the same number of decimals; the
uncertainty determines how many significant digits are meaningful.

e The estimate and the uncertainty have the same unit, if the estimate is in [V], the
uncertainty should be in [V] (not [mV]!).

Example 14.2 Figure 14.5 illustrates a current measurement; we use a DMM to
measure the voltage across a resistor to get the current /. The uncertainty of the DMM
is £ (0.04% of reading 4+ 0.02% of range). We took 40 samples, and the average
was 6.62953 V (range: 10 V) and the sample standard deviation was 6.83 mV. The
resistor has color code marking that can be interpreted as ‘1800 €2, =1%’. What is
the 95% confidence interval of this current measurement?

Solution / = & = £X2 = f(X,, X,, R)

46295340

Sog = 25719611 mA u(X)) = 6.83/v/40 = 1.08 mV

1
u(Xy) = %(0.0004 - 4.62953 4 0.0002 - 10) = 2.22 mV

The uncertainty of the resistor is specified as * & 1%’. Since we have no other
information about this value, we must assume that it represents the upper and lower
limits in a uniform distribution:

1 1

Before we design the uncertainty budget, we calculate the sensitivity coefficients:

Fig. 14.5 Current |
measurement
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d
(X)) = !

af

c(R) = IR =

dX, R 1800

1

X1+ X

4.62953
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=556-107* Q7' = ¢(X»)

= =143.-107°vQ2

)=

18002

Now we have what we need to setup the uncertainty budget (Table 14.4):
We sum the squares of the uncertainties to get the uncertainty of the estimate:

u(l) = +/0.6012 + 1.242 + 14.92 = 14.96 pA

In this case, we have enough samples not worry about any ‘¢ compensation’; we

use the coverage factor k = 2 to get the expanded uncertainty:

U=2xu(l)=29.93 pA =0.030 mA

Hence, only three decimals make sense when we report the measurement:

I =2.572+0.030 mA (95 %)

From this example we can learn something more about the use of uncertainty

budgets:

e Use at least three significant digits in the budget; only round (upwards) to two
digits in the last stage when you calculate the expanded uncertainty.

e We get important information from the budget. From the budget it is obvious that
it is the lack of information about the resistor that is hurting our accuracy. To
improve the accuracy in this example we should try to get a more accurate value
for R (by measuring it!); buying a new (more expensive) DMM would not help
and taking more samples wouldn’t help either!

Table 14.4 The uncertainty budget

Quantity Estimate u(x;) c(x;) c(xi)-u(x;) (WA)
X 4.62953 V 1.08 mV 5.56-107* Q! 0.601

X, oV 222 mV 5.56-10% Q! 1.24

R 1800 @ 104 Q 1.43.100 v Q2 14.9

I 25719611 mA 14.96
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14.4 ‘Guesstimating’

Sometimes we don’t have any information about the uncertainty of a quantity. For
example, suppose we use a DMM to measure the resistance of a Pt-100 temperature
sensor. We use the 4-wire method, a 7%2 digit DMM and we take a thousand samples
to really minimize the noise (the ‘type A’ uncertainty); the X; and X, uncertainties
are so small that it implies a ppm accuracy (part per million). However, when we
translate the resistance to temperature, we use the following formula:

R=Ry(l+yT)=>T = 1<5 - 1) — f(y. R, Ro) (14.7)
¥ \ Ro

(In Eq. (14.7), R = R; + R, if we use a DMM, see Fig. 14.3). From Eq. (14.7),
it is clear that the uncertainty of 7 doesn’t depend only on the uncertainty of the
measured quantity R, it also depends on the accuracy of y and Ry. Suppose we use
Ry = 100 © and y = 3.85-1073 °C~, to calculate the temperature. What will the
uncertainty of T be?

Well, we don’t have any information about the uncertainties of Ry and vy, so
we will have to estimate it by guessing (‘guesstimating’). We only know that y =
3.85-1072 °C~!, and we will have to assume that this number has been ‘correctly
rounded’. That implies that the ‘true’ value of y is somewhere in the range

3.845-10° <y <3.855-1073

Any y value in this range would be rounded to 3.85-10~3 °C~! if you only use three
significant digits. Hence, if the only information we have is that y = 3.85-1073 °C~!,
then it is a reasonable assumption that y = (3.850 £ 0.005) - 1073 °C~!. And since
we base that assumption on a ‘rounding’, the correct value can be anywhere in
that range; it follows that we must assume a uniform distribution function. The
standard uncertainty of y, that we would use in the uncertainty budget, would be
(see Eq. (13.29))

1
u(y) = — - 0.005-10~* = 0.00289 - 1072 °C~!
Y V3

With the same reasoning, the reasonable range of Ry would be 100.0 & 0.5 €,
with a standard uncertainty of 0.289 2. Both the uncertainties of y and R are of the
order of %0. We would have to find the sensitivity coefficients to really understand the
impact they have on the uncertainty of 7, but considering the relative uncertainties
of y and Ry, a ppm accuracy in the measured R-value is likely to be redundant. We
will illustrate this with another example.

Example 14.2 A BPW21 photo diode and a resistor are used to measure light flux.
A 4% digits DMM measures the voltage over the resistor, see Fig. 14.6. The resistor
has a nominal resistance of 10 k€2 and has a 2% precision. The DMM uncertainty
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Fig. 14.6 Measuring light Ip
flux >—@

—Xa

BPW21

(I 1
R = 10k

O

is &+ (0.08% of rdg + 2 digits) and the nominal sensor constant for the photodiode
is 9.2 nA/Ix. In a previous measurement, the sample standard deviation was s =
4 mV. One sample reads 1.2843 V. If you were asked to determine the light flux in
this experiment, how many samples would you take (how many samples would you

average)?

(‘x digits’ is sometimes used instead of ‘range’. It means ‘x’ units of the last

display digit’s weight.) Using E for the light flux, we get

Un Xi+X>
U, =kER F=—=—-—"=f(X,X2,k,R
= R R f(X1, X» )

1 1
X5)=—(0.08— -1.284 .002 ) =0.7087 mV
u(X») \/§(008100 83+000) 0.7087 m

k=9.20£0.05 nA/lx =

1 1 2
k)= —0.05=0.0289 nA Ix"' u(R) = —10000- — = 115.5 Q
u (k) 7 nAlx™ u(R) 7 100
d 1 1
(X)) = a1l L g0tk v = c(X2)
dX; kR~ 9.2-10-°-10000
df X1+X2 12 —11.2
hh=-—"—=""""°= . .=1517-10? A"l
«® =7k K2R X
df X1+X2 1
R) =L = =...=139%1x Q
B =78~ iR X

This gives us the uncertainty budget in Table 14.5. From this budget we can
see that it is the uncertainty of R that dominates the contributions to the estimate’s
uncertainty; it is about 20 times larger than the smallest contribution (from X»). We
can conclude that an uncertainty of, say 10 Ix, from X; wouldn’t have any significant

impact on the total uncertainty. That means that

2
u(Xy) - (X)) = &)

-c(X1) <10 N >
c(X)) =10=> _< 0

B



14.5 Summary

Table 14.5 The uncertainty budget

301

Quantity | Estimate u(x;) c(xi) c(xi)-u(x;)
X 1.2843 V s/VNV 1.087-10* 1x V! u(X1)-c(X1)
X, oV 0.709 mV 1.087-10* Ix V! 7.70 1x

k 92.10° nAlx~! [0.0289nA1x~! | 1.5171.087-102 A~ 1x> [4391x

R 10,000 1155 Q 1.396 1x Q! 161.2 Ix

E 13,959.5 Ix u(E)

4.1073 . 1.087 - 104\°

Conclusion: We don’t need to take more than 20 samples; after that, the uncertainty
of the other quantities hurts us more than the uncertainty from the sample variation
and the DMM uncertainty.

14.5 Summary

Being able to determine the uncertainty in a measurement is extremely important and
should be considered as a ‘fundamental’ skill for any measurement personal. The
math is not ‘advanced’, but there are a lot of numbers to handle, and the uncertainty
budget is a good way to organize them. As we have seen in this chapter, the budget
does not only produce the standard uncertainty of the output estimate, but it also
provides important information about which quantity is hurting our overall accuracy
most; we know what to do first if we need to improve the accuracy.

In Fig. 14.2, we demonstrated that the uncertainty of a digital DMM is typically
stated as & (% of reading + % of range). Students often ask where these uncertainties
come from. That information is not so easy to find in the literature (or DMM vendors’
manuals), but we can draw some conclusions from what we have learned so far. A
digital DMM is of course based on an ADC, and we learned in Chap. 11 that ADCs
have an inherent uncertainty of £ 0.5 LSB, which accounts for the ‘% of range’
uncertainty.

The other contribution, ‘% of reading’, is a little harder to motivate; this is an
uncertainty that increases with the input sample’s voltage level! To explain that we
need to consider the hardware design of the dual slope. During the charging phase
(see Fig. 11.18) a capacitor is charged, and this charging must be linear for the
design to work. It is reasonable to assume that it is not linear and that it becomes
more non-linear the more charge we have on the capacitor. That would explain why
the uncertainty increases with the ‘reading’.
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14.6 Solved problems

Problem 14.1 In Fig. 14.7 we measure the electric power generated in a resistor.
The amp meter is a 3%2 digits handheld DMM with uncertainty + (0.2% of rdg + 1
digit) and the display reads 0.467 A (stable, no flickering). The voltage meter is a
6Y2 digits desktop DMM with uncertainty £ (0.02% of rdg + 0.04% of range). We
took 18 samples with an average of 0.7594175 V and a sample standard deviation of
s =367 wV. What is the 95% confidence interval of the power in this measurement?

Solution: The poweris P =UI = (U, +U) - (I, + ) =
= (0.7594175 4 0) - (0.467 4 0) = 354.648 mW=f(U,, U, I,.1»)
u(Uy) is the type A uncertainty of the voltage measurement: u(U;) = f/% =
86.50 wV. u(U,) is the type B uncertainty of the voltage measurement. Since the

reading (average) is 0.7594175 V, we conclude that the range used was ‘1 V’:

1 i !
Uy) = —(0.02— - 0.759417 + 0.04— - 1) = 318.6 vV
u(l) ﬁ( 100 +0-94700 ) 200nY

The type A uncertainty of the current measurement, u(/;), is = 0 (since there was
‘no flickering’ on the DMM display). The type B uncertainty is

1 1
L)=—(02— -0.467+0.001 ) = 1.117 mA
u(lr) ﬁ( 100 + ) 1.117 mA

Sensitivity coefficients are

d
c(Uy) = d—zj/; =1+ 1 =0467 A = c(U>)

d
c(h) = d—f = U, + U = 0.7594175 V = ¢(I)
1

Fig. 14.7 Power
measurement
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This gives us the uncertainty budget in Table 14.6. The standard uncertainty of
the power is u(ﬁ) — V40407 + 148.87 + 84837 = 862.2 L W. Since the number
of samples are less < 30, we need to find the effective degrees of freedom:

862.2¢ > 30— k=2
Veff = 040" | 148.8° , 8483 -

U=2x8022puW=172mW = 1.8mW = P =354.6+ 1.8 mW (95 % )

Problem 14.2 Figure 14.8 illustrates a flow measurement in a water pipe. The output
voltage of the sensor depends on the volume flow g as U,, = « x /g, and according
to the datasheet, the sensor constantis 5.0 mV - (I/min)~%>. The differential amplifier
has an amplification of 175 and a 52 digits DMM was used. The DMM uncertainty
was £ (0.08% of rdg 4+ 0.05% of range). We took eight readings as reported in
Table 14.7. What is the 95% confidence interval of the volume flow ¢ in this case?

Solution: From Table 14.7 we conclude that the DMM range used was 10 V.

wl (X4 X))
a?F? 2F?

Up =0 Jq-F = q= = f(X1, X2, a, F)

1
X1 =Upy = §(2.6946 +....+2.8276) = 2.7414375 V

(2.7414375 + 0)2

=9.81614 1. min~’
0.0052 - 1752

qg=

1
s = \/ ﬁ((2.6946 —2.7414375)> + ... + (2.8276 — 2.7414375)) = 0.07802 V

u(X1) = s/+/8 = 0.07802/+/8 = 0.0276 V

1 1 1
u(Xy) = —=(0.08— -2.7414375 + 0.05— - 10 ) = 0.00415 V
100 100

V3

Table 14.6 The uncertainty budget

Quantity Estimate u(x;) c(x;) c(x)-u(x;)
U, 0.7594175 V 86.50 pV 0.467 A 40.40 pW
Us ov 318.6 pV 0.467 A 148.8 WW
I 0.467 A 0A 0.7594175 V 0w

I 0A 1.117 mA 0.7594175 V 848.3 wW
P 354.648 mW 862.2 pnW
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Fig. 14.8 Flow Flow sensor

measurement

F=175

Table 14.7 We took eight samples
Un (V) 026946 026650 |02.7918 |02.7186 | 027885 |02.8256 | 026198 |02.8276

We know nothing about the uncertainties of @ and k, so we will have to
‘guestimate’:

o« =5.00+0.05mV-1""min®’ = u(@) = % -0.05 = 0.0289 mV - 1-%°min®>
F=1750+0.5= u(F) = % 0.5 =0.289
(X)) = j—;;l = % =...=7.161 V' - 17! . min = ¢(X>)
cla) = % =(—)2 x O(;ji;f”z =...=3926.5 V. I*? . min3/?
c(F) = % =(—)2 x % =....=0.1122 1-min~!

u(§) = v/0.198 +0.02972 4 0.114? 4 0.0325? = 0.233 1-min
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Table 14.8 The uncertainty budget

Quantity Estimate u(x;) c(x;) c(xi)-u(x;)
X1 2.7414375 0.0276 7.161 0.198 I/min
X 0 0.00415 7.161 0.0297 1/min
o 5.0 0.0289 3926.5 0.114 I/min
F 175 0.289 0.1122 0.0325 1/min
q 9.81614 I/min 0.233 1/min

0.233% 13.4 =13 k=221

Veff = Gio8' | 00297 | 00297 , 00325t o= k=2
7 + o0 + o0 + o]

U=221%x0.233=0.52 ¢ =9.82+£0.521/min (95%)

That gives us the uncertainty budget in Table 14.8.
From the uncertainty table, it is obvious that we should take more samples.
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Chapter 15 ®)
The Lock-In Amplifier e

Abstract The lock-in amplifier (LIA) is a common instrument in physics labora-
tories that can detect signals with extremely low signal-to-noise ratios. However, to
really take advantage of its potential, a basic understanding of its operating principle
is necessary. This chapter first introduces the phase sensitive detector (PSD) and
evolves it into a lock-in amplifier. At the end of this chapter, the dual-phase lock-in
amplifier is introduced and the / and Q signals are defined.

15.1 Introduction

The fundamental problem that we address in this book is how to find a ‘sinusoidal
signal in noise’. We have provided several solutions for that already (and will provide
a few more) and the solution depends on the circumstances: What kind of noise do
we have? (NM/CM? Random/periodic?) How large is the noise? (SNR?). Do we
know the period of the sine or not? etc. Each problem has its ‘best’ solution. In this
chapter we will address the problem where the sinusoidal frequency is known; in
fact, we control the frequency. This is not unusual, think of the sinusoidal as the
‘excitation frequency’ of the experiment. For example, in a physics lab we might
use a pulsed laser (or a laser beam ‘chopper’) and then the laser pulse frequency
is the ‘excitation frequency’ (which we control) of the experiment. So, we know/
control the frequency, and we want to determine the amplitude. The ‘catch’ is that
the sine (or any periodic ‘response signal’) is ‘buried’ in noise; here we will assume
an extremely low SNR (<< 1).

Here is a common argument (misunderstanding): ‘If we know the frequency, why
don’t we just design a resonance filter (as described in Chap. 9) with a resonance
frequency that matches our sinusoidal signal?’.

That won’t work for several reasons. First, the SNR is so low, that we would need
an extremely narrow resonance filter (Q > 10,000) and such narrow resonance filters
are impossible (?) to design with standard analog components. Second, even if we
could design such a narrow filter it would need to have a stability on a ‘ppm level’
or the signal frequency would ‘slip off’ the filter resonance, and the signal would
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be ‘killed” with the noise. All it would take is that the signal frequency, or the filter
parameters, change just a little bit (due to temperature, humidity....) and we would
fail to detect our sinusoidal signal.

We will build a ‘resonance filter’ with an extremely high-Q value (> 10°), but for
that to work, we can’t use ordinary components as we did in Chap. 9. For such a
high-Q filter to work, the signal frequency must be ‘locked’ to the filter’s resonance
frequency; if one changes, the other must follow. Such a narrow ‘resonance filter’ is
called a lock-in amplifier (LIA).

15.2 Phase Sensitive Detector

15.2.1 PSDs

Before we get into the lock-in amplifiers, there are some electronics that we need to
introduce. First, we need a phase sensitive detector (a ‘PSD’). Imagine that we have
the following signal:

x(t) = 0.01sin 271007 + 10 sin 27w120¢ + ‘lots of white noise’ (15.1)

We assume that the 100 Hz signal is the ‘good’ signal that we want to detect,
and the other signal parts are ‘noise’. By ‘detect’” we mean that we want to find its
amplitude (we know the frequency, remember?). This signal is illustrated in Fig. 15.1.

The signal-to-noise ratio here is so bad that there is not even the slightest hint of
itin Fig. 15.1. Earlier, when we learned about Fourier transforms, we demonstrated
that we could just do an FFT of the signal to ‘detect’ a small signal in a lot of noise.

N
o
I

1

voltage [V]
o

_40 1 1 Il 1 1 1 1 Il 1
0 0.01 002 0.03 004 005 0.06 007 0.08 0.09 0.1

time [s]

Fig. 15.1 There is no trace of our 100 Hz signal
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That won’t work here. First, we know what frequency we are looking for, we don’t
need to do a spectral analysis to find the frequency. Second, the SNR is so poor
that we wouldn’t see it anyway. (If you don’t believe it, Fig. 15.2 illustrates the FFT
spectrum of the signal in Fig. 15.1.) Nevertheless, we need to detect it. That seems
like ‘mission impossible’, but since we know what frequency we are looking for,
we will find it; all it takes is some clever sampling and some time (or lots of time,
depending on the SNR). Here is what we are going to do: The frequency is 100 Hz,
i.e., the period of the signal is 10 ms. We are going to sample the signal with a
sampling frequency of 5 ms (200 S/s), taking exactly two samples per period, see
Fig. 15.3.

0 50 100 150 200 250 300 350 400 450
Frequency [Hz]

Fig. 15.2 There is nothing at 100 Hz

Subtract theée two samples! ‘ ‘ ‘

0.01F ' ’ 8
; 0.005 o 0 0 0 [0 [0 [0 [0 [0 [0 i
g
® 0
©
>

-0.005 1 § ® ® ® ) ® ) ® ® )
-0.01 | N
0 0.02 0.04 0.06 0.08 0.1

time [s]

Fig. 15.3 PSD in software: take samples 180° apart and subtract [1]
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voltage [V]
o

0 0.02 0.04 0.06 0.08 0.1
time [s]

Fig. 15.4 Sampling a 120 Hz signal at 200 S/s

(I know what you are thinking: The sampling in Fig. 15.3 violates the sampling
theorem since the sampling rate is not > 2fgna. But we don’t worry about that
here, because we are not going to do any FFT or filtering, so we don’t care about
aliasing!) Notice in Fig. 15.3 that since we take our samples 180° apart, they will
always have the same magnitude, but the opposite sign! Hence, if we subtract our
samples pairwise, they will add; if the first sample is x(¢) and the second one is x(¢
+ T/2), then x(t + T/2) = — x(¢), and x(¢) — x(¢ + T/2) = 2x(¢). If we take samples
180° apart and subtract, we amplify the sample by a factor of two. Then we realize
that if we add N ‘pairwise subtracted’ samples, we will amplify the signal 2N times!
The sum of the 10 ‘sample pairs’ in Fig. 15.3 is =~ 0.12. Compare that with the signal
amplitude which is 0.01.

Let’s see what happens to the other signal components in Eq. (15.1). In Fig. 15.4
we sample the 120 Hz signal with the same sampling rate.

It is obvious from Fig. 15.4 that two adjacent samples will not have the same
magnitude and hence, they will not ‘amplify’ if we subtract them pairwise. If we
subtract the samples in Fig. 15.4 pairwise and then add all the ‘subtracted pairs’, the
sum would be & —1! Compare that with the signal amplitude of 10.

Let the power of this sink in; if we disregard the white noise for the moment,
we have an SNR in the raw signal in Eq. (15.1) of 0.01/10 = 0.001. After twenty
samples we have changed the relationship between the signal and the noise to 0.12/
1 = 0.12. With only twenty samples, we have improved the SNR by a factor of 120!

From Figs. 15.3 to 15.4, we conclude that if we sample a signal with a sampling
rate that is exactly 7o/2, and subtract samples pairwise, then any signal component
with frequency fo = 1/T, will be amplified and signals with any other frequency will
be attenuated!

What about the white noise? If we treat our subtracted pairs as a random variable,
Y = X| — X,, where the X variables are normally distributed with a standard deviation
of o (same as the noise), then it is easy to prove that ¥ has a standard deviation of
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V20 . Hence, if we take the average of N subtracted pairs (just accumulating will not
work, we will overflow), then we know from Chap. 13 that the standard deviation of
the average will be o 4/2/N; the random noise will also be reduced as we take more
samples.

Hence, if we just keep sampling the signal in Eq. (15.1) (at 200 S/s) and average
‘subtracted pairs’, the signal with frequency f¢ will gradually materialize from the
noise since this sampling technique gradually amplifies the f signal and attenuates
anything else. By ‘materialize’, we mean that we will be able to detect its presence
despite the extremely poor SNR in the raw signal.

The conclusion is that if the signal we are looking for is periodic, with a known
period, we can always find it (at least in theory); it is only a matter of time (take
enough samples).

We can also learn something else from Fig. 15.3. We take the first sample at a
phase angle of approximately 45° and the sample value is approximately 0.006. We
realize that we could have done better! If we instead take the first sample at a phase
angle of 90°, the first sample would be 0.01 and the amplification by accumulating
pairwise subtractions would have been even larger.

On the other hand, we could have done worse too. If we take the first sample at
a phase angle of 0°, all samples would be 0 and there would be no amplification at
all. So, this sampling strategy is a little precarious; the result depends on the phase
angle of the first sample! In fact, what we have here is a phase sensitive detector, a
PSD; the outcome depends on the phase angle.

15.2.2 Analog PSDs

The sampling technique illustrated in Fig. 15.2 is the ‘digital’ version of a PSD. It
is ‘digital’ because the PSD is implemented in software. Figure 15.5 illustrates the
classic ‘analog’ PSD that can be implemented in hardware.

Here, the reference signal is a square signal that controls a bipolar switch; when
the reference signal is ‘on’ the signal x(¢) is routed through the switch, and when the
reference signal is ‘off’, the signal —x(¢) is routed through. If there is a sinusoidal
in x(¢) with a frequency that is exactly fo = 1/T, and in phase with r(¢) (¢ = 0°),

Fig. 15.5 The classic analog PSD
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x(t)
Lo o
%

r(t)
o
|

After switch
T T T

After filter
T T T

1

0 1 1

Fig. 15.6 We have a rectifier

then the first part of the electronics in Fig. 15.5 is a rectifier. This is illustrated in
Fig. 15.6.

The post-processing lowpass filter will ‘smooth’ the signal to a DC voltage. Notice
the phase angle regulator in Fig. 15.5; with this ‘knob’ we can adjust the phase angle
arbitrarily to match the phase of x(¢). In this case, the phase should be exactly 0° for
a maximum output. A gradual phase shift from 0° to 180° would generate a change
in u(p) from +1 to —1; we have a phase sensitive detector.

15.2.3 Multiplying PSDs

The PSD in Fig. 15.5 has a disadvantage, the switch. Even if this switch is a semi-
conductor relay, it limits the frequency range we can use. Lock-in amplifiers, depend
on PSDs, but they use a different technique, like the heterodyne technique we used
in Chap. 8; we multiply the signal with the reference signal, see Fig. 15.7.

If we multiply them, the multiplier output y(t) is (see Chap. 8)

y(1) = Afcos((wx + @o)t + ¢x + ¢o) + cos((wx — wo)t +@x —@o)}  (15.2)

Fig. 15.7 A multiplying t
PSD Acos(oxt + ¢x) —>Ci>& > u()

2cos(wot + o)



154 LIAs 313
Fig. 15.8 A PLL shapes the

The lowpass filter will stop the ‘sum frequency’ signal. We assume that the cutoff
frequency of the lowpass filter is so low, that it blocks all frequencies # 0; anything
but DC is blocked by the lowpass filter. Hence, the only case where anything comes
out of the lowpass filter is if wx = wy. In that case

u(t) = Acos(px — ¢o) (15.3)

From Eq. (15.3) it is obvious that the multiplier + filter in Fig. 15.7 is a phase
detector. For a ‘perfect’ detection, we would need a phase angle shifter (asin Fig. 15.5)
to match the phases of the signal and the reference signal. A lock-in amplifier does not
need one though, at least not the more expensive ones. We explain that in Sect. 15.4.

15.3 Phase-Locked Loops

Before we present the lock-in amplifier, there is one more component we need to
introduce. From Fig. 15.7 and Eq. (15.2) it is obvious that the detection depends on a
reference signal that is a ‘good’ cosine. Keep in mind that the reference signal is the
signal that we use to ‘excite’ the experiment. That could be a cosine, but more often it
is not. In laser experiments, we either use a ‘pulsed’ laser or a ‘chopper’ to periodize
a photo detector signal. In both cases the reference signal will be a square signal.
It may also be ‘noisy’. For that reason, the reference signal in a lock-in amplifier,
is first passed through a phase-locked loop (PLL). We will not go into the details
of PLLs here. It is a versatile, standard component that can divide or multiply a
signal’s frequency, but for our purposes, we will only use it as a ‘signal formatting’
component; we input a ‘noisy’ signal with some period, and the PLL will output a
‘good’ cosine with the same frequency (Fig. 15.8).

154 LIAs

A lock-in amplifier (LIA) is an ‘advanced PSD’. The ‘simple’ LIAs have indeed
a phase control knob that you have to adjust (manually) to ‘align’ the reference
signal with the detector signal. (Which can be quite a challenge!). The ‘advanced’
LIAs produce a signal that is independent of the phase angle (but they still produce
and display the phase angle). They achieve that by adding another multiplying PSD
where the reference signal is phase-shifted 90° (converting a ‘cosine’ to a ‘sine’). To
see how this works, we need a few basic trigonometric expressions. In Chap. 8 we
multiplied two cosines. If we multiply a sine and cosine, we get Eq. (15.4).
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Fig. 15.9 Reference signal y(t)

is phase-shifted 90° Acos(oxd + ¢x) _’C? ’ u(®)
2sin(wot + @o)

sina X cos B = %(sin((x + B) + sin(a — B)) (15.4)

InFig. 15.9 we have a multiplying PSD where the reference signal is phase-shifted
90° versus the signal.

If we apply Eq. (15.4), and the same reasoning that gave us Eq. (15.3), we see
that the filter output in Fig. 15.9 will be

u(t) = Asin(ey — ¢o) (15.5)

Next, we apply the Pythagorean identity expression sin? o + cos” @ = 1 to Eqs.
(15.3) and (15.5):

\/ A2 cos?(¢r — @o) + A2 sin® (px — @) = A (15.6)

From Eq. (15.6), we see that if we have ‘dual phase’ detectors, with a 90° phase
shift, we can get an output that is independent of the phase shift between the signal
and the reference (which saves you a lot of time and frustration in the lab, believe
me!). Figure 15.10 illustrates a ‘dual phase’ lock-in amplifier.

The ‘output box’ in Fig. 15.10 (the ‘squaring’ and ‘root squaring’) can be imple-
mented either in hardware or software; here we will just treat it as a ‘black box’. In
a commercial LIA you will also find pre- and post-amplifiers, pre- and post-filters,
several input signal options (current inputs, differential-ended inputs), etc.

When you use alock-in amplifier, you provide the reference signal (from the ‘exci-
tation device’ in your experiment) and the general rule is that you select a frequency

Acos(mot + @x) + 'noise’ |
S e AR
| P X
2cos(wot + @o) 4
Q » Yy
@

Fig. 15.10 ‘Dual phase’ lock-in amplifier
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‘far away’ from the local power line frequency (50/60 Hz) and its harmonics. The
reason is that in many situations the noise comes from the power line (see Chap. 2)
and so you should use some ‘odd frequency number’. If the power line frequency is
50 Hz, you don’t excite your system with 50 or 100 Hz, you use something ‘odd’
(like 217 Hz, for example).

Finally, a few comments about LIAs. First, notice in Fig. 15.10 that we have named
the phase detectors’ outputs ‘I’ and ‘Q’, respectively. ‘I’ stands for ‘In-phase’ (with
the measurement signal) and ‘Q’ stands for ‘phase shifted a Quarter of a period’.
That is ‘standard terminology’. Second, the LIA in Fig. 15.10 produces the signal
magnitude only, but since we have access to both the I and Q parts, we can easily
also produce the phase angle:

¢ =tan"' Q/I (15.7)

Some LIAs indeed do that and since they produce both the magnitude and the
phase angle, they are sometimes referred to as ‘vector voltage meters’.

Third, we can implement the ‘I’ and ‘Q’ parts in the digital (software) phase
detector too. In 2011, Li et al. [2] presented an algorithm that accomplishes that. They
took samples only 1/2 apart (twice as fast as in Fig. 15.3) and showed that the I-part
corresponds to (x(1) — x(3))/4 and the Q-part corresponds to (x(0) — x(2))/4.

15.5 Solved Problems

Problem 15.1 In a bioscience laboratory, researchers want to measure the resistance
in a very thin cell tissue. The resistance is very small (m€2) and since the properties of
the cell sample are very temperature dependent, it is paramount that the sample is not
heated during the measurement; the power must be minimized, i.e., the experiment
conditions don’t allow you to just crank up the current through your sample. It has
been estimated that the current must not exceed 1 wA. How would you solve this
problem?

Solution We measure resistance by sending current through the sample and measure
the voltage across it. We will excite the sample with a cosine from a waveform
generator (amplitude 1V, frequency 217 Hz), and by adding a 1-MS2 series resistor,
we make sure we don’t violate the 1 LA current restriction. This circuit is connected
to a lock-in amplifier as illustrated in Fig. 15.11.

InFig. 15.11, the sample resistance is <<1 M£2, so we may assume that the current
in the circuit is 1 pA. The output voltage has been amplified 200,000 times; hence,
the voltage across the sample is 0.134 V/200,000 = 0.67 wV. The sample resistance
is 0.67 pV/1 pA = 0.67 Q.

Problem 15.2 In an atomic physics experiment, atoms in a vacuum chamber are
excited by a continuous wave (CW) laser, and the relaxation light is detected by a
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Fig. 15.11 Cell tissue experiment

photo sensor, see Fig. 15.12. However, due to low signal levels and ambient light,
they are unable to detect the scattered relaxation light.

How would you suggest they solve this problem?

Solution The experiment must be ‘excited’, i.e., we must make sure that the light
signal we are trying to detect only appears at the photo sensor with a certain frequency;
a frequency that we control, or at least can measure confidently. To achieve that, we
‘chopper’ the laser beam. This is ‘standard’ laser accessory; a round plate with holes
in, rotated by a stepper or DC motor, see Fig. 15.13.

Vacuum chamber

W

[e]

CW Laser

ede e

A

L

Fig. 15.12 Atomic excitation experiment
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Fig. 15.13 ‘Excite’ the experiment

That will ‘excite’ the system. The chopper system may provide a ‘sync’ signal,
but if it doesn’t, we use a glass plate to deflect a small fraction of the laser beam to
another photo sensor; that photo sensor provides the reference signal to our LIA.

The entire solution is illustrated in Fig. 15.13. Even if this excites the detection
signal to a unique frequency, it is usually a good idea to reduce the ambient light in
the room anyway. Single photon detections have been reported with this technique

[3].

For an introductory laboratory exercise, I recommend a paper by Libbrecht et al.

[4].
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Chapter 16 ®)
Correlation Creck for

Abstract By ‘correlation’, this book primarily refers to temporal correlation. This
chapter defines the auto- and cross-correlation functions and presents their applica-
tions in signal processing. The cross-correlation function is compared to the convo-
lution operator and from this a matched filter can be designed. Both analog and
discrete-time correlation is treated, and computer implementations of correlation
algorithms (such as ‘circular’ correlation) are discussed.

16.1 Introduction

In this context, ‘correlation’ refers to ‘time-correlation’ (or ‘temporal’ correlation).
The (time) correlation function of two, time functions x(¢) and y(z) is

+00

Ryy(t) = fx(t)y(t—i—r)dr (16.1)

—00

Does this expression look familiar? If we compare Eq. (16.1) with the convolution
expression Eq. (9.27), we can see that they are identical, except that we don’t time-
reverse the second function. Hence, we can treat correlation just like convolution,
except for the time-reversion (which for most students is easier to comprehend,
conceptually).

There are two cases of Eq. (16.1); when x(¢) = y(¢) and when x(¢) # y(¢). The
former case is called ‘auto-correlation’ (‘correlate with yourself’) and the second
case is called cross-correlation (‘correlate with someone else’). Both are important
in physics, and they are used in quite different applications. Auto-correlation is
primarily used to find a periodic signal in stochastic noise and cross-correlation is
used to find a ‘known’ signal in a lot of noise (such as a radar echo, for example).

The close relationship with the convolution integral is also very important, and
we will discuss this in detail in Sect. 16.2.1 (‘matched filters”). We will also present
the discrete-time correlation functions and some practical computational problems
when it comes to correlation.
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But first, we need some correlation theory, and we will start with cross-correlation.

16.2 Cross-Correlation

To illustrate the cross-correlation process (Eq. (16.1)), we will use the same signals
that we used when we illustrated convolution in Sect. 9.8.1. First, we look at the
signal y(t) = 2t — 1. This signal is illustrated in Fig. 16.1, and Fig. 16.2 illustrates
y(t + 7) for different times ¢.

Comparing with Figs. 9.38 and 9.39, we can see that y(¢r + 7) is first, not time-
reversed and second, when ¢ goes from —oo to +00, y(¢ + t) slides from right to left
on the 7 axis (the opposite direction compared to convolution).

Example 16.1 Figure 16.3 illustrates x(¢) and Fig. 16.4 illustrates y(¢). Find the
cross-correlation between x(¢) and y(7). (Compare the result with Example 9.5).

Solution Figure 16.5 illustrates how y(# + t) moves along the t axis relative x(7).
We can see that there is no overlap between the two signals for times # <0 and 7 > 3.
Figure 16.6 illustrates the signals for O < ¢ < 1. For this time interval, Eq. (16.1) is

1

1 1
Ry (1) = /(T —1-1ldt = [—1'2 - ‘L’i|
2 1t

1—1
1 1 1
=5—1—5(1—r)2+(1—r)=.-.=—§r2

Figure 16.17 illustrates the two signals for 1 < ¢ < 2. Equation (16.1) is now:

Fig. 16.1 y(x)=2t -1 AY(®)
27-1
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Fig. 16.2 y(t + 7) fort =+
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Fig. 16.6 x(¢) and y(r + 7) forsome O < < 1.
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Fig. 16.7 x(t) and y(t + 7) forsome 1 <t <2
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9 P | 0 | 2
[(r+1)~1dr+ (r—l)-ldt:[zrz—i—r] +|:§7:2—ri|
t

1—t

S

1 1
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Finally, Fig. 16.8 illustrates the signals for 2 < ¢ < 3. The cross-correlation is

0 1 2= 1

— 2 = — —n? —f — — —
/(r—i—l)dr [2r +zL S@—0+2-1 <2 1)
—1

= —lzz 3t 445
== ,

The resulting cross-correlation function is plotted in Fig. 16.9.
Cross-correlation has the following properties: First, it is commutative, i.e., Ry, (t)
= R,(?). Second, if x and y correlate to R,, and x and z correlate to R,, then x and

2<t<3: x(=t+1 A

T
—t—+—+ i —t—t—t— >
-3 -2 1 2 3
This positionis 1=2 —t—
This distance is t /
Fig. 16.8 x(#) and y(t + 7) forsome 2 <t <3
Rxy(t
04l y(t)
02 time [s]
-1 3 4 5
0.2
04+

Fig. 16.9 The cross-correlation function
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(y + 2) correlate to Ry, + R,.. Also, if we compare Fig. 16.9 with Fig. 9.49, we
can confirm that cross-correlation corresponds to convolution with a time-reversed
impulse response.

So, what are the applications of cross-correlation? To see that, let’s first cross-
correlate white noise (x(7), Fig. 16.10) with the symmetric, bipolar square signal in
Fig. 16.11.

In Fig. 16.12, we have plotted x(¢) and y(+ + t) for some different times ¢. If
we multiply x(¢) and y(t + 7), the resulting ‘area’ will be ~ 0O for any time #; the
cross-correlation of x(¢) and y(¢ + t) is & 0 everywhere.

In Fig. 16.13, y(¢) is a ‘small’, delayed copy of x(¢). If we cross-correlate x()
and y(z) (let y(¢) ‘slide’ left), R,y (z) will be zero until they start to overlap (for t =
to — 2). R,y(?) will have a maximum for # = ¢y and then it will decrease to 0 again.
Figure 16.14 illustrates R, (7).

Hence, the ‘peak’ in the cross-correlation function indicates the position of the
‘small copy’ of x(¢). This is how radar and sonar systems work. They emit a known
‘signature’ chirp (x(¢)), and they cross-correlate it with the echo detector signal and
the ‘peak’ will correspond to the time it took for the chirp to travel back and forth to
the ‘target’.

A X(®)

Fig. 16.10 White noise

A Y

v:—»

Fig. 16.11 Symmetric and bipolar
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Fig. 16.13 y(¢) is a small delayed ‘copy’ of x(¢)

A Rxy(t)
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Fig. 16.14 The cross-correlation function

Figure 16.15 illustrates a radar chirp and an ‘echo’ and in Fig. 16.16 you can
see the detector signal. The echo signal is not visible in the detector signal, but we
have plotted it separately to indicate where it is. In Fig. 16.17, we have plotted the
cross-correlation between the detector signal in Fig. 16.16 and the chirp signal in
Fig. 16.15. From the R,, peak in Fig. 16.17, we can easily determine where the echo
is in Fig. 16.16.

We conclude that cross-correlation is used to find ‘known’ signals buried in
random noise. NB! The cross-correlation technique is extremely selective and in
radar applications, the echo signal in Fig. 16.16 may be frequency-shifted due
to the Doppler effect and that has a severe impact on the detectability. For that
reason, radar detection is complemented with statistical hypothesis testing (called
‘Neyman-Pearson’ detection).
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Fig. 16.15 A radar chirp and an ‘echo’

0.3 T T

02

01}

0 10 20 30 40 50 60 70 80 20 100

Fig. 16.16 Can you see the echo signal in the noise?
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Fig. 16.17 The cross-correlation function

16.2.1 Implementation: Matched Filters

Consider the signal x(¢). If we cross-correlate it with y(7) we get

[e¢] o0

Cross-correlation: / x(D)y( +v)dt = / y(O)x(t + 1)dt (16.2)

—00 —00
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Fig. 16.18 Convolution versus cross-correlation

Fig. 16.19 A h(t) = x(-t)
cross-correlator

y() ———»|  H(w) [———> Rxy(t)

If we instead filter the signal y(¢) in a filter with impulse response x(#) we get

Convolution: / x(D)y( —t)dt = / y(r)x(t — 1)drt (16.3)

In the cross-correlation case, x(t + t) slides from right to left when ¢ increases,
and in the convolution case, the time-reversed signal slides from left to right, see
Fig. 16.18.

That means that we can implement a cross-correlator in a filter by designing the
filter such that its impulse response /(f) = x(—t). This is called a ‘matched’ filter,
see Fig. 16.19.

16.3 Auto-Correlation

The auto-correlation function (ACF) is

o0
Ry (t) = / x(D)x( + 1)dt (16.4)
—00
In auto-correlation, a time-shifted copy of the signal ‘slides over itself’, see

Fig. 16.20. An inherent property of the ACF is that it is always symmetric around ¢
=0, i.e., Ry (t) = Ryx(—1).
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Fig. 16.20 A copy of the signal ‘slides over itself’

Example 16.2 Plot the ACF of the signal in Fig. 16.21.

Solution In auto-correlation, it is usually easier to find the integration limits by
starting from x(0 + 7) and then ‘slide left’ (in the positive ¢ direction). Because of
the inherent symmetric property of the ACF, we only need to find R, (?) for positive
times ¢. In Fig. 16.22, we can see that for 0 < ¢ < 2, we must integrate between 7 =

—land 1 -1t

1—t

Rxx(t)z/1'1df=[r]1_’1’=1—r+1=2_,

-1

The ACF for the time interval — 2 < ¢t < 0 is then 2 + ¢. Figure 16.23 illustrates

the ACF.

Fig. 16.21 Auto-correlate a y x(t)
square pulse A
t
| [ | [ | >
I I I I I I I Ll
-1 1
Fig. 16.22 We only need to O<t<2:
find the ACF for positive 13
times ¢ b t>0 X(1) ]
x(t+1) A
-
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This positionis 1 —t
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Fig. 16.23 The ACF

From Example 16.2, we can draw another conclusion about the ACF; it will always
have a maximum for t = 0.

Example 16.3 Find the ACF of a sine function, x(f) = sint.

Solution For a periodic signal, we only need to integrate over one period, and the
auto-correlation expression should also be divided by the period T

T

1

R () = T f sint X sin(t 4+ t)dt
0
| T
= —f cos( ) + cos(2t + 1) dt
2T S———
0 _cost =0
Independent of T Integrated over two periods
Ryx (1) ! t / d : t (16.5)
xx = — COs T = —COS .
2T 2

0

From Example 16.3, we can draw some more conclusions about the ACF. First,
if x(¢) is periodic, then R,, () has the same period as x(¢); the frequency information
is preserved in the auto-correlation process. Second, we auto-correlated a sine and
got a cosine. As a matter of fact, we would always get a cosine for any sin(w? +
@) function, independent of the phase angle ¢; the phase information is lost in the
auto-correlation process.

So, what are the applications of auto-correlation? To see that, we first auto-
correlate white noise. Figure 16.24 illustrates white noise and a time-shifted copy of
it. Imagine that we multiply the noise signal and the time-shifted copy at each time
instant. If the time-shift is zero, then we just square the noise signal, and the product
signal would be all-positive and if we integrated it, we would get a number > O; this
number is equal to the variance o> of the noise (the noise power).
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However, if the time shift is > 0, then soon the product function between the noise
and the time-shifted copy will be a random noise signal and integrating it over some
time interval would just be &~ 0 everywhere. This is illustrated in Fig. 16.25.

How fast R, goes to zero from ¢ = 0 depends on the noise bandwidth; if the noise
is not bandlimited, then the ACF is actually a delta function:

2 _
Ry (1) = {‘8 ;;8 (16.6)

i, R () = 028(1).

Next, suppose that the signal x(¢) has the ACF R,,(¢), and that y(¢) has the ACF
R,,(t). Then the signal x(¢) + y(¢) has the ACF R, (?) + R,,(¢) (provided that the two
functions are statistically independent). The proof of this relies on statistics and is
presented in Problem 16.6.

Now, let’s suppose that we have a periodic signal (sinf) with white noise; x(¢) =
(sint + white noise), see Fig. 16.26. The ACF of this signal is the sum of the ACF
of the sine (= a cosine) and the ACF of the noise (a delta function). The ACF is
illustrated in Fig. 16.27. Notice in Fig. 16.27 that (a) the noise is concentrated to t =
0 and (b) the huge improvement of the signal-to-noise ratio.
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Fig. 16.27 The ACF

Improving the signal-to-noise ratio in periodic signals with white noise is the
obvious application of autocorrelation, but it doesn’t stop there. Auto-correlation is
used in a huge range of applications, and we will present some of them in the next
section.

16.3.1 Auto-Correlation Applications

Figure 16.28 illustrates a Photon Correlation Spectroscopy experiment (PCS). Here,
auto-correlation is used to determine the diffusion coefficient and the size of colloidal
particles in a solvent.

If the size of the particles is smaller than the laser wavelength, then Rayleigh
scattering will occur. If the distance d x sinf between two adjacent light-scattering
particles equals a multiple of the laser wavelength (m\), then there will be construc-
tive interference in the photodetector resulting in a high photodetector current /(z).
On the other hand, if the distance equals a multiple of \/2, then there will be destruc-
tive interference resulting in a low photodetector current. Due to Brownian motion
of the particles, the photodetector signal will vary randomly as the phase shift of
the light from two adjacent particles will change gradually when the particles move.
Figure 16.29 illustrates the photodetector signal.
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Fig. 16.28 Photo correlation spectroscopy (PCS) (or ‘Dynamic light scattering’, DLS)
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Fig. 16.29 The photodetector signal

The photodetector signal is random, but not ‘white’ random; there is some corre-
lation between adjacent samples. This is reflected in the ACF, which will be an expo-
nentially decaying signal, see Fig. 16.30; the correlation between samples decreases
with time. From the ACF parameters (time constant, baseline, max value), both
the diffusion coefficient and the particle size can be derived [1]. For example, this
technique has been used to study the homogeneity of proteins [2].

—AcF| |

Fig. 16.30 The ACF
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It has also been used to measure particle-flow velocity [3]. When the particles pass
through a laser beam, the moving particles ‘encode’ an intensity fluctuation in the
backscattered light and the slope of the ACF is proportional to the particle velocity.

Spatial autocorrelation has its own applications. For example, it is used in ecology
to study the synchronous fluctuation of ecological variables over wide geograph-
ical areas (such as birds, butterflies, trees, hares...) [4]. It is also used to study the
fluctuation of socio-economic variables over regional areas [5].

In the physics lab though, we mostly use it to detect periodic signals in random
noise.

16.4 Discrete-Time Correlation

16.4.1 Cross-Correlation
The discrete-time expression for cross-correlation is

o
Roy() =D~ XiJusi (16.17)

If we compare this expression with Eq. (10.3) (discrete-time convolution), we can
see that it is in principle the same thing, except we don’t time-reverse y,. Writing it
out explicitly we get (assuming all signals = 0 for n < 0)

ny(n) = XoYn + X1Yn+1 + X2Yn+2 + .- ..

Table 16.1 illustrates the case where x = [xq, x1, x2] and y = [y, Y1, ¥2, y3]. If we
compare this to Table 10.1, we can see that data is now ‘sliding’ in from the right
side (and is not time-reversed).

Example 16.4 Cross-correlate the signals in Figs. 16.31 and 16.32.

Table 16.1 Cross-correlation in discrete time

Ryy(n) X0 X1 X2 y
Ryy(—=2) = x2y0 Yo Y1Y2y3
Ryy(—1) = x1y0 + x2y1 Yo i 253
Ryy(0) = x0y0 + x1y1 + X232 Yo Y1 2 3
Ryy(1) = xoy1 + x1y2 + x2y3 )1 Y2 y3

Ryy(2) = x0y2 + x1y3 2 3

Ryy(3) = x0y3 »3
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Fig. 16.31 x, A Xn
19
—0—0—o e e
1 1
Fig. 16.32 y, A Yn
1
n
oo ¢ T — >
1

Solution We start by delaying the y; signal by five samples (n = —5). From Fig. 16.33,
we can see that there is no overlap until n = —4.

Ry(=4) =xsyo=1-1=1
Riy(=3)=x3yo+xay1 =1+1=2
Ry(=2)=xyo+x3y1 + sy =1+1+1=3
Ry(=D)=xiyo+xoy1+ 3 +xy;=1+1+1-1=2
RyO) =xoyo +xiyi + X202 +x3y3 +x4ya=1+14+1-1-1=1
Ryy() =xoy1 +x1y2+x2y3 +X3ys +x4ys =1+1-1-1—-1=-1
Ry@2)=xoy2+x1y3+X2ys+x3ys=1-1-1-1=-2

ny(?)) =xoy3+ X1 Y4 +xs=—1—-1—-1=-3
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Fig. 16.33 No overlap until A
n=—4 Xi Y-5+i

Fig. 16.34 The

A
cross-correlation function
2
T T 1 n
- :|: | | L o—60—>»

ny(4) =xoV4s+x1ys=—1—-1=-2

ny(s) = XoYys = -1

The cross-correlation function is illustrated in Fig. 16.34.

16.4.2 Auto-Correlation

We get the discrete-time auto-correlation expression by just substituting y,.; for x,.;
in expression (16.17):

R =Y~ xixuys (16.18)

We don’t give any examples of discrete-time autocorrelation. It works just like the
cross-correlation in Eq. (16.17), and it has the same properties as the continuous-time
ACEF; frequency is preserved, but not the phase and it has a maximum for n = 0.

Instead, we will investigate a ‘computational’ problem concerned with discrete-
time correlation.
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16.4.3 Circular Correlation

Suppose that we sample a periodic signal like the sinusoidal in Fig. 16.35.
When we auto-correlate a periodic signal with a period of N samples, we should
only correlate over one period and the correct correlation expression is

1 N-1
Ree(m) = < Xidnsi (16.19)

However, we could execute this expression in two different ways. We could do
it as indicated in Table 16.1, i.e., we just let the ‘copy slide’ by the ‘original’ signal

and multiply and sum all the overlapping samples. This is illustrated in Figs. 16.36
and 16.37.

Time
Fig. 16.35 Sampling a sine
Shifted 'out’
i
Y i X0 X1 X2 X3 X4 XN-2 XN-1
n=1 3
X0 | X1 X2 X3 X4 e XN-2 XN_1

|

|

|

N-1 overlapping samples

Fig. 16.36 ‘Common’ correlation

|

|

i Xo X1 X2 X3 X4 XN-2 XN-1
n=m 3

Xm-1 | Xm e XN_2 XN_1

|

I

|

N-m overlapping samples

Fig. 16.37 ‘Common’ correlation
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With the correlation technique in Fig. 16.36, samples that are ‘shifted’ out are
just discarded and the number of overlapping samples decreases gradually and that
will ‘distort’ the ACF. We can make up for this in two different ways. One simple
solution would be to ‘re-define’ N in Eq. (16.19) from representing the signal period
to representing the number of overlapping samples. Then N would decrease with the
shift to compensate for the decreasing number of overlapping samples. The downside
of this solution is that there will be very few overlapping samples at the ‘ends’ and
that gives us ‘poor statistics’.

A better way to make up for itis to use ‘circular’ correlation. In circular correlation,
the sample that is shifted out is not discarded but is instead ‘rotated’ back to the
beginning of the sample array, see Figs. 16.38 and 16.39.

Using this technique, we will always have N overlapping samples. Circular corre-
lation was used to produce the ACF in Fig. 16.27. Figure 16.40 illustrates what it
would have looked like if we had used ‘common’ correlation.

Xo X1 X2 X3 Xa XN-2 XN-1

X1 X2 X3 X4 e XN-2 XN-1 X0

I
'Rotate’ back

Fig. 16.38 ‘Circular’ correlation

X0 X1 X2 X3 X4 XN-2  XN-1

Xm  reeeeeeeeees XN-2 XN—1 X0 Xm-2 Xm-1

Always N overlapping samples

Fig. 16.39 ‘Circular’ correlation

3000 | -
Rax(t)|

™ /‘\ , ""\ N |
-m: /\ \V \J g"r \J \v./\//\\_/\f-_

-40 20 30 40

Fig. 16.40 Auto-correlation without ‘circular’ correlation (compare with Fig. 16.27)
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Notice in Fig. 16.40 how the amplitude of the sine is decreasing gradually because
of the decreasing number of samples that we ‘multiply-and-add’.

In MATLAB, you use the xcorr command for ‘common’ correlation and the
cxcorr command for circular correlation. (However, you need the Signal Processing
Toolbox to get access to the cxcorr command.)

16.5 Solved Problems

Problem 16.1 Prove that the lock-in amplifier we introduced in Chap. 15 is just a
special case of cross-correlation; the lock-in amplifier output = R, (0).

Solution Fig. 16.41 illustrates the lock-in amplifier system. The multiplier obviously
produces the signal product. All we need to do is to prove that the lowpass filter
integrates the product. To prove that we need to look at the lowpass filter hardware.
Figure 16.42 illustrates a first-order RC lowpass filter.

The output voltage b(¢) equals the voltage across the capacitor:

1

_p =2 1,
b(t)y=U, = C=C /z(r)dt

—00

Hence, b(?) is the integral of the current. If R >> 1/wC, then almost all of a(r)
falls over R and then i ~ a(t)/R. Hence

Fig. 16.41 Lock-in
amgpliﬁer t)Xy(t)
x(t) —)@ LP |
y(t)
Fig. 16.42 First-order R

lowpass filter _|>_|:

a(t) C—— b(t)
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b(t) = — /& = —/a(r)dr

—0Q

We can conclude that if R >> 1/wC, i.e., if RC >> 1/w, = T/27 (where T is the
signal period), then the lowpass filter is indeed integrating the input signal and the
lock-in amplifier output is

1
RC x(D)y(r)dt = Cny(O)

Problem 16.2 Find the auto-correlation function of a square signal (duty cycle 50%).

Solution Figure 16.43 illustrates a square wave x(7) and a shifted copy x(¢ + 7) (t >
0).

We only need to find one period of the ACF; we derive the ACF for —1 <t < 1.
Figure 16.43 represents the two signals when 0 < 7 < 1. In this interval, the ACF is

1—t

1 1
Roc(t) = 5/1-1dr =50-1)

0

Figure 16.44 represents the signals when —1 < ¢ <0.
The ACF is

1
1 1
R () = 5/1 -ldt = 5(1 +1)
—t
The ACF is plotted in Fig. 16.45.

Problem 16.3 In Example 16.3, we concluded that the frequency information is
preserved in the auto-correlation and that the phase information is losz. What about
the amplitude information. Lost or preserved?

0<t<1:
A X(7) X(t+7)
1

=== ==
1 1
i i
1 1
H H T
1 ! -

<Y> 1 2 3

T=1-t

Fig. 16.43 The two signals x(7) and x(¢ + )
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-1<t<0:
A X(t+1) X(1)
1
= 3
1 1
1 1
1 1
I i T
| | >
T=—-t 1 ‘Y’l 2 3
Fig. 16.44 The two signals x(r) and x(t + 7) for —1 <7 <0
A Rxx(t)
t
I I I »
I I I | I 1 Ll

Fig. 16.45 The ACF

Solution It is lost (or at least ‘scrambled’). We have seen two examples of this. In
Example 16.3, the ACF of a sine (amplitude = 1) became a cosine with amplitude
= 0.5. Also, in Problem 16.2 above, the ACF of a square wave became a sawtooth
signal. We know from Fourier transform theory that the square and the sawtooth have
the same frequencies, but their amplitude spectrums are different.

Problem 16.4 What is the auto-correlation function of the square pulse signal in
Fig. 16.46?

Solution This is the same problem as in Example 16.2; the auto-correlation function
is independent of time delays. Hence, the auto-correlation function of the signal in
Fig. 16.46 is illustrated in Fig. 16.23.

Problem 16.5 In Sect. 16.3, we asserted that for the auto-correlation of white noise,
R.(0) = 2. Prove that this is true.

AX®
]

>
| 99 101 us

Fig. 16.46 Squared pulse
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Solution To prove that we need some statistical theory. First, the noise signal is
random, and we need to treat it as a stochastic process, X(t). The auto-correlation
function of a stochastic process is the expectation value of X(7)- X(r + 7). If t =0,
then

Rxx(o) = E{X(t) - X))} = E(Xz) = 0—2

from the definition of variance and from the fact that the expectation value of white
noise is = 0. (Also, assuming that we have a stationary process.)

Problem 16.6 Prove that if the signal x(f) has the auto-correlation function R, (?),
and if y(¢) has the auto-correlation function R,,(¢), then signal x(t) + y(¢) has the
auto-correlation function Ry () + Ryy(1).

Solution We can prove it if we treat the two signals as two stochastic processes. The
auto-correlation function is in general the expectation value of X(t) and X(¢ + 7).
In our case, we have a sum of functions:

E(X()+Y(@) - X(t+71)+Y(+71))
=E(XOXt+1)+X@OYE+1)
+HY@OXt+)+Y@Y (@ + 1)}
= E{X(@OXt+D}+EX(OY(7 + 1)}

=R\ (1) =0 (Independent)
+ E{Y(O X+ 1)} + E{Y ()Y + 1)}
=0 (Independent) =R,y (1)

= Rxx(t) + Ryy(t)
(Because the correlation between independent processes is 0.)

Problem 16.7 The ACF R,.(¢) and the power spectrum |X (w)|* is a ‘Fourier
transform pair’, i.e.,

oo

/ Rec (1) -e7”dt = |X (@)

—00

‘Prove’ that this is true by calculating first the Fourier transform of the pulse in
Fig. 16.21 and then calculating the Fourier transform of its auto-correlation function.

Solution We already found in example 7.2 that the Fourier transform of a square
pulse is

2w 2 4 .,
|H(w)| = —sin— = |H(w)|" = —sin“w
w 2 w?
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We also derived the ACF of the square pulse in Problem 16.2. The Fourier
transform is:

[e¢]

0 2
/ Rxx(t)eijwtdt = /(2 +1)- e dt + /(2 —1)- e it gy

—0
2 0 2
= Z/e’j“”dt + / t-edr — /t e gy
-2 -2 0
= —i[e_j‘”’]z + [—.Le_j“’l]o + i O eI gy — [—.Le_jwl]z - l /%e_jw’dt =
Jo -2 o -2 Jw_2 Jw 0o Jw o

2 —j2wt 2 2wt 2 2wt 1 —jwt 19 2 —j2w 1 —jwt12
=—jzej ~|—Jze' —Jze] +E[CJ :|_2‘|‘jzeJ t—E[eJt]O

1 . . 2 4
= E(l — el e 4 ]) = E(l — cos2w) = Esinza)

o0
And hence, [ R,,(t)e'dt = |H(w)|*.
—0Q

Problem 16.8 Find the ACF of x(1) =e™" (> 0), x(r) = 01if < 0.

Solution Figure 16.47 illustrates x(t) and x(¢ + 7). The ACF is

oo oo
1 1
R (t) = /effef(’”)dt = e”/e’zrdr = —Eeit[efzt]go = Ee”
0 0
Fig. 16.47 Auto-correlating A

an exponential function

A
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Table 16.2 Sampling the exponential
n |0 1 2 3 4 5 6 7 8 9 10
x, | 1.000 |0.819 |[0.670 |0.549 |0.449 |0.368 |0.301 |0.247 |0.202 |0.165 |0.135

Problem 16.9 Suggest a digital FIR filter that you could use to ‘detect’ the
exponential function in problem 16.8 in a noise signal.

Solution First we need to decide a sampling rate; fs = 5 S/s. That means that the
samples are taken at times n/5 = n-0.2 s. To ‘detect’ the exponential signal in noise,
we need to cross-correlate it with an identical exponential function and we implement
that by designing a filter with an impulse response that is just the time-reversed copy
of the signal. In a FIR filter, the filter coefficients are also the impulse response
coefficients.

First, we sample the exponential: x, = e 2 (Table 16.2).

Then we just time-reverse the sample order (and shift to make it causal) to get an
11-tap FIR filter that cross-correlates:

v, = 0.135x, + 0.165x,_1 + 0.202x,,_» + 0.247x,,_3 + - - - + 0.819x,_9 + x,,_10

Problem 16.10 Figure 16.48 illustrates a seismograph that determines the direction
to the epicentrum of earthquakes. It cross-correlates the signals from three vibration
sensors placed as indicated in Fig. 16.48. Chock waves propagate through the earth’s
crust at a speed of 4000 m/s, and they are assumed to be ‘far away’, i.e., the shock
waves impact as plane waves on the seismograph.

At an earthquake, the vibration signals from sensors y; and y, were cross-
correlated with the x signal, and the cross-correlation functions are illustrated in
Figs. 16.49 and 16.50. Determine the direction to the epicentrum.

Solution In R,y (¢), y; is shifted left and we get a ‘hit’ for # > 0. That means that
the shock wave hit sensor x before it hit sensor y;; from R,,;(f) we conclude that
the shock wave came either from the South-West or from the North-West. When x
was correlated with y,, we got a hit for ¢ < 0; the shock wave hit sensor y, before it
hit sensor x, and that happens if the chock wave comes from either South-West or
South-East. The conclusion is that the shock wave came from the South-West. Once
we know the approximate direction, we can calculate the exact direction.

Figure 16.51 illustrates how plane waves hit the sensors (from South-West). We
need to find the angle 6.

According to R,y (), the time difference in the impact between sensor x and sensor
y1 is 100 ms; hence the distance L = 4000 x 0.1 = 400 m. We can then find the
angle 6:

400

0 = 6 =sin~'0.8 = 53°

sinf =
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500 m

A
\J

» =

W< » E

500 m

Ty Y

Fig. 16.48 Epicentrum detector

100 ms

0

Fig. 1649 R.;(1)
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Fig. 16.50 R,,5(1)

Uy

Fig. 16.51 Finding the impact angle
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Chapter 17 ®)
Curve Fitting ez

Abstract One of the most common ‘post-measurement’ data processing operations
is curve fitting, i.e., fitting samples to a predicted expression. This is usually derived
by least-square calculations, but this chapter will use the orthogonality principle to
derive the curve fitting expressions. The advantage of this is that it offers a graphical
argument for its legitimacy. The pseudo inverse of a non-square matrix is defined
and some common pitfalls due to error propagation in matrix operations are high-
lighted. Once curve fitting is understood, it can be used to understand how sampling
instruments, such as digital oscilloscopes, retrieve the original signal from only a few
samples; in Sect. 17.6 the sampling theorem is revisited, and this section explains
the difference between linear interpolation and sinx/x interpolation.

17.1 Introduction

In a typical measurement, we observe (measure) some quantity y as some other
quantity x varies; the objective is to figure out how y depends on x (y = f(x)). In
a typical case, we know the ‘general’ dependence of y on x, i.e., we know they are
related by a first-order polynomial or an exponential function, but we don’t know the
function coefficients. So, we take data, but since data are noise-infected, they will
not follow the expected function graph exactly.

In Fig. 17.1, we denote the measured data y”, and the ‘theoretical’ value just y.
In the general case, if we take r data points, the result of the measurement would be
an r x 2 table (an r x 2 matrix), see Table 17.1. The deviation of the measured data
from the theoretical value is called the error; &:

& =Yn— Yy (17.1)

Our objective is to find the theoretical function y = f(x) from the data. For this
introduction, we will assume a straight line:

f(x)=co+c1x (17.2)

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 347
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Theoretical line y(x)
Ay >
S
' G,
y3
y2 g Data (y™(5),x(5))
Y1 () I 8(1
— \
X
»
X1 X2 X3 X4 X5

Fig. 17.1 Data won’t fit exactly to the expected line

Table 17.1 The data table
Ym
X1 )"1"
X2 )’2"
Xr "

If there was no noise in the data, we could choose any two data pairs in Table 17.1,
insert them into Eq. (17.2), and we would have a system of two equations with two
unknowns, and we could solve for the unknown coefficients ¢y and c¢;. And we would
be done. But that won’t work because of the noise; we would get a different result
every time depending on which two pairs we select.

If we insert all of them into Eq. (17.1), we get the following system of equations:

m

co+cxp =y 1 x| y}n

co+crxy = Yy N 1 x; ¢o yzn

. . ¢l = y%

Y4

co+cix, =y" 1 x, yin
—A.C=M (17.3)

First, this is an overdetermined system of equations (because we have more equa-
tions than we need to solve it). Second, it doesn’t have an exact solution (because
of the noise). The only thing we can do is to try to find the best solution. We’ll get
back to what we mean by ‘best’ in a minute. In Eq. (17.3) we also wrote the equation
system in matrix form and A is the observation matrix, C is the coefficient matrix
and M is the measurement data matrix. Our objective is to find the C matrix.

By the ‘best’ solution, we mean the straight line in Fig. 17.1 that will minimize
the sum of all the squared errors. That makes sense; we must square them before we
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add them since the errors have different signs. So, we square and add, and then it
becomes a classical ‘minimum’ problem (take the derivative and set it equal to zero).
That is how it is derived in undergraduate classes, and it is called ‘linear regression’.
However, here we will try to go alittle ‘deeper’ (to promote profound understanding).

We concluded above that our overdetermined system of equations doesn’t have
an exact solution because of the noise. Well, let’s assume that we don’t understand
that (or don’t care) and try to solve it anyway. Maybe we are lucky... If A had been
quadratic (r x r), then the solution would have been easy; just invert A and multiply
both sides from (the left) with A~! and we get C = A~! M. But A isn’t quadratic, it
isan r x 2 matrix and A~! does not exist. Well, we can fix that; multiply both sides
(from the left) by AT (the ‘“transpose’ of A, which is a 2 x r matrix):

ATAC = A™Mm (17.4)

ATA is a quadratic, 2 x 2 matrix and does have an inverse matrix (if it only has
“full rank’, which all ‘normal’ measurements produce). So, if we multiply, from the
left, with the inverse of ATA we get:

(ATA)'ATAC = (ATA)'ATM = € = (ATA)'ATM =AM (17.5)

(A* = (ATA)~'AT is the ‘pseudo inverse’.) We solved it! We found a solution to
the system of equations with no solution! Well, we said that it doesn’t have an exact
solution. So, what does the solution in Eq. (17.5) represent? It is the same solution
we would get if we solved the minimum square problem with the sum of errors. Here,
will prove it to you in a different way. Equation (17.5) is the ‘best’ solution and we
will prove it using geometry.

17.2 The Orthogonality Principle

The starting point is that we consider C to be a vector; in this case, it is a vector in
R?, but in the general case it would be a vector in R” (when we try to fit data to an n
— 1 order polynomial). Hence, the C matrix is a column vector (cp,c1) (temporarily
lying down here). Similarly, A also consists of two (column) vectors (1,1,...,1) and

(x1,X2,...%,):

1 X1 co+ c1x;
1 X2 co + c1x2

AC=co| [|+ca| " |= ) (17.6)
1 X, co + c1x,

In Eq. (17.6), we multiply the column vector (1,1,...1) by ¢y and the vector
(x1,x2,...x,) is multiplied by c;. This creates a new vector, see Fig. 17.2.
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The 2D space spanned by (1,1,..1) and (x1,x2,...Xr)

Fig. 17.2 Vectors (1,1,...1) and (x1,x2,...x,) define a space

From Fig. 17.2, we can see first that the two column vectors (1,1,...1) and
(x1,x2,...x,) define a 2D space (they span a 2D space) and second that the matrix
product AC is a vector (that we call B in Fig. 17.2). So, if the matrix product AC
defines a vector in the space defined by the vectors (1,1,...1) and (x;,x7,...x,), the
matrix equation AC = M, can only have a solution if the vector M is in this space!
But because of the noise in the measurement, the measurement data matrix M is not

in this space, see Fig. 17.3.

Since we are limited to the space spanned by vectors (1,1,...1) and (x;,x3,...X,),
we cannot find an exact solution to the AC = M equation. It that case, we instead
find the best solution. The ‘best’ solution is the vector in the space [(1,1,...1),

)
o
l"\:\-

¥

Fig. 17.3 Our measurement matrix M is not in the 2D space spanned by (1,1,...1) and (x1,x2,...x,)



17.2 The Orthogonality Principle 351

Fig. 17.4 The projection of A
M is closest to M M
< 1 ’1§1)
Cc1
N
# M
+
Nav' 4
Fig.17.5 M — M is A
perpendicular to the plane M G
(J
o (.15.1)
C1 i /’I/
N
> M
+
Nav 4

(x1,x2,...x,)], that is closest to M; the vector closest to M is the projection of M
onto the [(1,1,...1),(x1,x2,...X,)] space, see Fig. 17.4.

So how do we find the coefficients ¢y and c; that define the closest vector M
(‘M hat’)? That is easy; that’s when the vector M-—Mis perpendicular to the plane
spanned by [(1,1,..1), (x,X2,...x,)],! see Fig. 17.5.

To be perpendicular to the plane spanned by [(1,1,...1), (x1,X2,...x,)], it must be
perpendicular to both vectors [(1,1,...1) and (xy,x2,...x,)], i.e., the scalar products
between M — M and both vectors [(1,1,...1) and (x;,x2,...x,)] must be zero:

1 1.0 (M-M)=0 N
(x) xz...x,)g(z?/f_z\Z)=o=> <x11 xlzlx> (M—M>=0 (17.7)

AT(M -—M)=0 (17.8)

But,

! This is the’ orthogonality principle’.
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i A co + c1xg \ih
M_Mm=1" il _|coteaxa| ||
Yr y;” co+ci1x, yrm
1 x "
_ 1 x (co) Wl _ac—m
: c :
1 x, "

Substituting AC—M for M —Min Eq. (17.8) gives us

AT(M — M) = AT(AC — M) =0
= ATAC=ATM = C = (ATA)'ATM = A*M (17.9)

which proves that the solution we derived in Eq. (17.5) is indeed the best solution.
We summarize this in the following theorem.

Theorem (The orthogonality principle.) We find the best solution to the overdeter-
mined system of equations AC = M, by setting the error vector M — M perpendicular
to the columns in A.

The orthogonality principle holds true for any polynomial order; if we want to fit
data to an nth order polynomial, the C matrix is an (n + 1) x 1 matrix and A is r X
(n+1).

It is also common to state the total error, i.e., the sum or all r errors in Eq. (17.1).
However, since this number increases with the data size, we divide it by the number
of samples:

Zs Z (o) =)’ (17.10)

Equation (17.10) is not just a number that quantifies the quality of the fitting; it
is the power of the noise that interfered with our samples. (Assuming that we are
fitting to the right polynomial, see discussion in Problem 17.1.)

Example 17.1 Table 17.2 represents data samples from a calibration of a temperature
sensor. Use this data to find a first-order calibration expression for the sensor. What
was the noise level in the measurement?

Solution We will fit data to a first-order polynomial: U = ¢y + ¢, T:
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Table 17.2 Temperature calibration data

353

T [°C] —10 0 10 20 40
U™ [V] —-2.50 —-0.09 2.21 4.82 9.31
co— 110 = —2.50 1-10 —2.50
o+ ¢10 = —0.09 10 . —0.09
co+e10=221 =|1 10 (C")z 221 | =>4Aac=Mm
co+ 120 = 4.82 1 20 ! 4.82
o+ c140 = 9.31 1 40 9.31
1-10
10
(VT Lo (5 60
—100 10 20 40 60 2200
1 20
1 40
- 0.2973 —0.081
ATA) ' =
= (474) <—0.081 0.0007)
_ 0.2973 —0.081 1 1111
ATA) AT = =
(474) (—0.081 0.0007)<—100 10 20 40)

_( 0.0374 0.2973 0.2162 0.1351 —0.0270
~ \ —0.0149 0.0081 —0.0014 0.0054 0.0189

C=(ATA)'A™™ = <_0'0951> = U =-0.09514+0.2371 x T

0.2371

This line is plotted in Fig. 17.6 together with the samples. In Table 17.3, we have
included the fitted data and the errors.

I
10 H X Samples_
— 1st order fit

Voltage [V]

Fig. 17.6 The fit and the samples

1 |
10 20
Temperature [C]

30

40
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Table 17.3 Temperature calibration data

17 Curve Fitting

T [°C] —10 0 10 20 40
U™Vl -2.50 -0.09 2.21 4.82 9.31
U [V] —2.466 —0.095 2.276 4.647 9.389
e[V] 0.0339 —0.005 0.0658 —0.173 0.079

The average squared error is

4
1 "
e’ ==Y & =0.0083 V> = upor = +/0.0083 = 0.0913 = 91 mV
r

rms
i=0

Example 17.2 A projectile’s position was registered at some regular time intervals,
see Table 17.4. Use this data to determine the projectile’s initial velocity and its
acceleration.

Solution A projectile’s position as a function of initial position sy, initial speed,
vp and its acceleration a is given by

1
s=s0+v0t+§at2=c0+clt+czt2 (17.11)

Inserting our measurement data gives us:

co+ 10+ 6‘202 =0.02 10 O 0.02
co+c15+ 5% = 18.21 15 25 Co 18.21
co+c10+¢,102=4895 = | 110100 | | c; | = | 48.95
co + 115 + 2152 = 99.31 115225 | \ e 99.31
co + €120 + ¢220° = 158.46 120400 ) —— 158.46
~—— —— ——
A M

—0.1003 Co S0

(ATA)'A™M = (Using MATLAB} = | 2.1573 | =|c | = w

0.2901 e la

(17.12)

From Eq. (17.12), we can see that the initial velocity was 2.16 m/s, and the
acceleration was 2:0.2901 = 0.58 m/s?. In Fig. 17.7, we have plotted the data points
with the fitted line (as a ‘sanity test’).

Table 17.4 Position at different times
t[s] 0.00 5.00 10.00 15.00 20.00
s [m] 0.02 18.21 48.95 99.31 158.46
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200 T T T
X measured data
2" order fit
150 - b
E
n
§ 100 - b
)
€
50 - B
0 1 1 1 1 1 1 1 1 1 -
0 2 4 6 8 10 12 14 16 18 20 22

time [s]

Fig. 17.7 The fit and the data

17.3 Curve Fitting to Exponential Functions

Our ‘pseudo inverse’ formula above only works when data are fitted to a polynomial,
i.e., when data can be fitted to a linear combination of the coefficients. That is not
always the case. For example, there are lots of examples of exponential relationships
in science (nuclear decay, cooling, population growth, etc.). Suppose we have an
expected relationship as in Eq. (17.13):

y(x) =co-e" (17.13)

Equation (17.9) cannot be applied here, because we don’t have a linear dependence
on all the coefficients. However, we can turn it into a linear combination of coefficients
by taking the logarithm of both sides:

Iny = Incy + ¢jx = ¢y + c1x (17.14)

Hence, we just proceed exactly as above, but when we are done, we transform ¢
back to ¢y, We illustrate this with an example.

Example 17.3 In a nuclear experiment, the radioactivity of a sample was measured
at some times, see Table 17.5. What was the decay constant and the half-life time of
the sample?

Solution The radioactivity decays exponentially, so we need to take the logarithm
of both sides:

Table 17.5 Radioactivity from a sample

t[s] 10 20 50 100 150 300
A™ [Bq] 90,345 71,491 44,609 25,873 10,077 1329
InA™ 11.41 11.18 10.71 10.16 9.218 7.192
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10§ 1
i3
m 5+ .
O | | 1 1 t Sl
0 50 100 150 200 250 300
time [s]
Fig. 17.8 The fit and the data points
A= Ape™ = InA =InAy — At = co — c1t (17.15)
In Table 17.5, we have already calculated the logarithms:
co—cyp-10=11.41 110 11.41
co—cp-20=11.18 120 11.18
co—c1-50=10.71 1 50 Co \ _ 10.71 17.16
1 100 —c 10.16 (17.16)

co—c1 - 100 = 10.16
co—c1-150=9.218
co — Cq -300 =7.192

C=(A"A)'A™M = (

1 150 T 9.218

C
1 300 7.192
——— ——
A M

—0.0144 —A

A =0.0144 57!

11.4941 ) B <1nAo> _, Ao = 98135 Bg

= A = 98135 . ¢ 00144

In Fig. 17.8 we have plotted the data points and the fit.
The half-life time is: 0.5 = e %% =, , = —In2/ — 0.0144 = 48 seconds.
The decay constant is A = —0.0144 s~

17.4 MATLAB Tips

If you have access to MATLAB, you don’t need to use Eq. (17.9); the ‘\’ operator in
MATLAB solves the AC = M equation immediately: C = A\M.

Example 17.4 Solve the problem in Example 7.1 using the backslash operator in

MATLAB.
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Table 17.6 Temperature calibration data

T [°C] —10 0 10 20 40
U™ [V] —-2.50 —0.09 2.21 4.82 9.31
2xu 0.25 0.27 0.23 0.24 0.22
10 Be T T I| T T T
—— 1st order fit
= I samples
gl i
[1h]
)
ol
©
>0 N
_5 :

-10 -5 0 5 10 15 20 25 30 35 40 45
Temperature [C]

Fig. 17.9 The plot with error bars (95% confidence)

Solution
>> A =[1-10;1 0;1 10;1 20;1 40];
>>M = [-2.50; —0.09;2.21;4.82:9.31];

>>C = AWM.
C = -0.0951
0.2371

In Chap. 14, we learned to calculate the 95% confidence interval for a measurement
(the ‘uncertainty’) and when we fit data to a polynomial, we should indicate each
measured value’s (y™) uncertainty as an error bar. MATLAB can handle that for you
if you just plot the graphs with the errorbar(x,y,e) command.

Example 17.5 In Table 17.6, we have added the uncertainties for each sample (see
Sect. 14.2). Plot the fitted line and samples with error bars in the same diagram.

Solution Using errorbar(T,U,e) in MATLAB, we get the plot in Fig. 17.9.

17.5 Matrix Uncertainties and Pitfalls

17.5.1 Error Propagation in Matrices

In the matrix equation AC = M, M represents measured data, and in Chap. 14, we
learned that all measured data has an uncertainty. The question to ask now is of
course how the uncertainty in the measured data propagates to an uncertainty in
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the coefficients in the C matrix? Our data are supposed to follow some polynomial:
y =cotcix +eax?4 e »xP but because of noise there is a stochastic contribution
to y™, and hence,

y"(n) = co 4+ c1x(n) + cax*(n) + . .. cpxf(n) + b(n) 17.17)

where b(n) is white gaussian noise: b(n) € N(0, o). This noise propagates to the
coefficients in the C matrix according to the following theorem:

Theorem The variance of the c; coefficients in the C matrix is found in the diagonal
elements of the 02(ATA)~! matrix, i.e.,

var(ei) = {o*(474)"'} (17.18)

We don’t prove that theorem here, but we will illustrate it with an example.
Example 17.6 What is the uncertainty of the coefficients in Example 17.1?
Solution The variance of the noise level was 0.0083 V2, so

o2(ATA) " = 0.0083. (0.2973 —0.081) B < 2.47 —0.672) 10

—0.081 0.0007 )~ \ —0.672 0.00581

N u(co) = v2.47 - 1073 = 0.050
u(c)) = ~/5.81-107° = 0.0024

With a coverage factor of 2, we get the following coefficients:

{ co = —0.095 +0.100 (95% confidence)

c; = 0.2371 £ 0.0048

Notice in the example above that the uncertainty was much smaller for ¢; than for
co; this is true in general. Higher order coefficients are more sensitive to variations
in data and can therefore be determined with higher precision.

17.5.2 Ill-Conditioned Matrices

In some situations, the A matrix can be ‘ill-conditioned’ and that can have severe
consequences for the precision. We will illustrate that with an example.

Example 17.6 Table 17.7 illustrates data from some measurement. Fit this data to a
first-order polynomial, y = ¢y + c;x.
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Table 17.7 Some

X 1000 1001 1003
measurement
y 4 6 9
1 1000 4
Solution A and M are; A = | 11001 | and M = | 6 |. Hence,
1 1003 9
-1
_ 1 B
(ATa) " = (3 3004 _ 1 (3008010 —3004 17.19)
3004 3008010 14\ —3004 3
4
ATM = (1000 1001 1003 g =\ 19033 (17.20)

1 (3008010 —3004 19 —1638.7 co
=C= 14( —3004 3 )(19033) - ( 1.6429 > N (q) (17.21)

Inserting these coefficients into our fit gives us y(1000) = 4.20, y(1001) = 5.84
and y(1003) = 9.13.

The result in Example 17.6 seems reasonable. However, these calculations are
usually carried out by computers and all computers have limited accuracy. To illus-
trate the problem, we will ‘amplify’ it here, by assuming that our computer has a
precision of only four digits. (A real computer has much higher precision, but the
problem is the same, it is just on a smaller scale.). That means that 3,008,010 will be
rounded to 3,008,000 and 19,033 is rounded to 19,030. In the first case, it is an error
of 3.3 ppm, and in the second case, it is an error of 158 ppm. You wouldn’t expect

such small rounding errors to have any significant impact on the result, would you?
Let’s see:

L(SOOSOOO —3004)( 19 > _ <—1009) _ (c()) (17.22)
14\ —-3004 3 19030 1.000 1

Comparing Eq. (17.22) with Eq. (17.21), we can see that the ppm level rounding
has catastrophic consequences on the calculations! The problem is that the ATA
matrix is ‘ill-conditioned’. (This is implied by the size of the highest eigenvalue of
the ATA matrix; in this case, itis 1734 and rounding troubles are expected.) There is an
easier way to predict the problems in this case. If we take a closer look at the column
vectors in A, we can see that they are almost parallel; the vector (1,1,1) is almost
parallel to (1000, 1001, 1003). The angle between these two vectors is only 0.07°
and that makes it hard for the two vectors to span the space properly (the ATA matrix

is very close to being singular). Ideally, we want the angle between the ‘spanning’
vectors to be 90°. We can fix this problem by fitting to a savvier polynomial.
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Example 17.7 In Example 17.6, fit data to the polynomial y = ¢y + ¢1(x — 1000)
instead.

Solution That gives us the following system of equations:

co+c0=4 10 c 4
co+ecl=6 =11 <C°)= 6| = ATA
co+c13=9 13 ! 9

_(111) i‘l) _<34)
013 13 4 10

(The four-digit restriction doesn’t have any influence on the numbers anymore.)

4
A™™ = (é i ;) 6| = (;2) = (ATA)'A™M
9

_ 1 (10 4\ (19 _ (4.143
“1a\-4 3 J\33) 7 1643
= y=4.143 + 1.643 - (x — 1000) = —1639 — 1.643x

In Example 17.7, we have the column vectors (1,1,1) and (0,1,3). The angle
between them is:

1

X-Y =|X|-|Y|cosa = o = cos™ 43°

Xy 4
—— =08 ———— =
X1 1Y V3410
which indicates a more stable ‘spanning’ of the space.

(To what polynomial should you fit the data to get perpendicular column vectors?).

Advanced calculation programs, like MATLAB, avoid this problem by first factor-
izing the matrices. For example, the backslash (‘\’) operator in MATLAB uses QR
factorization to avoid rounding errors in matrices with ‘almost parallel” column
vectors.

17.6 The Sampling Theorem Revisited

In this section, we will investigate a problem that is not exactly curve fitting, but

closely related and we will answer a question that is often asked by students.
According to the sampling theorem, the sampling rate fs must exceed 2f ax, 1.€.,

fs>2-fmax- Hence, fs = 3-f max should be enough. That sampling rate indicates that
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T T T T T
== - Original sine —€— Interpolated samples|
———— e |

’

Fig. 17.10 Sampling a sine; f's = 3f

we would only take three samples of each period of a sine. This is illustrated in
Fig. 17.10.

The question often asked by students is: ‘How can you recover the original sine
from only three samples of a period’?

First, it is possible to recover the original signal shape from only a few samples
(as long as you don’t violate the sampling theorem). Second, linear interpolation is
obviously not going to do it, see Fig. 17.10. We need a more cunning plan than that.

To understand how to recover the original sine from only a few samples, we first
need to look at the Fourier transforms of the original sine, let’s call it x,(¢) (‘a’ for
‘analog’), and the sampled sine, x4(¢) (‘d’ for ‘discrete-time’). Figure 17.11 illustrates
the Fourier spectrum of the analog sine; there is just one pair of peaks at the positive
and negative sine frequency.

‘We know from chapter 7 that when we sample x(¢), the Fourier transform becomes
periodic, with a period equal to the sampling frequency. The Fourier spectrum of the
sampled signal is illustrated in Fig. 17.12.

After the sampling, we only have the samples and the question is, how we can
retrieve the original x,(#) signal? Linear interpolation of x4(¢) doesn’t work and if we
take the inverse Fourier transform of X4(w), we will only get our samples back, not
the analog signal x,(f).

But the key to the retrieval of x,() is still in the Fourier transforms. To retrieve x,(?),
we first need to recreate X ,(w). We can do that by multiplying X 4(w) with a ‘square’
frequency function covering only frequencies between £ wg/2, see Fig. 17.13.

A Xa((D)

Fig. 17.11 Fourier spectrum of analog sine
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A Xd(®)
®
- H H - S
—2ms -0s ®s 20s
Fig. 17.12 Fourier spectrum of discrete-time sine
A Xa(0) H(o)
______ 1 /
! = o
—2ws -0s -s/2 ws/l2 s 20s
Fig. 17.13 Multiplying by a ‘square’ filter
The resulting product will be X,(w):
Xa(w) = Xq(w) - H(w) (17.23)

So, to retrieve the original signal in frequency space, we multiply X4(w) by H(w).
We know from Sect. 9.8 that multiplication in frequency space corresponds to convo-
lution in time space. Hence, to retrieve the original signal x,(¢), we must convolve
x4(t) with h(2) (= H Y (w)):

t

xa(t) = x4(t) ® h(t) = /xd(t)h(t—r)dt (17.24)

—0Q

Before we can evaluate Eq. (17.24) we need to find A(?):

ws/2
1 . I 1. 02
h(t) = — 1-e%dw =— - =[]
® Wy / @ [ON _]t[ ]7@‘/2
—wy /2
1 2. .
= D (eost/2 sty = sin 254 — ginc 25,
wst  2j wst /2 2 2
. bl
= siInc——t

2T
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(In the inverse Fourier transform, we divide by wg to ‘normalize’, to make the
area under |[H(w)l = 1.)

h(t) is a sinc function with period 27's. Next, we insert that into Eq. (17.24), and
remember that x4(7) is a discrete-time function, # 0 only if r = nT:

t

. . 2m d
X, (1) = /xd(r) smcﬁ(t—r) T

—00
N 2T T
= led(z) sinc Z—TS(I —i-Ts)
over all samples

. 2m . 2m
= xq(0) - s1n02—TSt + xq(1) - s1n(:2—TS(t —Ts)
. 2n
+ xq(2) - SIHCEO —2Tg) + ...

Hence, to recover the original analog signal x,(¢), we multiply each sample by a
sinc function that has period 27 and is centered around the sample position.

This is illustrated in Fig. 17.14 and in Fig. 17.15, we have plotted the sum of them
and the original x,(¢) signal.

This is called ‘sinx/x interpolation’ and this is what digital oscilloscopes use to
recreate the signal on the screen when there are not enough samples to do regular
linear interpolation.

ost [\ /

i, L L | 1 L L 1 1 L

Fig. 17.14 A sinx/x interpolation
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——-Origi-nals'me O Sampels —R ‘by;sinxfx'

Fig. 17.15 The recreated analog signal

17.7 Solved Problems

Problem 17.1 Fitthe datain Table 17.8 to (a) a constant, (b) a first-order polynomial,
(c) a second-order polynomial, and (d) an exponential function. Plot them all in the
same graph and find the total error in each fit. Also, discuss the differences in the
total errors and what conclusions to draw from it.

Solution y = ¢y:

co="7 1 7 1
C()=5 1 5 T 1
- ATA=(1 111

w=2 11 |°T2]7 ( )|
co=1 1 1 1
— 4= (ATA)7 =025

7
(ATA)'ATM =025-(1 1 1 1)- ; =375=0c

1

First-order fit: y = ¢o + c1x

Table 17.8 Data
x -2 0 1 3
y" 7 5 2 1
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co—c] = 1 =2 7

co—c?:5:> 10 (co)z 5

co—c =2 11 c1 2

co—c?zl 13 7 1
——— ——

A M

Second-order fit: y = ¢y 4 c1x + cpx?

co—c2+e22=7 1-24 7
co+c0+c0?=5 100 0 15
coteil +erl2=2 r1 {72
co+ci3+e3r =1 139 :L 1
— ——
A M
4.1346 co
C=A\M=|-13526 | =| c;
0.0833 o
Exponential fit: y = cpe"* = Iny = Incp + c1x
Incg—ci2=1In7 1 =2 In7
Inco+c0=1In5 10 Incg) | In7
Inco+ci1l=In2 11 <c1 )_ In7
Incg+ci3=In1 13 In7
A M

In ¢o 1.2669 o 3.5498
= ( e > =AM = (—0.4095) = <c1> = <—0.4095)

All four fits are plotted in Fig. 17.16.

The total error of each fit is plotted in Table 17.9. From the table, we can see
that the fit to a second-order polynomial has the least error. However, it is deceiving
to only focus on the total error to find a relationship. Table 17.9 cannot be used to
deduce that the relationship between y and x is a second-order polynomial; the total
error will decrease with the polynomial order. For higher order polynomials, we end
up fitting data to the noise. We need a priori knowledge of the relationship before
we do the fitting.

Problem 17.2 The resistance of an unknown temperature sensor was measured for
some temperatures, see Table 17.10. What kind of temperature sensor was used?

Solution Assuming a first-order fit: R = Ry + a7



17 Curve Fitting

. T -

X data H
—zero order
——firstorder ||
—second order
——exponential |

Fig. 17.16 Four different fits

Table 17.9 Error table

x y" yo—y™ yi=y" Yy Yexp—y"
-2 7 —3.25 —0.0770 0.1735 1.0518
0 5 —1.25 —0.6154 —0.8654 —1.4502
1 2 175 1.1154 —0.8653 0.3570
3 1 275 —0.4230 —0.1735 0.0391
3 e2/4 1.192 0.336 0312 0.457
Table 17.10 Temperature sensor data
T [°C] 20 60 80 120 150
R[] 1080 1209 1312 1526 1641
Ry + «20 = 1080 1 20
Ry + a60 = 1209 1 60 R
Ry+a80=1312 = |1 80 °>=
Ro + @120 = 1526 1120 | V¢
Ry + o150 = 1641 1150

R\ _ (9676
= ( o ) =AM = <4.489>

We can write our linear expression as:
R =976.6 + 4.489T = 977(1 +4.49 . 10_3T)

Most likely the temperature sensor was a Cu-1000 sensor (where R =
1000(1 +4.33-107°T)).
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Problem 17.3 Eight samples of the signal y = ag 4 a;sin2n250¢ (+ noise) are taken,
see Table 17.11. Find the DC offset ay and the amplitude a; .

Solution We get the following system of equations:

ag + a; sin 21250 %« 0 = 1.196

ap + a; sin 21250 % 0.5 % 1073 = 4.242
ao + ap sin 27250 % 1.0 % 1073 = 5.291
ao + ajp sin 27250 % 1.5 % 1073 = 3.707
ao + ap sin 27250 % 2.0 % 1073 = 1.117
ao + ap sin 21250 % 2.5 % 107> = —2.143
ap + ay sin 27250 x 3.0 x 1073 = —2.645
ao + ap sin 27250 % 3.5 % 1073 = —2.287

ag + ap0 = 1.196

ag + a,10.707 = 4.242
ap+a;l =5.291

aog + a;0.707 = 3.707
ap+a0=1.117

ap — a10.707 = —=2.143
ap—a;l = —2.645

ap — a;0.707 = =2.287

1 0 1.196
1 0.707 4.242
11 5.291
10707 |(a0) | 3.707
1 0 <a1>_ 1.117
1 -0.707 —2.143
1 -1 —2.645
1 -0.707 —2.287
— —™ — —_— —
A M

ap 1.0597
= A\M =
= (a1> \ (4.1726)
Hence, the DC offset is 1.0597 V, and the amplitude is 4.1726. In Fig. 17.17, we
have plotted y = 1.0597 4 4.1726 x sin2n250¢ and the sampled data.

Table 17.11 Samples of a sine signal (with noise)
t [ms] 0.000 |0.500 1.000 1.500 |2.000 |2.500 3.000 3.500
y[V] 1.196 4242 |5.291 3.707 1.117 —2.143 —2.645 —2.287
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6 T T T T T T T T

X samples
4 —best fit
_ 2
2
0
-2
_4 1 1 1 L L 1 1 1
-0.5 0 0.5 1 15 2 25 3 3.5 4

time [s] %1073

Fig. 17.17 Data and the best fit



Chapter 18 ®)
Introduction to Control Theory oo

Abstract Control theory may or may not be part of the electrical measurement
curriculum, but it is such a common instrument in a physics laboratory that a funda-
mental understanding of its operation is necessary. This chapter focuses on the PID
controller, feedback models and stability criteria, the need for integration and differ-
entiation of the error signal and how to identify an unknown system. It is explained
how control parameters are derived using rules of thumb (Ziegler—Nichol’s) or
phase/gain margins. Finally, this chapter illustrates how a control algorithm can
be implemented in a computer system using either Euler transformation or bilinear
transformation.

18.1 Control Systems

Figure 18.1 illustrates a control system (Fig. 18.1).

G(s) represents the ‘plant’ that we want to control, for example, a furnace whose
temperature we want to control, y(¢) is the ‘process value’ (the actual temperature)
and x(¢) is the ‘set value’ (the temperature we would like the oven to have). The
process value is fed back via a (temperature) sensor and subtracted from the set
value to produce the ‘error signal’ e(7). C(s) is the ‘controller’ whose job it is to
produce a voltage u(t) depending on e(#) such that the process value is always equal
to x(1).

There are several different kinds of controllers, but here we will only describe the
PID controller (since it is the most common type of controller in a physics lab). Our
objective here is to find the C(s) control function so that y(t) = x(¢), and we need to
do that so that the system is first of all stable; all feedback systems have a potential
risk of instability. After a change in the set value (or some other disturbance), there
will be some transient events on all signals, but after some time (‘settling time’), we
should again have y() = x(¢), i.e., e(t) = 0; our system should not have a steady state
error.

Other properties of interest are the system’s reaction to step changes in the set
value (the ‘step response’), see Fig. 18.2.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 369
L. Bengtsson, Electrical Measurement Techniques,
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?:L . SEJS’S% Controller Plant C;?UC: >
e(t u(t) \

I Oyl o) M%) Gis) —o— vy
O | (. _ A WL/
A e

F(s)

Sensor feedback

Fig. 18.1 A control system

Step Response

Overshoot

Amplitude

Settling time

<> seconds
Rise time ( )

Fig. 18.2 Step response

Fig. 18.3 Signal model e(t)
|

X(t) —— G(s) > ()

The risetime is the time it takes to go from 10 to 90% of the final value and
the settling time is the time it takes for the output to stabilize within 5% of the
final value. The overshoot is the maximum voltage above the final voltage level. All
these parameters are affected when we change the parameters of the controller, and
different applications have different priorities (overshoot, rise time or settling time).
In this context, we will not worry too much about them; our main priority here is to
find the conditions where the system is stable and has no steady state error.

In most systems, it is also assumed that the sensor feedback system has a transfer
function F(s) = 1 and that is what we will assume here. To make sure that we don’t
get too complicated equations, initially, we will limit our plant systems to first-order
systems; G(s) = 1/(s + a). That will allow us to focus more on the understanding of the
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control function’s influence on the system’s behavior. We will look at second-order
systems later.

18.2 Feedback Systems

In our first analysis of the control system, we will cancel the controller and just look
at the plant with feedback and analyze its behavior, see Fig. 18.3.

The signal e(t) = x(¢) — y(¢) is the difference between the input signal and the
output signal. Let’s find the transfer function of this system:

Y(s) = G(s) - E(s) = G(s)(X(s) — Y(5)) = G(5)X(s) — G()Y (s)
Y(s)  Gls)

YOI +G66) = X6 = HE) = o= 1765

(18.1)

From Eq. (18.1) we can see that this system will be unstable if 1 4+ G(s) =0, i.e.,
if

GGs)=—1=1-¢78" = |G(s)] - e*@ (18.2)

Hence, if the system has a gain of +1 (or greater) for the frequency where the
phase shift is —180°, the system will be unstable. So, we can see immediately from
the Bode plot if the system is stable or not; just check the phase shift at amplification
= 1 (0 dB) and the amplification at ¢ = —180°, see Fig. 18.4. The distance from
the phase diagram to —180° at O dB is the phase margin, which tells you how far
the phase diagram is from instability. The distance from the gain diagram to O dB at
phase angle —180° is the gain margin, which tells you how far the gain diagram is
from instability. (We want some margin because there are some uncertainties in the
system that could push it over the ‘edge’ and become unstable if we are too close to
the margins.)

From Fig. 18.4, we can see that there are two things that could make our system
unstable; either if we ‘lift’ (amplify) the gain diagram or if we ‘lower’ the phase
diagram. Any action we take that either lifts the gain or lowers the phase may render
the system unstable.

Something else we can see in Eq. (18.1) is that if G(s) >> 1, then H(s) ~ 1, which
would mean that y(¢) =~ x(¢), (which is what we are looking for in a control system),
and for that reason it is tempting to amplify G(s) with some factor K p, see Fig. 18.5.

However, by doing that we push the gain diagram in the Bode plot upwards, see
Fig. 18.6, which means that the gain margin decreases. In Fig. 18.6, we can see
that we amplified the signal too much; at the phase shift angle —180°, we have an
amplification >0 dB, and the system is unstable (it will oscillate).
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Fig. 18.4 The Bode plot
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G(s) [—e—> y(t)

Fig. 18.5 Amplifying

Do you see the problem? On the one hand, we want a large amplification for y()
to follow x(#), but a large amplification might render the system unstable. That means
that we need to be a little shrewder than ‘just amplifying’.

The simple K p amplifier above only affected the gain diagram. In this chapter, we
will learn to use other ‘amplifiers’ that also affect the phase diagram in such a way
that we avoid instability when we amplify the signal.

In Fig. 18.5, the controller just amplifies the error signal; the controller produces
an output signal proportional to the error and is therefore called a proportional
controller, or just P controller. Let’s look at a general system.
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Fig. 18.6 The Bode plot after amplification

18.3 Control Systems

Figure 18.7 illustrates our control system.

In Fig. 18.5, C(s) = Kp and apart from pushing the system closer towards insta-
bility, it also has another problem; it has a ‘steady state’ error. That means that when
things have ‘settled down’, typically after a change in the set value, there would still
be an error between the set and process values, i.e., e(f) would not be zero and x(z)
# y(t) (which after all is the whole point of the system) unless Kp = oco. To see why
that is, and to figure out exactly what the remaining steady state error is, we need a
system to work with. Let’s assume the plant is a simple first-order system, i.e., G(s)
= 1/(s + a) and C(s) = K p, see Fig. 18.8.

Let’s assume first that the error e(f) is = 0 in Fig. 18.8. Since the control system
just multiplies it by a constant, the output from the control system will also be = 0
and multiplying G(s) with O is of course also = 0; y(¢#) = 0! But in that case, the error

E(s)
> » C(s) > G(s) » Y(s)

i

Fig. 18.7 Our control system

X(s)
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1
Kp s+a
X(s) E(s) u(s) Y(s)
» C(s) > G(s) —o——>
u(t) y(t)

x(t) e(t)
A

Fig. 18.8 The plant is a first-order system

e(t) = x(t) — y(¢t) = x(t), which can only be zero if x(t) = 0. Hence, if x(¢) # 0, we
cannot have e(r) = 0, and there must be a difference between y(¢) and x(z).
So, what is the steady state error e(#)? Let’s see:

1
(X(s) = Y(9))- Kp - < Ta Y(s) = (X(s) = Y(5)) - Kp =5Y(s) +a¥(s)

Going back to time—space (using the results from Problem 7.6), we have that
1
x(1) —y@) = — (1) +ay@))
Kp

‘Steady state’ implies, by definition, that y’(t) = 0, so

Kp
——x(1) =
a/Kp+1 a+Kp

X(t) = y(z)(KiP + 1) = y(1) = x@)  (183)

which confirms that K p needs to be infinite for y(#) = x(¢#) (but that would make the
system unstable). For example, if a = Kp = 1, and we set x(¢) = 1, y(¢) would be
0.5. So, the P regulator has some problems and in the next section we will fix that,
but first, we will present a theorem that will simplify our analysis a little bit.

In the above analysis, we considered the entire system’s transfer function Y (s)/
X(s), the closed loop system. That is not necessary; we only need to consider the
open loop system Gop(s) = C(s)-G(s) (if F(s) = 1). Nyquist’s (simplified) stability
criterion states that a feedback system is stable if |Gor(w)| < 1 at the frequency
where ¢por (w) = —180°. (Makes sense; the subtraction in the feedback adds the
other 180°.)

18.4 The PI Controller

The trick that eliminates the steady state error is to integrate the error signal:

u(t) = Kp - e(t) + K; f e(t)dt = Kp <e(t) + Ti f e(t)dt) (18.4)
1
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where Ty is the integration time constant, and this is a PI control function
(Proportional and Integrating). Taking the Laplace transform of both sides gives
us:

1
)E(s) =

1
U(s) = KP(E(S) + mE(s)) = Kp(l + m

_Ue _ 1
CW =5 = Kp<1 + T,s) (18.5)

(See Problem 7.7 for the Laplace transform of an integral.) Inserting Eq. (18.5)
into Fig. 18.8 gives us:

1
(X(s) = Y(5) - C(s)- G(s) =Y (s) = (X(5) — Y(S))KP<1 + T_) =Y(s)
1s)s+a
(X(s) —Y(s)Kp <1 + L) =sY(s)+a¥Y(s)
T[S
(X(s) — Y(s))Kp <s - Ti) = s7Y(s) +as¥ (s)
1
Kp(sX(s) —sY(s)) + %(X(s) —Y(s)) = szY(s) + asY(s)
1
Going back to time—space:
Kp "
Kp(x/(t) — yr(1)) + ?I(X(t) —y(0) =y () +ay/(t)
Again, in steady state, all derivatives are zero:
Kp
f(x(t) —y0))=0= y() =x() (18.6)

Hence, in steady state y(¢#) = x(t), there is no steady state error. Unfortunately,
while fixing the steady state error, we introduced another problem. In Fig. 18.8, the
open-loop transfer function is C(s)G(s), i.e.,

GoL(s) = |C(s)]e"c - |G(s)[ee = |...| . Wectva) (18.7)

Hence, the open loop phase diagram is the sum of the phases from C(s) and G(s).
Let’s take a closer look at the phase function of C(s):

C( ) k(14 1 K Trs + 1
S) = —_— =
b 7S P Tys
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joTy
— KP| | . ei(tan’]a)T,790°)
= tan"' wT; — 90° (18.8)
—

<0!

= C(w) = Kp

From Eq. (18.8), we can see that the PI regulator adds a negative contribution to the
phase diagram, and it will push the phase diagram in Fig. 18.4 downwards, decreasing
the phase margin, and hence increasing the risk of instability. The integration fixed
the steady state error, but the resulting system is more likely to be unstable. We will
fix that in a moment, but let’s first see what happens if we instead of integrating the
error, differentiate the error signal.

18.5 The PD Controller

If we, instead of integrating the error signal, differentiate it, we get the control function
u(t) = Kpe(t) + Kpe/(t) = Kp(e(t) + Tpe/(t)) (18.9)

where T is the differentiation time constant. We find the transfer function by taking
the Laplace transform of both sides:

U
U(s) = Kp(1+Tps)E(s) = C(s) = Eﬁji =Kp(1+ Tps) (18.10)
and the frequency response function is:
Cw) = Kp(1 +jwTp) =]...| et @l
= ¢(w) = tan"' 0Tp (18.11)
——

>0

When we multiply the plant function G(s) with C(s), the phase diagrams will add,
and from 18.11, we can see that the control function will now add a phase angle >0,
which means that the phase diagram in Fig. 18.4 is pushed upwards, and hence the
phase margin is increased; the system is less likely to become unstable.

Next step is of course to combine integration and differentiation.
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18.6 The PID Controller
In a PID controller, we both integrate and differentiate the error signal:

u(t) =Kp <e(t) + Ti / e(t)dt + TDe/(t)) =
1

U(s) 1 1+ Tys + T, Tps?
C(s) = =Kp|l+—+Tps)=K 18.12
(s) EG) P< + Trs + DS) P Trs ( )

It is not obvious what happens to the phase diagram in this transfer function, and
before we derive the phase diagram expression, we are going to make a small approxi-
mation; the transfer function of most plants is such that the required control function
needs to have 71 >> Tp. In that case, we can make the following approximation:
T;s ~ (T; + Tp)s, and in that case

1+ Tys + T Tps*> ~ 1+ Tys + Tps + Ty Tps® = (1 4+ Tys)(1 + Tps)

Inserting this approximation into Eq. (18.12) gives us the following control
function:

1+ Tis)(1+ T 1
Cls) ~ K p L1130+ Ts) =1<P<1+—)(1+TDS) (18.13)
T]S T]S

From Eq. (18.13), we can see that with the assumption that 71 >> Tp, the PID
controller is approximately the same as cascading a PI and a PD, controller, which
means that the total phase diagram is the sum of the PI and PD controller’s phase
diagrams; the damage the integration does to our phase diagram (in Eq. 18.8) is
undone by the differentiation (in Eq. 18.11), and our system is less likely to be
unstable.

Let’s summarize our conclusions: The P controller only amplifies the error signal
by some factor K p. Increasing K p makes the system react faster to changes in the
set value (rise time and settling time improve) but increasing K p comes with a prize;
the system is pushed closer to instability and the overshoot increases. Most of all
though, a P regulator suffers from an inherent incapability of eliminating steady state
errors. That’s why we almost always need an integrating part; by also integrating the
error, we can eliminate the steady state error. However, the integration has a negative
influence on the phase margin, it makes the system response slower (risetime and
settling time increase) and it also increases the overshoot. (The only good thing about
the integration is that it takes care of the steady state error.) The differentiation part
is everything the integration is not; it has a positive influence on the phase margin, it
improves the response times, and it suppresses the overshoot.

Figure 18.9 summarizes our PID model and Fig. 18.10 is our approximation model
when T; >> Tp. Next, we need to figure out how to find the PID parameters (Kp,
T}, and Tp) for a given plant system.
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Fig. 18.9 PID controller model

x(t) —»@—»» | B 21> G(s) yﬁ)
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Fig. 18.10 Approximate model when 77 >> Tp

18.7 Identifying the System

18.7.1 First-Order Systems

Before we start designing the controller, we must know what kind of system we have,
i.e., the plant transfer function G(s). The process of finding the transfer function of
an unknown system is called system identification. This is a research field of its own,
and there is no lack of literature treating this subject in detail. Here, we will keep it
short and only illustrate the basic ideas (that are likely to solve the most common
problems in a physics lab). Our strategy here will be to use our a priori knowledge of
the system (by experience or reasonable assumptions) when we identify our system:
‘Because ...., it is reasonable to assume that this is a first order system’. We will start
gently, by assuming that we have a ‘plant’ where we have good reasons to assume
that it is a first-order system. Hence, the plant function is

b b/a K
G(s) = =

= (18.14)
s+a s/a+1 Ts+1

where K is the amplification and 7 is the system’s time constant. To find K and T,
we look at the step response; the output when the input is a step signal. The step
signal has Laplace transform 1/s (see Problem 7.8) and we get the step response by
multiplying G(s) with 1/s:

1 K A B ATs + A+ Bs
Ystep(s) = - -+ =

R — = (18.15)
s Ts+1 s Ts+1 s(Ts+1)




18.7 Identifying the System 379

By comparing the numerators in Eq. (18.15), we can see that A = K and AT + B
=0 = B = —AT = —KT. Inserted into Eq. (18.15) gives us

Vo) = = = KT _ g(1 ! (18.16)
st = T T 1\ s+ 1T ‘

Inverse Laplace transform of Eq. (18.16) gives us the time function:
Yaep(®) = K(1 —e™"/T) (18.17)

This step response is plotted in Fig. 18.11, and in Fig. 18.12 we have plotted the
Bode diagram for the case where K and T are both = 1.

0.63K-1------ K-
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Fig. 18.11 Step response of first-order system
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Fig. 18.12 Bode plot of first-order system
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[time]

Fig. 18.13 Step response of first-order system with ‘dead time’

From the Bode diagram, we can see that the phase shift is never less than —90°
and since it takes —180° for the system to be unstable, it appears that first-order
systems are inherently stable. However, in a real plant, that is only an illusion; most
plants have an inherent delay ¢y, before they respond to a step input (‘dead time’).
This is illustrated in Fig. 18.13.

The transfer function of the delayed system is e —** times the non-delayed transfer
function (see Problem 7.11):

K -esh
G(s) = —— 18.18
) =77 (18.18)

This inherent delay can have a dramatic impact on stability. To see that we find
the Bode plot functions:

K - eiolo
Gw) = -
ol +1
S 1G] = —5 ) = —wtg—tan~! oT
w2T2 1 ~——

From delay

From the phase function, we can see that the delay adds a negative contribution
to the phase diagram and stability is no longer guaranteed. The system in Fig. 18.12
also has an amplification of just 1. In Fig. 18.14, we have plotted the Bode diagram
of a first-order system with a dead time of two seconds and an inherent amplification
of 5 and it is already instable. (We also need to add the negative phase contribution
from the integration part of the controller.)

Example 18.1 Figure 18.15 below illustrates a setup to identify the transfer func-
tion of a furnace heating system. The step and the step response are illustrated in
Fig. 18.16. Find the transfer function of the system and plot the Bode diagram.

Solution We have an amplification of (5-0.5)/(3-1) =2.25,tp=3.5sand T =18 s:
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The Bode diagram is illustrated in Fig. 18.17. We have a phase margin of approx-
imately 90° and a gain margin of approximately 4. The closed-loop system would
be stable.

18.7.2 Second-Order Systems

Second-order systems are described by the general transfer function

2
@y

H(s)= ————
(s) 52+ 2Cwy + )

(18.20)

where wy is the resonance frequency of the undamped system and ¢ is the damping
constant. In Fig. 18.18, we have plotted the step response of a second-order system
for different damping constants ({ = d) with wy = 1.

If the damping is 0, there is no damping at all, and the systems oscillate indefinitely.
If the damping is <1 (but >0), there will be a gradual decrease in the oscillation
amplitude (the system is ‘underdamped’), if the damping = 1, there is no oscillations
at all (“critical damping’) and if the damping is >1 the system is ‘overdamped’. We
can see in Fig. 18.18 that the system response time decreases when the damping
increases. The damping also has some impact on the oscillation frequency. For a
certain damping, the oscillation frequency is (¢ < 1)

wqg = woy/ 1 —;'2 (18.21)

Figure 18.19 illustrates the step response parameters you need to identify a second-
order system. First you determine the ‘overshoot ratio’, see Fig. 18.19. From the
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Fig. 18.18 The step response for different damping constants

overshoot ratio (OS), you find the damping constant:

_ [ (In OS)?2
= m (18.22)

(don’t ask), and from the period T you find wq which gives you wq (Eq. 18.21).

Step Response

0S = A/B =0.525

5 10 e I 20 25 30

Fig. 18.19 Step response parameters for a second-order system
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18.8 Finding the Control Parameters

In this section, we will find control parameters for our system in Example 18.1.
First, we will do it using a ‘rule of thumb’ strategy that seems to be ‘plan A’ in most
practical implementations. We will also discuss the details of a more ‘scientific’
approach where we consider phase and gain margin requirements.

18.8.1 Ziegler—Nichol’s Rule of Thumb

First, we study the Bode plot of the plant, see Fig. 18.20. From the Bode plot, we
determine the self-oscillation frequency of the plant, wg and the gain at that frequency
|G p(wo)|. From these two numbers, we find T and K:

2
T, = w—” (18.23)
0
1
Ko= —— (18.24)
|G p(wo)|
A o)l
\(&)c o ®
0dB " o
Ko
| Gp(wo)! LA
A o(0)
(0]
Phase
margin 1
-180°

Fig. 18.20 The bode plot of the plant
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Table 18.1 Ziegler and

Nichol’s PID parameter table Parameters
K T Tp
P 0.5Ko - -
PI 0.45K¢ 0.85T¢ -
PID 0.6K 0.5T 0.125T9

From T and K, we use Ziegler and Nichol’s table to find control parameters for
different controllers:

Example 18.2 Suggest a PI and a PID controller for the system in Example 18.1
using Ziegler and Nichol’s method.

Solution From the Bode plot in Fig. 18.17, we get wy = 5 - 10~! = 0.5 rad/s and
|G p(wo)| = 0.25. Hence:

1

2
Ty = == — 13 seconds and Ko = —— = 4
0.5 0.25

Using Table 18.1 gives us the following control functions:

1 1
= up(t) = 1.8(e(t) + % / e(t)dt) (18.26)
PID : C(s) = 2.4(1 Ll 1.6s) (18.27)
6.5s
= upp(t) = 2.4<e(t) + % / e(t)dt + 1.65(:)) (18.28)

In Figs. 18.21 and 18.22, we have plotted the resulting Bode plot for the plant
and the PI and PID controller functions, respectively. First, compare Fig. 18.21 with
Fig. 18.17; we can see the effect of the integration part. In Fig. 18.17, we have a phase
margin of approximately 90°. In Fig. 18.21, this phase margin has been reduced to
30°. In Fig. 18.22, some of that phase margin has been restored to about 40°.

18.8.2 Using Phase and Gain Margin Criteria

The Ziegler and Nichol’s rules of thumb generate stable systems as is illustrated in
Figs. 18.21 and 18.22. Another approach is to start with the Bode plot of the system
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Fig. 18.21 The bode plot of the plant + the PI controller
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Fig. 18.22 The bode plot of the plant + the PID controller

(Fig. 18.17) and aim for some specific gain and/or phase margins. The general rule
in this case is that the integrator part lowers the phase diagram by approximately 11
degrees at the cross-over frequency (where the amplification is O dB, see Fig. 18.20).
If the system (the plant) itself has a phase margin of 40°, adding an integrator would
decrease the phase margin to under 30°. If the system specifications dictate a phase
margin of 50°, then you must use the derivative part to increase the phase margin

(Eq. (18.11)).

Example 18.3 Given conditions mentioned above, what derivation time 7p would
you need for the differentiation part? The cross-over frequency was 0.3 rad/second.

Solution 4011 = 29°. To meet the phase margin demand, we need to raise the phase
diagram by 50-29 = 21°. Equation (18.11) gives us

tang  tan21°

Q= tan"'wTp = Tp = —— = 1.3 sec
w 0.3
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18.9 Discretizing

To implement a controller into a computer system (a microcontroller, like an Arduino
or a Raspberry Pi), we must ‘translate’ the control functions to discrete time. There
are several ways to do that, and we will present two ways here. We will only consider
the PI and PID controller, Eqgs. (18.4) and (18.12):

u(t) = Kp (e(t) + Ti / e(t)dt) (18.29)
1
u(t) = Kp <e(t) + Ti / e(t)dt + TDe’(t)) (18.30)
1

18.9.1 Euler Transformation

A computer system must sample the error signal; in Fig. 18.23, we have sampled the
error signal with the sampling rate fs = 1/T's. From Fig. 18.23, we can see that the
integral of e(¢) is approximately equal to the sum of the rectangles.

Hence,

/e(t)dt ~ Z?zoe(i) Ty = TSZ:;Oe(i) (18.31)

Similarly, we can see in Fig. 18.24 that the derivative can be approximated with
a straight line, and hence

40 ~ e<">+s<—1> (1832)
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Fig. 18.23 The integral ~ the sum or rectangles
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e(t)A e

Fig. 18.24 The derivative & the straight line between two samples

That gives us the following ‘computer friendly’ PI and PID control algorithms (=
the ‘Euler transformation’):

u(n) = Kp (e(n) + %Zfzoe@) (18.33)

un) = Kp (e(n) + %Z?zoe(i) + ;—?(e(n) —e(n — 1))) (18.34)

Example 18.4 Use the Euler transformation to find computer-friendly algorithms
for the PI and PID controllers in Example 18.2.

Solution We obviously must find the sampling rate first. Considering that wy =
0.5 rad/s, a sampling rate of 2 S/s is enough, i.e., T's = 0.5 s. First, we discretize
Eq. (18.26):

U, = 1.8<e,, n % Ze,-) = 1.8<e,, + 0.0452ie,-)
1

Next, we discretize Eq. (18.28):

0.5 1.6
n = 2.4 n ~ = i ~=€n — €p—
! (e T3 Ze o5 e ‘))

=24 (en +0.077) i +3.2(e, — e,,_l))
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18.9.2 Bilinear Transformation

In the bilinear transformation, we start from the Laplace transfer functions (Egs. 18.5
and 18.12) and first transfer them to the corresponding z transforms using the bilinear
transformation (see Chap. 10):

2z—1
§=—
T52+1

(18.35)

For the PI controller (Eq. 18.5), we get

1 Ts z+1
CQ)=Kp|ll+ ———]=Kp|1+ —
@ P< +T 2Z_l> P( +2T1Z—1>

17551
:KP(ZTz(z— 1) TS(Z+1)>
2T(z—1) 2T;(z—1)
Kp QT +Ts)+ (Ts — 2Tz~ U(z)
Tor -z T EQ

(18.36)

An inverse z transformation on expression (18.36) gives us the following
difference equation:

K
Uy = tn 1 + #((zn +Tg) - e+ (Ts —2T)) - e4_1) (18.37)
1

The corresponding expression for the PID controller (Eq. (18.12)) is

Uy =ty + Kp{(2T; Ts + T§ + 4T, Tp)e, + (2T — 8T; Tp)en—1
+(4T;Tp + T§ — 2T;Ts)en—} (18.38)

Example 18.5 Use the bilinear transform to find computer-friendly algorithms for
the PI and PID controllers in Example 18.2.

Solution Using the same sample rate as in Example 18.4, a bilinear transformation
of Egs. (18.25) and (18.27) give us:

1.8
PLu, =u, | + TR (2-1140.5e, +(0.5=2-11)e,_1)
=u,_1 + 1.84e, — 1.76¢,_;

PID: u, = u,_»+24(...) =u,_» + 116e, — 83¢,_1 + 35¢,,_»
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Comments: In computer algorithms, there is always a breakpoint when you need
to use floating-point calculations. Floating-point calculations are time and memory
consuming and should be avoided if possible. In the above examples, where we have
simulated the heating control of some oven, the use of floating-point calculations
would not be a problem since the sampling rate is only 2 S/s.

Also notice the main difference between the Euler and the bilinear transformations
above: The bilinear also uses old output samples (and could thereby potentially
become instable.)



Appendix
Operational Amplifiers

Abstract A lot of the analog electronics used in electrical measurement systems
are based on operational amplifiers (op amps) and a basic understanding of this
fundamental device is necessary; op amps will occur repeatedly throughout this
book. Because of the extremely high inherent amplification of the differential-ended
input signal, an op amp is almost always used with negative feedback. This chapter
will demonstrate that two simple rules are all you need to understand and solve any
op amp circuit. These simple rules are then used to exemplify the versatility of the
op amp.

1. Introduction

The operational amplifier (‘op amp’) is one of the most versatile analog electronic
components and omnipresent in electrical measurement systems. If you are going
to work with electrical measurement systems, it is inevitable that you will sooner or
later come across op amps and a basic understanding of this multifaceted component
is imperative. Figure A.1 illustrates the op amp symbol.

Fig. A.1 Signal model Vs+
>— Uout
U. — /
Vs-
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Fig. A.2 Op amp with Zn
negative feedback

u- > -

T

—— Uout

It is a differential amplifier; it amplifies the potential difference (U, — U_), but
the differential amplification is so large (>10°), so for any real-world signal, the
output will be driven ‘high’ (= Vg,) or ‘low’ (= Vs_). So, operated as a differential
amplifier, it will act as a ‘comparator’. If it is a differential amplifier, you are looking
for (with a ‘reasonable’ amplification) then you are not looking for an op amp, you
are looking for an instrumentation amplifier, see Chap. 4.

You see, op amps are (almost) always used with feedback. That means that (part
of) the output signal is fed back to the input. In principle, you can feed the output back
in two different ways; either to the ‘+° input (= ‘positive feedback’) or to the ‘—’
input (‘negative’ feedback). With positive feedback, the amplification is increased
which might seem redundant considering the enormous open-loop gain, but it has
some applications (for example in oscillator designs). However, most op amp designs
have negative feedback and that’s what we will describe here, since that is what you
will almost always use in a physics lab. Before we go into that, we will just mention
a few characteristic properties of the ideal op amp.

First, the op amp needs dual power supply, =12 V or £15 V. For most op amps,
the maximum output level is approximately 1-2 V lower than Vs, (and the minimum
is 1-2 V higher than Vg_). If you need the output levels to reach the supply voltage
level, look for an op amp that is ‘rail-to-rail.’

An ideal op amp has infinite differential gain, infinite bandwidth, infinite input
impedance and zero output impedance. A real op amp comes very close to infinite
gain and infinite input impedance but does not have zero output impedance (* 100
2) and is nowhere near infinite bandwidth. However, for our presentation of ‘op
amps with negative feedback’, we only need the ‘infinite input impedance’ property,
and CMOS op amps have that (or as close as you can hope for).

Figure A.2 illustrates an op amp with negative feedback.

To understand what happens in an op amp with negative feedback, it is important
to understand that the op amp is not really an amplifier. It is a controller; it is
not designed to amplify anything; it is designed to make U, = U_. With negative
feedback, the output will generate whatever voltage/current necessary to make U, =
U_. That’s it! Well, there is one more thing; because of the infinite input impedance,
we can always assume that the currents 7, and /_ = 0. There is never any current
in or out of the inputs. These two rules (U, = U_ and I, = I_ = () are sometimes
referred to as the ‘golden rules’ of op amps. These two rules are all you need to design
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Fig. A.3 The inverting R2

amplifier —Iﬂj—:

lin b Uout

‘anything’. The op amp has no inherent ‘amplification’ (except for the infinite open-
loop amplification) but you can take advantage of the above-described properties to
design an amplifier with arbitrary gain. But keep in mind; the op amp (with negative
feedback) doesn’t care about gain, it only cares about making U, = U _, and that’s
it!

2. Amplifiers

Op amp textbooks always start with the circuit in Fig. A.3.

In Fig. A.3, the ‘+’ input is grounded, so U, = 0 V. That means that the output
will make sure that also U_ = 0 (the ‘-’ input is ‘virtually grounded’). In that case,
the current I, = (Ui, — 0)/R| = Uin/R;. When this current reaches the ‘—’ input, it
has nowhere else to go but to the R, resistor (because the current in/out of the input
is zero); Iy, = ;. Now we can find the output voltage. If we start at the ‘—’ input,
where the potential = 0 V, and move to the output, then:

Uin R2
0— InRy = —— Ry = Upyy = Upwy = ——=Uin (Al)
R R,

and we have an amplifier, an inverting amplifier because of the minus sign, and we
can set the gain arbitrarily with the resistors. Notice how we only used the op amp’s
‘control’ property to design an amplifier.

If you want a non-inverting amplifier, you use the circuit in Fig. A 4.

In this case, U_ = U, = U;,. That means that the current /;, is U;,/R;, and this
current can only come from the output Iy, (because the current from the inputs is still
= 0 A). So, if we start on the ‘—’ input, where the potential is Uj,, we can find the
output voltage:

Uin R
Uin + In Ry = Uout = Uoue = Uin + R_R2 = Uin<1 + R_Z) (A2)
1 1

Again, we can set the gain arbitrarily with the resistors R; and R».
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Ifo |:]

R4
<l —
— lin ———— Uout
Uin +

Isum
uw— >

R lsum ——— Usum

Fig. A.5 Summing circuit

3. Summing

Summing voltages is a common application of op amps. The circuit in Fig. A.5
produces the sum of two voltages.

Since the ‘—’ input is virtually grounded, the currents /| and I, are U /R and U,/
R, respectively. These currents will add at the ‘—’ input and this sum of currents has
nowhere else to go but to the output (the output sinks the current):

U, ﬂ)ze — (U + Uy (A3)

O_IsumRzUsum:_<R R

4. Integrals and Derivatives

Sometimes we want to find the derivative or the integral of a signal. The circuit in
Fig. A.6 will differentiate the input signal. First, the output voltage is —I,R, and
second, the voltage over the capacitor equals the input voltage Uj,. The current [,
is, by definition, the change of charge per time unit:
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Fig. A.6 Differentiating I R

circuit
C
Uin I -
+
C

Fig. A.7 Integrating circuit

— UOU(

R
n '—Uout
+
Uot = —IppR = — IR = RdQ— Rd(UC)— RCdU (A4)
out — folv = inft = dt = dt c = dt in .

And hence the input signal is differentiated.

If we change places with the resistor and the capacitor, we get an integrating
circuit, see Fig. A.7. In this circuit, the output signal U,y = —Uc, and charge Q is,
by definition, the integral of current:

Y 1 1 (U 1
Uy = —Uc = _E = —E Iindt = —E Ydl‘ = —R Upndt (A.S5)

5. Constant Current Generator

Figure A.8 illustrates a constant current generator.

The op amp will keep the current through the Rgense resistor constant: Isense = (Us
— Uin)/Rsense, and since the collector current is & Iemitter = sense> the current through
the load impedance will also be constant, independent of the size of the load.
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Fig. A.8 Constant current Us
generator l

Rsense

Ic

|: Uin
+
lioad
Rload
Fig. A.9 A voltage follower
———— Uout = Uin
Uin

6. Voltage Follower

Figure A.9 illustrates a ‘voltage follower’; the output is always equal to the input
voltage. The usefulness of that might at first glance be questionable, but this is
extremely useful.

The voltage follower is used as an ‘impedance converter’. Sometimes we have a
signal source with a ‘high’ output impedance and/or a receiving component with a
‘low’ input impedance. Using a voltage follower means the source is not loaded (no
current is required from the source since the op amp input current is zero) and at the
receiving end, a low impedance signal source is connected to the receiver (because
the output impedance of the op amp is ‘low’).

The voltage follower is sometime called a ‘buffer’.
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R
Un>0
lin
Fig. A.10 Positive resistance
R2
1
L 1
— R
p Uout
+
lin
Un>0 —&——>—*
RNR
]
L

Fig. A.11 Negative resistance

7. Negative Resistance

Consider the circuit in Fig. A.10.

We know that in a ‘normal’ circuit, the current /;, = Ujy/R in Fig. A.10 is >0 if
Uin > 0; Ui, sources current into the resistor. We would have a negative resistance
if Ij <0, i.e., if U, would sink current. With an op amp, we can design a negative
resistance. Consider the circuit in Fig. A.11.

If we can prove that the current /;, in Fig. A.11 is <0, then the circuit behaves as
a negative resistance. Uy is obviously Uj,(1 4+ R»/R;). Then

Uin — U Ry/R U; R
fo= T Yo BBy k=D ke a0
Rnr Rnr Iin Ry

Hence, this circuit acts as a negative resistance, sinking current at the input.
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A

Rs

sL

< y

Fig. A.12 Inductor replacement circuit

8. Inductor Replacement

Resistors and capacitors are easily integrated on silicon, but inductors are harder.
For that reason, inductor replacement circuits have been developed. Figure A.12
illustrates ‘Antoniou’s inductor replacement’ circuit. This is an inductor replacement
circuit if it behaves like an inductor, i.e., if the impedance U;,/I;, = sL. To prove that
we need to indicate some potentials and currents, see Fig. A.13.

First, we can see that both op amps’ inputs must have the same potential Uj,
(because of the negative feedback). That means that the current 14 is Ui,/Ry4, and this
current must come from the capacitor branch. Then the potential U¢ must be:

1 1
Ur =U; I,— =Ujl 1 A7
C in + 4SC 1n< +SR4C) ( )

Then the current /3 must be:
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R4
l— U12
Rz
|3I
T
Uin
R3
A
Uc_— °
j— C
\ AN
— Uin

Y la
R4

_Uc—-Un U

Fig. A.13 Inductor replacement circuit

I = A8
3 R3 SR3R4C ( )
Then U12 is.
Uiy =Up — Roly = U, Ry = ua(1 ko (A.9)
12 = Uin 243 — Uin SR3R4C in — Uin SR3R4C .
Then I;, must be:
R
Un—Un(1- %) &,
Iy = Uin (A.10)

R, = SR\R3R.C
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and hence

Uin RiR3R,C
2 _ §L where L = —574 (A.11)
Iy R,

This proves that the circuit in Fig. A.12 acts as an inductor.

These are just some examples of the versatile applications of op amps and this
textbook contains a lot more. For example, Fig. 3.60 illustrates a difference circuit, in
Fig. 4.5, we have differential amplifier, Figs. 4.6 and 4.8 illustrate two different imple-
mentations of instrument amplifiers, Fig. 6.8 is an active probe, Fig. 6.11 illustrates
a current probe, Fig. 9.11 illustrates a state variable filter, Fig. 9.13 is a Sallen-Key
filter and in Fig. 11.2 an op amp is used in a sample and hold circuit.
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A Bayonet Neill-Concelman (BNC), 16

Accelerometer, 49, 50 Bernoulli’s equation, 52

ADC, 229 Bilinear transformation, 222, 389

Aliasing, 136, 138 Black body, 43

Alumel, 37 Block diagram, 212, 214

Amplifier Bode diagram, 139, 145, 147
differential, 80, 392 Bode plot, 371, 372, 379, 384
differential-ended, 77 Boltzmann’s constant, 10
instrumentation, 78, 80f, 392 Bureau International de Poids et Mesures
inverting, 393 (BIPM), 291
non-inverting, 176, 393 Burst-like signal, 245, 246

operational, 77
Analog-to-digital converter, see ’ADC’, 229

dual slope, 240, 241 C
flash, 236 Causal, 210, 219
integrating, 240 Central limit theorem, 286, 294f
level-crossing (LC), 245 Channel Electron Multiplier (CEM), 67
parallel, 236 Channeltron, 67
pipeline, 236, 238 Characteristic impedance, 85, 86f
SAR, 234 Chromel, 37
sigma-delta, 253 CM residual, 2
single slope, 244 Cold junction, 34, 36
successive approximation, 234 compensation, 39
Analysis, 124 Common, 2
Analyzer Common ground, 26
heterodyne, 171 Common mode, 2, 77, 279
Antenna, 16 Common Mode Rejection Ratio (CMRR),
electric dipole, 12 3,78, 83
magnetic dipole, 16 Comparator, 392
Attenuation, 98 Confidence interval, 285, 293, 357
Attenuation factor, 98 Confidence level, 285
Auto-correlation, see ’correlation’ Constantan, 36, 45

Constant current generator, 395
Control function, 369, 385

B PI, 375
Bandwidth, 5, 10, 115, 140f, 156, 169, 171 Controller, 369, 392
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P, 372,377

PD, 377

PI, 377

PID, 377, 378

proportional, 372
Control system, see ’system’
Convolution, 195f, 202, 319, 362

discrete-time, 333
Correlation, 319

auto-, 319

auto-, discrete-time, 335

circular, 337

cross-, 319, 325

cross-, distrete-time, 333

temporal, 319

time-, 319
Coupling, 9
Covariance, 282
Coverage factor, 286, 293
Critical damping, 382
Critically damped, 179, 187
Cross-correlation, see ’correlation’
Crosstalk, 26, 29

B-field, 18

capacitive, 20

common impedance, 27

E-radiation, 13

inductive, 23, 24
Cryogenic, 43
Crystal

piezoelectric, 56, 57
cxcorr, 338

D
Damping, 382
Damping constant, 382
Dark current, 61, 67
dB, 3
dBm, 3
dBV, 3
Dead time, 380, 381
Decimation, 250
Degrees of freedom, 286
effective, 294f
Delayline, 272
tapped, 273
Delta-function, 330
Delta network, 108
Density function, 279, 286
Difference equation, 214, 216, 224
Differential-ended, 4, 314
Differential mode, 2

Index

Differentiation time constant, 376
Digital filter, 209
Digital Multimeter (DMM), 244
Digital-to-Analog Converter (DAC), 233
1-bit, 256
Digitizing, 230
Dirac impulse, 148f, 210
Discrete Fourier Transform (DFT), 133,
134, 152, 164
spectrum, 167, 168
Discrete-time space, 149
Discretizing, 230
Dispersion, 29
Distribution
normal, 286, 292
student-t, 286
t, 287
uniform, 287
Dithering, 250
Double integral method, 180
Dynamic Light Scattering (DLS), 332
Dynode, 65
continuous-, 67

E
E12 series, 102
Electrical quantity, 1
ElectroCardioGram (ECG), 245
Emf, 35

thermo, 36, 43
Emissivity, 43

secondary electron, 68
Equivalent Number Of Bits (ENOB), 247
Equivalent-time sampling, 260
Error bar, 357
Error signal, 369
Euler’s formula, 126, 144
Euler transformation, 388
Expectation value, 281

F

Falltime, 4

Faraday cage, 15, 22

Far end, 87

Fast Fourier Transform (FFT), 133, 134,

162

algorithm, 133
spectrum, 164, 169

Feedback, 392
negative, 392
positive, 392

Fiber optics, 29
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Filter, 140, 220, 308
active, 176
all-pole, 187, 188
analog, 175
anti-aliasing, 249
bandpass, 181, 185, 193, 194, 203, 223
bandstop, 185, 194, 204
Bessel, 186
biquad, 177
biquadratic, 177
butterworth, 179, 187f
Cauer, 186, 191f
causal, 219
Chebyshev, 186, 188f, 204
coefficients, 223
comb, 226
elliptic, 191
finite impulse response (FIR), 212, 218,
223,343
first order, 175, 182, 220
highpass, 180, 185, 193, 225, 257
infinite impulse response (IIR), 214,
222,226
lowpass, 181, 182, 185, 192, 257, 312
matched, 319, 327f
notch, 186
n-tap, 212, 220
order, 145
passive, 175
RC, 182, 202, 220
resonance, 167, 170
second order, 177, 180, 185
selectiveness, 182
state-variable, 182
steepness, 182
transformation, 191
Twin-T, 186
type, 177
Filter coefficients, 212, 218
Filters
passive, 185
Fleming’s right-hand rule, 58
Flip-flop, 267, 272
Flow meter, 59
Fourier spectrum, 361
Fourier transform, 125, 125, 129, 144, 147,
150, 161, 171, 195, 361
discrete, 133f, 152
discrete-time, 152
fast, 133
inverse, 361
pair, 341
fregs, 146
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Frequency, 124, 162
complex, 143, 144, 148
cross-over, 386
cutoff, 183, 204, 222, 225
excitation, 307
imaginary, 144
resolution, 134
resonance, 177
sampling, 361
self-oscillation, 384

Frequency response, 218

Frequency space, 123

Fresnel’s law, 89

Full rank, 349

G

Gain margin, 371

Gauge, 33
gas ionization, 69
hot-cathode, 72, 72f
Pirani, 69, 69
thermal conductivity, 69
vacuum, 69

Gauge factor, 45

Guesstimating, 299f

GUM document, 291, 294f

H

Hall effect, 58

Hall probe, 59

Heaviside function, 158
Heterodyne, see ’analyzer’
Heterodyne technique, 312
Hot junction, 34, 36, 43

I
iid, 282
Illumination, 61
Impact angle, 345
Impedance matching, 96
Impulse response, 148f, 149, 195, 205, 210,
213,217,327
coefficients, 212
Inductance
mutual, 23
Inductor replacement, 398
Antoniou’s, 398
In-phase, 315
Instrumentation amplifier, see *amplifier’
Integration time constant, 375
Interpolation, 250, 269
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sinx/x, 363
Interval estimation, 284
Inverse Fourier transform method, 218
Ton feedback, 67

J

Johnson noise, 10

K

Kirchhoff’s law
current, 25, 57
voltage, 26

L
Laplace transform, 144f, 145, 146, 148,
149, 151, 157, 158, 181, 195
Leakage, 163, 170
quantify, 166
Lenz’s law, 24
I’Hospital’s rule, 126
Linear and Time-Invariant (LTI), 140
Linear interpolation, 361
Linear regression, 349
Load cell, see ’sensor’
Local oscillator, 171
Lock-In Amplifier (LIA), 308, 313f, 314
Lumen (Im), 61
Luminous flow, 61
Luminous intensity, 61
Lux (Ix), 61

M

Mass spectrometer, 277

Matrix
coefficient, 348
ill-conditioned, 358
measurement data, 348
observation, 348

Mean, 281

Microchannel Plate (MCP), 68
Chevron, 69
Z, 69

Modulator
delta, 254

Moment of coincidence, 270

N
Near end, 87
Neyman-Pearson detection, 325

Index

Night-vision googles, 69
Noise, 9

/1, 11

flicker, 11

gaussian, 279

Johnson, 10

pink, 11

power, 329

quantization, 12

shot, 11

white gaussian, 358
Noise factor, 11
Noise-shaping, 256
Nonie scale, 269
Non-referenced, 4, 29
Normal, 2
Normal mode, 2, 77, 279

amplification, 81
Nyquist interval, 138
Nyquist limit, 249
Nyquist sampling, see ’sampling theorem’
Nyquist’s stability criterion, 374

(0]
Operational amplifier (Op amp), 391f, 391
golden rules, 392
Opto coupler, 29
Orthogonality principle, 352
Oscilloscope
sampling, 260
Output estimate, 294f
Overdamped, 188
Oversampling, 222, 247, 249
Oversampling rate (OSR), 247
Overshoot, 179, 187, 370, 377
Overshoot ratio, 382

P
Passband, 179
Phase diagram, 190, 371
linear, 143, 186
Phase-locked loop, see "PLL”
Phase-locked loop, 313
Phase margin, 371, 377
Phase Sensitive Detector (PSD), 308, 309,
311,313
Photocathode, 65
Photoconductive, 61
Photodiode
avalanche, 63
Photodiodes, 61
Photomultiplier, 61, 65
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Photomultiplier Tube (PMT), 65
Photon Correlation Spectroscopy (PCS),

331
Photoresistors, 61
Phototransistors, 61
Photovoltaic, 61, 62
Physical quantity, 1
PI1, 375
PID parameters, 377

Piezoelectric crystals, see ’crystal’

Piezoresistive, 45
Plant, 378

PLL, 313

Point estimator, 284
poles, see ’system’

Position sensitive detectors, see ’sensor’
Position Sensitive Detectors (PSD), 64

Probability, 285
Probability distribution
uniform, 247
Probe, 111, 113f
active, 116
current, 117, 118f
passive, 113, 114f
Process
stationary, 341
stochastic, 341
Process value, 369
Pseudo inverse, 349, 355
Pyrometer, 43
dissapering-filament, 44
Pythagorean identity, 314
pzplot, 147

Q
Q, 177, 308, 315
QR factorization, 360
Quality factor, 177, 182, 187
Quantity

electrical, 33

physical, 33
Quantization, 229

noise, 233
Quantization error, 269
Quantization noise, 248f, 255
Quantum efficiency, 66
Quarter of a period, 315

R

Rail-to-rail, 392
Rectifier, 312
Referenced, 29

Reference signal, 312, 314
Residual, 233
Resistance

negative, 397

Resistivity, 45
Resolution, 169

Resolution Bandwidth (RBW), 169f

ADC, 230, 244
bandwidth, 170
time, 271

Response time, 377
Ripple, 187, 188, 190

passband, 186

Risetime, 4, 5, 370, 377

S

s, 148
S&H, see *sample & hold’
Sallen—Key link, 183, 203

second order, 183

Sample & hold, 230, 231
Sampling

asynchronous, 245, 246
equivalent-time, 260
level-crossing, 245
real-time, 260
synchronous, 244, 245

Sampling rate, 131

Sampling theorem, 132, 138, 247, 360

Nyquist, 132
Shannon, 132

Scalar product, 144
Seebeck coefficient, 36
Seebeck effect, 34
Seismic mass, 49
Seismograph, 343
Sensitivity coefficient, 293
Sensor, 1, 33

bandgap, 42
flow, 51, 59

fluid level, 53, 54
Hall, 58, 118
load cell, 55
magnetic, 58
photo, 61
position, 59
position sensitive detector, 64
pressure, 50
temperature, 34
torque, 53, 54
viscosity, 55

Settling time, 369, 370, 377
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Set value, 369
Shannon, see ’sampling theorem’
Shield, 21, 24
Shot noise, 11
Sigma-delta
modulation, 253
Signal conditioning, 1, 34
Signal-to-noise, 3, 283
Signal-to-noise ratio (SNR), 83, 247, 248,
255,283
Sinc function, 167, 363
Single-ended, 4
Single photon detection, 66
Smooth, 312
Sparse signal, 245
Spectral density, 248
Spectrum analyzer, 161, 170
analog, 161
digital, 161
s-plane, 149, 150, 187, 191
Splicing, 97, 97
Splitting, 97, 99f
s space, 152
Standard deviation, 281f
Standard error, 283f
State variables, 181
Steady state, 374
Steady state error, 369, 373, 377
Stefan-Boltzmann’s law, 43
Step function, 158
Step response, 369, 378, 381
Stochastic process, 341
Stochastic variable, 280, 284, 292
Strain, 45
false, 46
ostensible, 46
Strain gauge, 46f
piezoresistive, 50
principle, 45f, 48
Successive Approximation Register (SAR)
interleaved, 258
Switched capacitor, 184
System, 5
bandpass, 140, 141, 147
bandstop, 141
closed loop, 374
control, 369, 373
feedback, 371
first order, 373, 378
highpass, 140, 141
identification, 378
linear and time-invariant, 140
lowpass, 139-141, 176

Index

notch, 140, 141
open loop, 374
overdamped, 382
pole, 147, 177, 227
resonance, 140, 141
second order, 371, 382
stopband, 140
time constant, 378
underdamped, 382
zero, 147

System of equations
overdetermined, 348, 352

T
Tap, 212
T-cross, 98
Temperature coefficient, 45
Termination, 95
Thermal conductivity, 70
Thermocouple, 34, 35
type T, 261
Thermopile, 43
Thomson effect, 34
Time Domain Reflectometry (TDR), 99
Time measurements
Vernier, 269
Time space, 123
Time stretching, 274
Time-to-Digital Converter (TDC), 267
analog, 267
asynchronous, 269
counter based, 268
digital, 267
flash, 273
Vernier, 271
Transducer, 33
Transfer function, 138, 145, 203, 204, 211,
256, 370, 378
Transform domains, 154
Transformer, 23
isolation, 29
Transform theory, 123
Triangulation
optical, 66
Triode, 71
Twisted-pair (TP), 19, 28
shielded, 29

U
Unbiased estimator, 283
Uncertainty

expanded, 293, 294f
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propagation, 293

standard, 293, 294f

type A, 294f

type B, 294f
Uncertainty budget, 288, 293, 294, 301f
Underdamped, 179, 188
Universal Active Filter (UAF), 181

\'%
Variance, 281, 283, 329
population, 283
sample, 284, 286
uniform distribution, 287
Vector, 144, 349
base, 144
column, 349
Venturi pipe, 52
Voltage follower, 176, 230, 396
Voltage meter
vector, 315

w
Wave impedance, 87f
‘Wave reflection, 89
Welch-Satterthwaite formula, 294f
Wheatstone bridge, 47f, 49, 70, 71, 79
full bridge, 48
half-bridge, 48

Wien’s law, 43
Window, 164
Bartlett, 165
Blackman, 164
Hamming, 164, 170
Hanning, 164
rectangular, 170
triangle, 164
2-wire method, 41
3-wire method, 74
4-wire method, 41

xcorr, 338

Y
Y network, 108

z
Zero-biased, 61
Zeros, see 'system’
Ziegler-Nichol’s rule of thumb, 385
z plane, 153
z space, 150, 152
z transform, 150, 151f
inverse, 212
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